Alkali Metal Component Is Active Material Patents (Class 429/231.9)
  • Patent number: 10461379
    Abstract: A method for assembling a lithium-ion reserve battery. The method including: charging an assembled lithium-ion reserve battery, the assembled lithium-ion battery including electrodes forming a battery cell, electrolyte and a membrane separating the battery cell and the electrolyte, the electrodes being charged into a charged state; disassembling the charged lithium-ion reserve battery; rinsing and drying at least the electrodes of the disassembled lithium-ion reserve battery; and reassembling the lithium-ion reserve battery with the rinsed and dried electrodes in the charged state and without the electrolyte; wherein the reassembling includes hermetically sealing a housing containing the battery cell. A method for activating such lithium-ion battery further includes, subsequent to the reassembly, introducing the electrolyte into the battery cell to activate the lithium-ion battery.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 29, 2019
    Assignee: OMNITEK PARTNERS LLC
    Inventor: Jahangir S Rastegar
  • Patent number: 10276887
    Abstract: Disclosed herein is a battery cell having an electrode assembly including one or more unit cells mounted in a variable cell case in a state in which the electrode assembly is impregnated with an electrolyte, wherein at least one of the unit cells includes a flexible electrode that can be bent or curved, an electrode current collector of the flexible electrode includes a first surface, to which an electrode active material is applied, and a second surface, to which no electrode active material is applied, the second surface being opposite to the first surface, and the second surface is provided with a mesh for improving flexibility of the electrode.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: April 30, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Seong Min Kim, Jin Soo Lee, Joo Hwan Sung, Sung Pil Yoon, Jung Koo Kang, Ju Bin Kim, Hae Jin Lim, Seunghe Woo
  • Patent number: 10199693
    Abstract: The present specification relates to an anode, a lithium secondary battery including the same, a battery module including the lithium secondary battery, and a method for manufacturing an anode.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: February 5, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Minchul Jang, Jeong Kyu Kim, Byoungkuk Son, Seong Ho Lee
  • Patent number: 10147946
    Abstract: A positive electrode material having a nominal stoichiometry Li1+y/2Co1?x?y?z?dSizFexMyM?d(PO4)1+y/2 where M is a trivalent cation selected from at least one of Cr, Ti, Al, Mn, Ni, V, Sc, La and/or Ga, M? is a divalent cation selected from at least one of Mn, Ni, Zn, Sr, Cu, Ca and/or Mg, y is within a range of 0<y?0.10 and x is within a range of 0?x?0.2. The use of double compositional modification to LiCoPO4 increases the discharge capacity from ˜100 mAh/g to about 130 mAh/g while retaining the discharge capacity retention of the singly Fe-substituted LiCoPO4. Additional compositional modification to include Si increases the cycle life and greatly improved the coulombic efficiency to between 97-100% at a C/3 cycle rate.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: December 4, 2018
    Assignee: The United States of America, as represented by the secretary of the army
    Inventors: Jan L. Allen, Joshua L. Allen, Samuel A. Delp, III, Jeffrey B. Wolfenstine, T. Richard Jow
  • Patent number: 10128550
    Abstract: A battery pack for a vehicle is presented. The battery pack comprises a plurality of bricks, each brick of the plurality of bricks comprising a phase change material block, a side of the phase change material block defining a plurality of channels, and a plurality of battery cells, each battery cell being disposed at least in part in the phase change material block; and at least one connector for electrically connecting a first one of the plurality of bricks to a second one of the plurality of bricks, the at least one connector being disposed at least partially in one of the plurality of channels.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: November 13, 2018
    Assignee: CONSORTIUM DE RECHERCHE BRP—UNIVERSITE DE SHERBROOKE S.E.N.C.
    Inventors: Normand Lebreux, Eric Menard
  • Patent number: 9608289
    Abstract: A secondary battery includes: a cathode; an anode; and an electrolytic solution including a cyano compound, the cyano compound including a compound represented by R1-O—C(?O)—O—R2 (R1, R2, or both include a cyano-group-containing group), a compound represented by R3-C(?O)—O—R4 (R4 includes the cyano-group-containing group), or both.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: March 28, 2017
    Assignee: SONY CORPORATION
    Inventors: Masayuki Ihara, Tadahiko Kubota
  • Patent number: 9548492
    Abstract: Articles and methods for forming protected electrodes for use in electrochemical cells, including those for use in rechargeable lithium batteries, are provided. In some embodiments, the articles and methods involve an electrode that does not include an electroactive layer, but includes a current collector and a protective structure positioned directly adjacent the current collector, or separated from the current collector by one or more thin layers. Lithium ions may be transported across the protective structure to form an electroactive layer between the current collector and the protective structure. In some embodiments, an anisotropic force may be applied to the electrode to facilitate formation of the electroactive layer.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: January 17, 2017
    Assignee: Sion Power Corporation
    Inventors: John D. Affinito, Chariclea Scordilis-Kelley, Yuriy V. Mikhaylik
  • Patent number: 9515320
    Abstract: A cathode material with oxygen vacancy is provided. The cathode material includes a lithium metal phosphate compound having a general formula LiMPO4?z, wherein M represents at least one of a first-row transition metal, and 0.001?z?0.05.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 6, 2016
    Assignee: ADVANCED LITHIUM ELECTROCHEMISTRY CO., LTD.
    Inventors: Hsiang-Pin Lin, Han-Wei Hsieh, Yuan-Kai Lin, Ming-Hui Lai
  • Patent number: 9512526
    Abstract: The present disclosure provides a method or process, apparatus and/or composition for catalyzing the oxidation of water to generate hydrogen ions and oxygen. The catalyst includes lithium cobalt germinate.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: December 6, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Kenneth James McDonald, Hongfei Jia, Chen Ling
  • Patent number: 9502735
    Abstract: This invention provides lithium-based batteries that include one or more inorganic barrier layers disposed between the anode and the cathode. The inorganic barrier layer is a lithium-ion conductor and is non-permeable to lithium-containing compounds, such as lithium polysulfides or lithium dendrites. The inorganic barrier layer may be in direct contact with the anode or cathode, or electrically isolated from the anode and cathode. The principles disclosed herein solve the problem of maintaining electrical isolation of the anode and cathode, while providing efficient lithium-ion conduction without crossover of other lithium species that would otherwise limit the power performance of the battery.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: November 22, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Ping Liu, Jocelyn Hicks-Garner, Adam F. Gross, Jun Liu
  • Patent number: 9478825
    Abstract: This invention provides lithium-based batteries that include one or more inorganic barrier layers disposed between the anode and the cathode. The inorganic barrier layer is a lithium-ion conductor and is non-permeable to lithium-containing compounds, such as lithium polysulfides or lithium dendrites. The inorganic barrier layer may be in direct contact with the anode or cathode, or electrically isolated from the anode and cathode. The principles disclosed herein solve the problem of maintaining electrical isolation of the anode and cathode, while providing efficient lithium-ion conduction without crossover of other lithium species that would otherwise limit the power performance of the battery.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: October 25, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Ping Liu, Jocelyn Hicks-Garner, Adam F. Gross, Jun Liu
  • Patent number: 9444097
    Abstract: [Object] To provide a positive electrode for a nonaqueous electrolyte secondary battery with which characteristics of the nonaqueous electrolyte secondary battery, such as a charge/discharge efficiency, a capacity retention ratio, and a discharge capacity retention ratio are not easily degraded even in the case where the nonaqueous electrolyte secondary battery is continuously charged at a high temperature. [Solution] A positive electrode 12 of a nonaqueous electrolyte secondary battery 1 includes a positive electrode active material layer 12b. The positive electrode active material layer 12b contains a positive electrode active material and a compound represented by a general formula (1): MH2PO2 (1). In the general formula (1), M represents a monovalent cation.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: September 13, 2016
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Takanobu Chiga, Naoki Imachi, Daisuke Kato
  • Patent number: 9397373
    Abstract: A lithium ion secondary battery including a compound containing at least one thiol group (—SH) in a molecule in a unit cell of the battery is provided. By including the compound containing thiol group (—SH) having good reactivity with copper or copper ions, the formation of dendrite through the reduction of copper ions present in the inner portion of the battery or produced during operating the battery at the surface of an anode may be prevented. The internal short between two electrodes due to the dendrite may be also prevented.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: July 19, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Sung Joon Park, Seung Don Choi, Ho Jin Jeon, Dae Sik Choi, You Rim Yoon, Chang Moon Jeong, Jae Sik Yoon, Yong Pal Park
  • Patent number: 9391316
    Abstract: A composite cathode active material, a cathode and a lithium battery including the composite cathode, and a method of preparing the composite cathode active material, the composite cathode active material including a compound with an olivine crystal structure; and an inorganic material, the inorganic material including a nitride or carbide of at least one element selected from the group of Group 2, Group 13, Group 14, and Group 15 of the periodic table of elements.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: July 12, 2016
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Gue-sung Kim, Young-min Choi, Won-chang Choi
  • Patent number: 9356291
    Abstract: A positive electrode material having a nominal stoichiometry Li1+y/2Co1?x?y?z?dSizFexMyM?d(PO4)1+y/2 where M is a trivalent cation selected from at least one of Cr, Ti, Al, Mn, Ni, V, Sc, La and/or Ga, M? is a divalent cation selected from at least one of Mn, Ni, Zn, Sr, Cu, Ca and/or Mg, y is within a range of 0<y?0.10 and x is within a range of 0?x?0.2. The use of double compositional modification to LiCoPO4 increases the discharge capacity from ˜100 mAh/g to about 130 mAh/g while retaining the discharge capacity retention of the singly Fe-substituted LiCoPO4. Additional compositional modification to include Si increases the cycle life and greatly improved the coulombic efficiency to between 97-100% at a C/3 cycle rate.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: May 31, 2016
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE ARMY
    Inventors: Jan L. Allen, Joshua L. Allen, Samuel A. Delp, III, Jeffrey B. Wolfenstine, T. Richard Jow
  • Patent number: 9160001
    Abstract: A cobalt-containing phosphate material can comprise lithium (Li) (or, alternatively or additionally other alkali metal(s)), cobalt (Co), phosphate (PO4), and at least two additional metals other than Li and Co (e.g., as dopants and/or metal oxides), and can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) of at least 0.2, at least 0.3, at least 0.5, at least 0.7, or at least about 0.75. The cobalt-containing phosphate material can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) ranging from 0.2 to 0.98, from 0.3 to 0.98, from 0.3 to 0.94, from 0.5 to 0.98, from 0.5 to 0.94, or alternatively from 0.5 to 0.9, from 0.7 to 0.9, or from 0.75 to 0.85.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: October 13, 2015
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Bin Li, Steven Kaye, Doron Greenberg, Conor Riley, Jingning Shan, Jen-Hsien Yang
  • Patent number: 9083046
    Abstract: A cathode active material comprising a composition represented by the following general formula (1): LiaM1xM2yM3zPmSinO4??(1) wherein M1 is at least one kind of element selected from the group of Mn, Fe, Co and Ni; M2 is any one kind of element selected from the group of Zr, Sn, Y and Al; M3 is at least one kind of element selected from the group of Zr, Sn, Y, Al, Ti, V and Nb and different from M2; “a” satisfies 0<a?1; “x” satisfies 0<x?2; “y” satisfies 0<y<1; “z” satisfies 0<z<1; “m” satisfies 0?m<1; and “n” satisfies 0<n?1.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: July 14, 2015
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koji Ohira, Motoaki Nishijima
  • Patent number: 9040203
    Abstract: A lithium battery including: a positive electrode including an overlithiated lithium transition metal oxide having a layered structure; a negative electrode including a silicon-based negative active material; and an electrolyte between the positive electrode and the negative electrode, the electrolyte including an electrolytic solution including a fluorinated ether solvent in an amount of 3 vol % or more based on the total volume of the electrolytic solution.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 26, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myung-Hoon Kim, Man-Seok Han, Seung-Wan Kim, Jung-Yeon Won, Ha-Na Yoo
  • Patent number: 9028711
    Abstract: An inexpensive negative electrode material for a nonaqueous electrolyte secondary battery includes three types of powder materials: alloy material A; alloy material B; and a conductive material. Alloy material A includes a CoSn2 structure containing Co, Sn, and Fe and has an Sn content of at least 70.1 mass % and less than 82.0 mass %. Alloy material B includes Co3Sn2 and has a lower discharge capacity than alloy material A. The proportion RB of the mass of alloy material B based on the total mass of alloy material A and B is greater than 5.9% and less than 27.1%. The content of the conductive material is at least 7 mass % and at most 20 mass % based on the total mass of alloy material A and B, and the conductive material. The exotherm starting temperature for the negative electrode material is less than 375.4° C.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: May 12, 2015
    Assignees: Nippon Steel & Sumitomo Metal Corporation, Chuo Denki Kogyo Co., Ltd.
    Inventors: Noriyuki Negi, Tatsuo Nagata, Sukeyoshi Yamamoto
  • Patent number: 9023523
    Abstract: The present invention relates to a process for the preparation of compounds of general formula (I) Lia-bMb1Fe1-cMc2Pd-eMe3Ox, wherein Fe has the oxidation state +2 and M1, M2, M3, a, b, c, d, e and x are: M1: Na, K, Rb and/or Cs, M2: Mn, Mg, Al, Ca, Ti, Co, Ni, Cr, V, M3: Si, S, F a: 0.8-1.9, b: 0-0.3, c: 0-0.9, d: 0.8-1.9, e: 0-0.5, x: 1.0-8, depending on the amount and oxidation state of Li, M1, M2, P, M3, wherein compounds of general formula (I) are neutrally charged, comprising the following steps (A) providing a mixture comprising at least one lithium-comprising compound, at least one iron-comprising compound, in which iron has the oxidation state 0, and at least one M1-comprising compound, if present, and/or at least one M2-comprising compound, if present, and/or least one M3-comprising compound, if present, and at least one compound comprising at least one phosphorous atom in oxidation state +5, and (B) heating the mixture obtained in step (A) at a temperature of 100 to 500° C.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: May 5, 2015
    Assignee: BASF SE
    Inventors: Kirill Bramnik, Hartmut Hibst, Jordan Keith Lampert
  • Patent number: 9023529
    Abstract: A crystalline nanowire and method of making a crystalline nanowire are disclosed. The method includes dissolving a first nitrate salt and a second nitrate salt in an acrylic acid aqueous solution. An initiator is added to the solution, which is then heated to form polyacrylatyes. The polyacrylates are dried and calcined. The nanowires show high reversible capacity, enhanced cycleability, and promising rate capability for a battery or capacitor.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: May 5, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Yuliang Cao, Lifen Xiao, Zhenguo Yang, Wei Wang, Daiwon Choi, Zimin Nie
  • Patent number: 9023531
    Abstract: Disclosed is a nonaqueous secondary battery (100) comprising a positive electrode (155) having a positive current collector (151) made of a metal, and a positive electrode active material (153) composed of a lithium-metal complex oxide. The surface of the positive electrode active material (153) is coated with a lithium salt (158) having an average thickness of 20-50 nm.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: May 5, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Sumitomo Metal Mining Co., Ltd.
    Inventors: Tomoyoshi Ueki, Yutaka Oyama, Takuichi Arai, Kazuhiro Ohkawa, Koichi Yokoyama, Ryuichi Kuzuo, Katsuya Kase, Syuhei Oda
  • Patent number: 9017877
    Abstract: A current collector for a nonaqueous solvent secondary battery, which includes: a first metal layer; and a second metal layer stacked on a surface of the first metal layer, is composed so that a Young's modulus (E1), Vickers hardness (Hv1) and thickness (T1) of the first metal layer and a Young's modulus (E2), Vickers hardness (Hv2) and thickness (T2) of the second metal layer can satisfy the following Expression: (E1>E2 or Hv1>Hv2); and T1<T2.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: April 28, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hajime Sato, Kenji Hosaka, Hideaki Horie
  • Patent number: 9005818
    Abstract: A negative electrode active material including mesoporous silica having mesopores filled with a metal and a lithium battery including the same.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: April 14, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: So-Ra Lee, Jae-Myung Kim, Jun-Sik Kim, Kyeu-Yoon Sheem
  • Patent number: 9000713
    Abstract: Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 7, 2015
    Assignee: Massachussetts Institute of Technology
    Inventors: Dane A. Boysen, David J. Bradwell, Kai Jiang, Hojong Kim, Luis A. Ortiz, Donald R. Sadoway, Alina A. Tomaszowska, Weifeng Wei, Kangli Wang
  • Patent number: 8993163
    Abstract: A positive electrode active material provided by the present invention is formed of a lithium-nickel-containing metal phosphate compound represented by a general formula: LiNi(1-x)MxPO4(1) (in Formula (1), M is one or more metal elements selected from divalent and trivalent metal elements, and x is a number satisfying the condition 0<x<0.5). At least part of a surface of the lithium-nickel-containing metal phosphate compound is covered with carbon, and the lithium-nickel-containing metal phosphate compound covered with carbon has an olivine-type crystal structure confirmed by structure analysis by X-ray diffraction.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 31, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Jun Yoshida
  • Patent number: 8992795
    Abstract: In a manufacturing process of a positive electrode active material for a power storage device, which includes a lithium silicate compound represented by a general formula Li2MSiO4, heat treatment is performed at a high temperature on a mixture material, grinding treatment is performed, a carbon-based material is added, and then heat treatment is performed again. Therefore, the reactivity between the substances contained in the mixture material is enhanced, favorable crystallinity can be obtained, and further microparticulation of the grain size of crystal which is grown larger by the high temperature treatment and crystallinity recovery are achieved; and at the same time, carbon can be supported on the surfaces of particles of the crystallized mixture material. Accordingly, a positive electrode active material for a power storage device, in which electron conductivity is improved, can be manufactured.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: March 31, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Yamakaji, Koji Nara, Mako Motoyoshi
  • Patent number: 8993171
    Abstract: To provide an active material from which a sufficient discharge capacity is obtained, an electrode containing the active material, a lithium secondary battery including the electrode, and a method for making an active material. A method for making an active material includes a temperature elevation step of heating a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and a reductant in a hermetically sealed container at a temperature elevation rate T1 from 25° C. to 110° C. and then at a temperature elevation rate T2 from 110° C. to a designated temperature of 200° C. or more, in which T1>T2; T1=0.5 to 10° C./min; and T2=0.1 to 2.2° C./min.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: March 31, 2015
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Kouji Tokita, Tomohiko Kato, Akiji Higuchi
  • Patent number: 8968902
    Abstract: The present invention provides a molten sodium secondary cell. In some cases, the secondary cell includes a sodium metal negative electrode, a positive electrode compartment that includes a positive electrode disposed in a liquid positive electrode solution, and a sodium ion conductive electrolyte membrane that separates the negative electrode from the positive electrode solution. In such cases, the electrolyte membrane can comprise any suitable material, including, without limitation, a NaSICON membrane. Furthermore, in such cases, the liquid positive electrode solution can comprise any suitable positive electrode solution, including, but not limited to, an aqueous sodium hydroxide solution. Generally, when the cell functions, the sodium negative electrode is molten and in contact with the electrolyte membrane. Additionally, the cell is functional at an operating temperature between about 100° C. and about 170° C. Indeed, in some instances, the molten sodium secondary cell is functional between about 110° C.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: March 3, 2015
    Assignee: Ceramatec, Inc.
    Inventors: W. Grover Coors, Chett Boxley, Mathew Robins, Alexis Eccleston
  • Patent number: 8962189
    Abstract: A cathode includes a lithium transition metal complex compound including lithium, one, or two or more transition metals, magnesium, and oxygen as constituent elements. In a standardized X-ray absorption spectrum of the lithium transition metal complex compound measured by an X-ray absorption spectroscopic method, a first absorption edge having absorption edge energy E1 in X-ray absorption intensity of about 0.5 exits in a range where X-ray energy is from about 1303 eV to about 1313 eV both inclusive, in a discharged state in which a discharge voltage is about 3.0 V, and a second absorption edge having absorption edge energy E2 in X-ray absorption intensity of about 0.5 exits, in a charged state in which a charge voltage V is from about 4.3 V to about 4.5 V both inclusive. The absorption edge energies E1 and E2 and the charge voltage V satisfy a relation of E2?E1?(V?4.25)×4.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: February 24, 2015
    Assignee: Sony Corporation
    Inventors: Satoshi Fujiki, Hirotaka Fukudome, Kazunari Motohashi, Yosuke Hosoya, Yoshihiro Kudo
  • Patent number: 8956762
    Abstract: In a lithium ion secondary battery including a positive electrode, a separator, a negative electrode, and a package body, the negative electrode includes simple substance silicon as a negative electrode active material, and a negative electrode binder, and is doped with lithium, and the following formulas (1) and (2) are satisfied: 1.2?Ma/Mc?1.9??(1) 1.0<Ma/(Mc+MLi)<1.6??(2) wherein an amount of lithium inserted into the negative electrode until the negative electrode reaches a potential of 0.02 V with respect to metal lithium is Ma (a number of atoms), an amount of lithium released from the positive electrode until the positive electrode reaches a potential of 4.3 V with respect to metal lithium is Mc (a number of atoms), and an amount of lithium with which the negative electrode is doped is MLi (a number of atoms).
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 17, 2015
    Assignees: NEC Corporation, NEC Energy Devices, Ltd.
    Inventors: Ryuichi Kasahara, Jiro Iriyama, Tetsuya Kajita, Hiroo Takahashi, Tatsuji Numata, Daisuke Kawasaki
  • Publication number: 20150037645
    Abstract: A cell cathode compartment comprises a granule bed comprising metal granules, metal halide granules, and sodium halide granules, a separator adjacent to the granule bed, a liquid electrolyte dispersed in the granule bed, and a porous absorbent disposed in the granule bed, wherein a transverse cross-sectional distribution of the porous absorbent in the granule bed varies in a longitudinal direction from a first position to a second position. In another embodiment, a cell cathode compartment comprises a granule bed comprising metal granules, metal halide granules, and sodium halide granules, a separator adjacent to the granule bed, a liquid electrolyte dispersed in the granule bed, and a porous absorbent coating on a surface adjacent to the granule bed.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: General Electric Company
    Inventors: Manikandan Ramani, Edward James Balaschak, Robert Christie Galloway, Raymond R. Cole, Jonathan Adam Bielik
  • Publication number: 20150037659
    Abstract: A cell cathode compartment comprises a granule bed comprising metal granules, metal halide granules, and sodium halide granules, a separator adjacent to the granule bed, a liquid electrolyte dispersed in the granule bed, and a porous absorbent disposed in the granule bed, wherein a transverse cross-sectional distribution of the porous absorbent in the granule bed varies in a longitudinal direction from a first position to a second position. In another embodiment, a cell cathode compartment comprises a granule bed comprising metal granules, metal halide granules, and sodium halide granules, a separator adjacent to the granule bed, a liquid electrolyte dispersed in the granule bed, and a porous absorbent coating on a surface adjacent to the granule bed.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: General Electric Company
    Inventors: Manikandan Ramani, Edward James Balaschak, Robert Christie Galloway, Raymond R. Cole, Jonathan Adam Bielik
  • Patent number: 8945751
    Abstract: An electrochemical storage device including a plurality of electrochemical cells connected electrically in series. Each cell includes an anode electrode, a cathode electrode and an aqueous electrolyte. The charge storage capacity of the anode electrode is less than the charge storage capacity of the cathode.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 3, 2015
    Assignee: Aquion Energy, Inc.
    Inventor: Jay Whitacre
  • Publication number: 20150030932
    Abstract: A method for producing an alkali-metal-including active material by pre-doping an active material with an alkali metal ion includes: mixing the alkali metal, an organic solvent with which the alkali metal is solvated, and a ligand having an electrophilic substitution reactivity to produce an alkali metal complex; and contacting and reacting the alkali metal complex and the active material with each other to pre-dope the active material with the alkali metal ion.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 29, 2015
    Inventors: Shuhei Yoshida, Daisuke Shibata
  • Publication number: 20150030934
    Abstract: A metal foil electrode comprising i) a reinforcement layer formed from a porous substrate, and ii) first and second layers of metal foil formed comprising lithium and/or sodium, wherein the reinforcement layer is disposed between the first and second metal foil layers and bonded (preferably pressure bonded) together to form a composite structure having a thickness of 100 microns or less.
    Type: Application
    Filed: November 1, 2012
    Publication date: January 29, 2015
    Inventors: Vladimir Kolosnitsyn, Elena Karaseva
  • Patent number: 8940437
    Abstract: Pillared particles of silicon or silicon-comprising material and a method of fabricating the same are disclosed. These particles may be used to create both a composite anode structure with a polymer binder, a conductive additive and a metal foil current collector, and an electrode structure. The structure of the particles overcomes the problems of charge/discharge capacity loss.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: January 27, 2015
    Assignee: Nexeon Limited
    Inventors: Mino Green, Feng-Ming Liu
  • Publication number: 20150024269
    Abstract: The invention relates to electrodes that contain active materials of the formula: AaMb(SO4)cXx wherein A is a single or mixed alkali metal phase comprising one or more of sodium, potassium, lithium mixed with sodium, lithium mixed with potassium or lithium mixed with sodium and potassium; M is selected from one or more transition metals and/or non-transition metals and/or metalloids; X is a moiety comprising one or more atoms selected from halogen and OH; and further wherein 1<a<3; b is in the range: 0<b?2; c is in the range: 2?c?3 and x is in the range 0?x?1. Such electrodes are useful in, for example, sodium ion battery applications.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 22, 2015
    Inventor: Jeremy Barker
  • Patent number: 8932764
    Abstract: A battery electrode composition is provided comprising core-shell composites. Each of the composites may comprise a sulfur-based core and a multi-functional shell. The sulfur-based core is provided to electrochemically react with metal ions during battery operation to store the metal ions in the form of a corresponding metal-sulfide during discharging or charging of the battery and to release the metal ions from the corresponding metal-sulfide during charging or discharging of the battery. The multi-functional shell at least partially encases the sulfur-based core and is formed from a material that is (i) substantially permeable to the metal ions of the corresponding metal-sulfide and (ii) substantially impermeable to electrolyte solvent molecules and metal polysulfides.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: January 13, 2015
    Assignee: Sila Nanotechnologies, Inc.
    Inventors: Gleb Nikolayevich Yushin, Bogdan Zdyrko, Igor Luzinov, Vojtech Svoboda, Alexander Thomas Jacobs, Eugene Michael Berdichevsky, Hyea Kim
  • Patent number: 8932762
    Abstract: A method for manufacturing an active material containing a triclinic LiVOPO4 crystal particle that has a spherical form and an average particle size of 20 to 200 nm. The method includes a step of manufacturing the crystal particle by hydrothermal synthesis.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: January 13, 2015
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Yosuke Miyaki, Takeshi Takahashi, Akiji Higuchi
  • Publication number: 20140370360
    Abstract: A secondary battery includes a first electrode, a second electrode, an ion transmission member in contact with the first electrode and the second electrode, and a hole transmission member in contact with the first electrode and the second electrode. Suitably, the first electrode contains a composite oxide. The composite oxide contains alkali metal or alkali earth metal. The composite oxide contains a p-type composite oxide as a p-type semiconductor.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 18, 2014
    Inventors: Si MENGQUN, Zhou YING
  • Publication number: 20140370389
    Abstract: A positive electrode active material includes: center cores containing a composite oxide containing alkali metal or alkali earth metal; and eutectic layers containing a eutectic substance composed of at least two types of composite oxides containing the alkali metal or the alkali earth metal and configured to cover the center cores. Preferably, the eutectic layers have a thickness of 4 nm or larger and 800 nm or smaller. The composite oxides forming the eutectic substance include the composite oxide of the center cores.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 18, 2014
    Applicant: GREENFUL NEW ENERGY CO., LTD.
    Inventors: Si MENGQUN, Zhou YING
  • Patent number: 8906254
    Abstract: Disclosed are a cathode material for a secondary battery, and a manufacturing method of the same. The cathode material includes a lithium manganese phosphate LiMnPO4/sodium manganese fluorophosphate Na2MnPO4F composite, in which the LiMnPO4 and Na2MnPO4F have different crystal structures. Additionally, the method of manufacturing the cathode material may be done in a single step through a hydrothermal synthesis, which greatly reduces the time and cost of production. Additionally, the disclosure provides that the electric conductivity of the cathode material may be improved through carbon coating, thereby providing a cathode material with excellent electrochemical activity.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 9, 2014
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Sa Heum Kim, Dong Gun Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Dong Jin Kim
  • Patent number: 8889300
    Abstract: Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: November 18, 2014
    Assignee: California Institute of Technology
    Inventors: Ratnakumar V. Bugga, William C. West, Andrew Kindler, Marshall C. Smart
  • Publication number: 20140335407
    Abstract: A method for configuring a non-lithium-intercalation electrode includes intercalating an insertion species between multiple layers of a stacked or layered electrode material. The method forms an electrode architecture with increased interlayer spacing for non-lithium metal ion migration. A laminate electrode material is constructed such that pillaring agents are intercalated between multiple layers of the stacked electrode material and installed in a battery.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Inventors: Yan YAO, Yanliang LIANG
  • Publication number: 20140335409
    Abstract: A method is provided for fabricating a transition metal hexacyanometallate (TMHCM) electrode with a water-soluble binder. The method initially forms an electrode mix slurry comprising TMHCF and a water-soluble binder. The electrode mix slurry is applied to a current collector, and then dehydrated to form an electrode. The electrode mix slurry may additionally comprise a carbon additive such as carbon black, carbon fiber, carbon nanotubes, graphite, or graphene. The electrode is typically formed with TMHCM greater than 50%, by weight, as compared to a combined weight of the TMHCM, carbon additive, and binder. Also provided are a TMHCM electrode made with a water-soluble binder and a battery having a TMHCM cathode that is made with a water-soluble binder.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Long Wang, Yuhao Lu, Sean Vail
  • Patent number: 8883348
    Abstract: An object of the present invention is to provide an electrode for a lithium ion secondary battery that can ensure a high level of safety even when exposed to severe conditions such as a nail penetration test or crush test, and exhibit excellent output characteristics. The present invention relates to an electrode for a lithium ion secondary battery having a material mixture containing active material particles capable of reversibly absorbing and desorbing lithium, and a current collector that carries the material mixture, wherein a surface of the current collector has recessed portions, and an area occupied by the recessed portions accounts for not less than 30% of an a material mixture carrying area of the current collector.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: November 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Hajime Nishino, Shuji Tsutsumi, Shinji Kasamatsu, Hideharu Takezawa, Mikinari Shimada
  • Patent number: 8883357
    Abstract: A ceramic material that can exhibit sufficient compactness and lithium (Li) conductivity to enable the use thereof as a solid electrolyte material for a lithium secondary battery and the like is provided. The ceramic material contains aluminum (Al) and has a garnet-type crystal structure or a garnet-like crystal structure containing lithium (Li), lanthanum (La), zirconium (Zr) and oxygen (O).
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: November 11, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Toshihiro Yoshida, Akihiko Honda, Yosuke Sato
  • Patent number: 8859147
    Abstract: The non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, the negative electrode contains a negative electrode active material containing a graphitic carbon material and a composite in which a carbon coating layer is formed on a surface of a core material containing Si and O as constituent elements, the composite has a carbon content of 10 to 30 mass %, the composite has an intensity ratio I510/I1343 of a peak intensity I510 at 510 cm?1 derived from Si to a peak intensity I1343 at 1343 cm?1 derived from carbon of 0.25 or less when a Raman spectrum of the composite is measured at a laser wavelength of 532 nm, and the half-width of the (111) diffraction peak of Si is less than 3.0° when the crystallite size of an Si phase contained in the core material is measured by X-ray diffractometry using CuK? radiation.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: October 14, 2014
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Naokage Tanaka, Akira Inaba, Masayuki Yamada, Masayuki Yoshiya
  • Patent number: 8835049
    Abstract: A negative active material for a rechargeable lithium battery includes a core including an active material being capable of performing reversible electrochemical oxidation and reduction, and a coating layer on the surface of the core. The coating layer includes a reticular structure including —O-M-O— wherein M is selected Si, Ti, Zr, Al, or combinations thereof and an organic functional group linked to the M as a side chain. The organic functional group is selected from the group consisting of an alkyl group, a haloalkyl group, a substituted or unsubstituted aryl group, and combinations thereof. The negative active material for a rechargeable lithium battery according to the present invention can be applied along with an aqueous binder, and improve high capacity, good cycle-life, and particularly high capacity during charge and discharge at a high rate.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: September 16, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kyoung-Han Yew, Nam-Soon Choi, Sung-Soo Kim, Su-Yeong Park