Acyclic Carbonate Solvent Patents (Class 429/342)
  • Patent number: 11038196
    Abstract: Disclosed herein are electrolyte compositions comprising at least one electrolyte component comprising a cyclic carbonate, such as a fluoroethylene carbonate, and at least one additive comprising a 6-member ring heterocyclic sulfate, such as a 1,3 propylene sulfate. The disclosed electrolyte compositions can comprise additional electrolyte components, such as fluorinated acyclic carboxylic acid esters, and additional additives, such as lithium boron compounds, and cyclic carboxylic acid anhydrides, such as maleic anhydride. The improved battery performances, which include high temperature cycling conditions and/or room temperature stability, make these electrolyte compositions useful in electrochemical cells, such as lithium ion batteries.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: June 15, 2021
    Assignee: Solvay SA
    Inventors: Stephen E. Burkhardt, Kostantinos Kourtakis, Brian Levy-Polis
  • Patent number: 11005128
    Abstract: A lithium ion battery is provided that includes: a positive electrode; a negative electrode; a separator comprising a material having a melt temperature of greater than 150° C.; and an electrolyte including an organic solvent and a lithium salt. A method for sterilizing a lithium ion battery is also provided that includes: providing a lithium ion battery (particularly one as described herein); either charging or discharging the battery to a state of charge (SOC) of 20% to 100%; and steam sterilizing the battery to form a sterilized lithium ion battery.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: May 11, 2021
    Assignee: Medtronic, Inc.
    Inventors: Laura E. Mccalla, Gaurav Jain
  • Patent number: 10854928
    Abstract: A battery comprises a cathode, an anode and an electrolyte. The cathode comprises a cathode active material which is capable of reversibly intercalating and deintercalating a plurality of first metal ions; and a conductive agent, wherein the particle size of the conductive agent graphite is less than 50 ?m and the crystallinity of the conductive agent graphite is no less than 90%.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: December 1, 2020
    Assignees: POSITEC POWER TOOLS (SUZHOU) CO., LTD.
    Inventors: Yang Liu, Pu Chen, Jing Yan
  • Patent number: 10686221
    Abstract: The present disclosure provides an electrolyte and an electrochemical energy storage device. The electrolyte comprises an electrolyte salt and an additive. The additive comprises a sulfonic ester cyclic quaternary ammonium salt and a dioxide heterocyclic compound. Under the combined effect of the sulfonic ester cyclic quaternary ammonium salt and the dioxide heterocyclic compound, a dense, uniform and stable passive film on a surface of each of the positive electrode film and the negative electrode film of the electrochemical energy storage device, thereby reducing the contact between the positive, negative electrode active materials and the electrolyte, thus avoiding the occurrence of continuous oxidation and reduction reaction of the electrolyte on the surface of each of the positive electrode film and the negative electrode film, so as to make the electrochemical energy storage device has excellent high temperature storage performance and high temperature cycle performance.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: June 16, 2020
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Xiaomei Wang, Chenghua Fu, Changlong Han
  • Patent number: 10501335
    Abstract: Provided are electrochemically active secondary particles that provide excellent capacity and improved cycle life. The particles are characterized by selectively enriched grain boundaries where the grain boundaries are enriched Al. The enrichment with Al reduces impedance generation during cycling thereby improving capacity and cycle life. Also provided are methods of forming electrochemically active materials, as well as electrodes and electrochemical cells employing the secondary particles.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: December 10, 2019
    Assignee: CAMX Power LLC
    Inventors: Adrian W. Pullen, David Ofer, Suresh Sriramulu, Kenan Sahin, Jane Rempel
  • Patent number: 10249449
    Abstract: An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, and an electrolyte where the electrolyte includes one or more additives and/or solvent components selected from vinylene carbonate (VC), vinyl ethylene carbonate (VEC), dimethylacetamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (HFE), and fluorinated ethylene carbonate (FEC). The electrolyte may include a carbonate based solvent and one or more solvent components and/or one or more of vinylene carbonate (VC), vinyl ethylene carbonate (VEC), dimethylacetamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (HFE), and fluorinated ethylene carbonate (FEC).
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 2, 2019
    Assignee: Maxwell Technologies, Inc.
    Inventors: Santhanam Raman, Xiaomei Xi, Xiang-Rong Ye, Jian Hong
  • Patent number: 10153097
    Abstract: A hybrid supercapacitor, including at least one negative electrode having a statically capacitive active material, an electrochemical redox-active material, or a mixture of them; at least one positive electrode having a statically capacitive active material, an electrochemical redox-active material, or a mixture of them; at least one separator situated between the at least one negative electrode and the at least one positive electrode; and an electrolyte mixture; with the provision that at least one electrode includes a statically capacitive active material, and at least one electrode includes an electrochemical, redox-active material; the electrolyte mixture being a liquid electrolyte mixture and including at least one liquid, aprotic, organic solvent, at least one conducting salt, and at least one at least partially halogenated, aromatic compound.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: December 11, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Elisabeth Buehler, Mathias Widmaier, Severin Hahn, Thomas Eckl
  • Patent number: 10038219
    Abstract: Provided are novel electrolytes for use in rechargeable lithium ion cells containing high capacity active materials, such as silicon, germanium, tin, and/or aluminum. These novel electrolytes include one or more pyrocarbonates and, in certain embodiments, one or more fluorinated carbonates. For example, dimethyl pyrocarbonate (DMPC) may be combine with mono-fluoroethylene carbonate (FEC). Alternatively, DMPC or other pyrocarbonates may be used without any fluorinated carbonates. A weight ratio of pyrocarbonates may be between about 0% and 50%, for example, about 10%. Pyrocarbonates may be combined with other solvents, such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and/or ethyl-methyl carbonate (EMC). Alternatively, pyrocarbonates may be used without such solvents.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: July 31, 2018
    Assignee: Amprius, Inc.
    Inventors: Gregory Alan Roberts, Rainer J. Fasching, Constantin I. Stefan
  • Patent number: 9819018
    Abstract: There is provided a lithium ion secondary battery with a high capacity and having excellent cycle characteristics. The lithium ion secondary battery, including a positive electrode, a negative electrode, a separator and a nonaqueous electrolyte liquid. Here, the positive electrode comprises a positive electrode material in which a surface of particles of a positive electrode active material is coated with an Al-containing oxide. The Al-containing oxide has an average coating thickness of 5 to 50 nm. The positive electrode active material contained in the positive electrode material comprises a lithium cobalt oxide comprising Co and at least one kind of an element M1 selected from the group consisting of Mg, Zr, Ni, Mn, Ti and Al. The negative electrode comprises a material S including SiOx (0.5?x?1.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: November 14, 2017
    Assignee: HITACHI MAXELL, LTD.
    Inventors: Tomohito Sekiya, Hiroshi Abe, Akira Inaba, Susumu Yoshikawa, Yuji Hashimoto, Seiji Ishizawa, Toshihiro Abe
  • Patent number: 9780368
    Abstract: A lithium-ion secondary battery includes a positive electrode, a negative electrode containing an active material, and an electrolytic solution, in which the active material contains, as constituent elements, Si, O, and at least one element M1 selected from Li, C, Mg, Al, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ge, Zr, Mo, Ag, Sn, Ba, W, Ta, Na, and K, and the atomic ratio x (O/Si) of O to Si is 0.5?x?1.8.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: October 3, 2017
    Assignee: Sony Corporation
    Inventors: Takakazu Hirose, Kenichi Kawase, Toshio Nishi, Isao Koizumi
  • Patent number: 9299984
    Abstract: A lithium secondary battery has a positive electrode (1) containing a positive electrode active material having particles of lithium cobalt oxide, a negative electrode (2) containing a negative electrode active material having silicon particles, a separator interposed between the positive electrode (1) and the negative electrode (2), and a non-aqueous electrolyte. Particles of erbium hydroxide or erbium oxyhydroxide are adhered to a surface of the lithium cobalt oxide particles in a dispersed form.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: March 29, 2016
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Daizo Jito, Takeshi Ogasawara, Atsushi Fukui
  • Publication number: 20150132666
    Abstract: There is provided a positive electrode for a nonaqueous electrolyte secondary battery, the positive electrode being capable of improving the charge-discharge cycle characteristics of the nonaqueous electrolyte secondary battery. A positive electrode 12 of a nonaqueous electrolyte secondary battery 1 contains positive electrode active material particles. The positive electrode active material particles contain a lithium-containing transition metal oxide. The lithium-containing transition metal oxide has a crystal structure that belongs to the space group P63mc. A compound of at least one selected from the group consisting of boron, zirconium, aluminum, magnesium, titanium, and a rare-earth element is attached to surfaces of the positive electrode active material particles.
    Type: Application
    Filed: December 28, 2012
    Publication date: May 14, 2015
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Atsushi Ogata, Takeshi Ogasawara, Yasufumi Takahashi, Motoharu Saito, Masaki Hirase, Katsunori Yanagida, Masahisa Fujimoto
  • Publication number: 20150125760
    Abstract: There is provided an improvement for capacitors having activated carbon electrodes by the use of an electrolyte solution containing a carbonate of the formula RO(C?O)OR1 and a conductive salt such as a lithium salt or a quaternary ammonium salt at a concentration of from 0.6 to 3 mol/l.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 7, 2015
    Inventors: W. Novis Smith, Joel R. McCloskey
  • Publication number: 20150125759
    Abstract: An energy storage device comprising: (A) an anode comprising graphite; and (B) an electrolyte composition comprising: (i) at least one carbonate solvent; (ii) an additive selected from CsPF6, RbPF6, Sr(PF6)2, Ba(PF6)2, or a mixture thereof; and (iii) a lithium salt.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Hongfa Xiang, Jiguang Zhang, Ruiguo Cao
  • Publication number: 20150118581
    Abstract: A rechargeable lithium ion battery including a negative active material, the negative active material including a carbon-based active material, and an electrolyte solution that includes a S?O-containing compound, the S?O-containing compound having a structure that is selected according to a G band/D band ratio of the carbon-based active material.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Hironari TAKASE, Hokuto YOKOTSUJI
  • Publication number: 20150118575
    Abstract: A rechargeable lithium battery including a negative electrode including a negative active material, a positive electrode, and an electrolyte solution including an additive, wherein the negative active material includes a Si-based material included in an amount of about 1 to about 70 wt % based on the total amount of the negative electrode, and the additive includes fluoroethylene carbonate and a compound represented by Chemical Formula 1. In the above Chemical Formula 1, R1 to R3 are each independently a substituted or unsubstituted C2 to C5 alkylene group.
    Type: Application
    Filed: September 4, 2014
    Publication date: April 30, 2015
    Inventors: Tae-Hyun Bae, Woo-Cheol Shin, Sang-Hyun Eom, Myung-Hoon Kim, Seung-Tae Lee, Ae-Ran Kim, Dong-Myung Choi, Ha-Rim Lee
  • Publication number: 20150118579
    Abstract: The present invention provides an electrolytic solution for a nonaqueous electrolyte battery and a nonaqueous electrolyte battery having excellent cycle characteristics and high-temperature storage characteristics without causing hydrolysis of a fluorine-containing lithium salt, such as LiPF6, contained as a solute and containing a less amount of free fluorine ions, as well as a method of producing the electrolytic solution for a nonaqueous electrolyte battery.
    Type: Application
    Filed: May 29, 2013
    Publication date: April 30, 2015
    Inventors: Yuki Kondo, Keita Nakahara, Satoshi Muramoto, Takayoshi Morinaka
  • Publication number: 20150118580
    Abstract: What is disclosed is a non-aqueous electrolyte for non-aqueous electrolyte battery including a non-aqueous solvent and at least lithium hexafluorophosphate as a solute. This electrolyte is characterized by containing at least one siloxane compound represented by the general formula (1) or the general formula (2). This electrolyte has a storage stability which is improved than electrolytes prepared by adding conventional siloxane compounds.
    Type: Application
    Filed: June 10, 2013
    Publication date: April 30, 2015
    Inventors: Yuki Kondo, Makoto Kubo, Takayoshi Morinaka, Kenta Yamamoto
  • Patent number: 9012095
    Abstract: An electrolyte includes a solvent and an electrolyte salt. The solvent contains at least one selected from ester compounds, lithium monofluorophosphate, and lithium difluorophosphate, and at least one selected from anhydrous compounds. The ester compounds are chain compounds having ester moieties, such as (—O—C(?O)—O—R), at both ends. The anhydrous compounds are cyclic compounds having, for example, a disulfonic anhydride group, (—S(O?)2—O—S(O?)2—).
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: April 21, 2015
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Shinya Wakita, Tadahiko Kubota
  • Publication number: 20150099193
    Abstract: A lithium ion secondary battery that operates at a high voltage, has a high cycle life, and generates less gas, and an electrolytic solution for such a lithium ion secondary battery. An electrolytic solution for a non-aqueous energy storage device, comprising: a non-aqueous solvent; a lithium salt (A) having no boron atom; a predetermined lithium salt (B) containing a boron atom; and a compound (C) in which at least one of hydrogen atoms in an acid selected from the group consisting of proton acids having a phosphorus atom and/or a boron atom, sulfonic acids, and carboxylic acids is replaced with a substituent represented by formula (3): wherein R3, R4, and R5 each independently represent an organic group which has 1 to 10 carbon atoms and which may have a substituent.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Shinya Hamasaki, Aya Inaba, Keiko Sumino, Yusuke Shigemori, Gang Cheng, Steven S. Kaye, Bin Li
  • Publication number: 20150084604
    Abstract: An improved lithium-sulfur battery containing a surface-functionalized carbonaceous material. The presence of the surface-functionalized carbonaceous material generates weak chemical bonds between the functional groups of the surface-functionalized carbonaceous material and the functional groups of the polysulfides, which prevents the polysulfide migration to the battery anode, thereby providing a battery with relatively high energy density and good partial discharge efficiency.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ramanathan THILLAIYAN, Wujun FU, Mario DESTEPHEN, Greg MILLER, Ernest NDZEBET, Umamaheswari JANAKIRAMAN
  • Publication number: 20150084603
    Abstract: An improved electrolyte including a strontium additive suitable for lithium-sulfur batteries, a battery including the electrolyte, and a battery including a separator containing a strontium additive are disclosed. The presence of the strontium additive reduces sulfur-containing deposits on the battery anode, thereby providing a battery with relatively high energy density and good partial discharge performance.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ramanathan THILLAIYAN, Wujun FU, Mario DESTEPHEN, Greg MILLER
  • Publication number: 20150079482
    Abstract: The present invention provides an electrolyte for a Li storage battery comprising a compound that can improve safety of a storage battery without causing the degradation in performances thereof and a Li storage battery comprising the electrolyte. The electrolyte comprises at least 1,1-diphenylethane the Li storage battery comprises the electrolyte. Particularly preferably provided are an electrolyte for a Li storage battery comprising 1,1-diphenylethane, a cyclic carbonate (e.g., ethylene carbonate), a chain carbonate (e.g., dimethyl carbonate, diethyl carbonate, ethyl methyl or ethylmethyl carbonate) and a Li salt and a Li storage battery comprising such an electrolyte.
    Type: Application
    Filed: February 26, 2013
    Publication date: March 19, 2015
    Applicant: JX Nippon Oil & Energy Corporation
    Inventors: Atsuo Omaru, Takeshi Nishizawa
  • Publication number: 20150079484
    Abstract: The present disclosure relates to additives for electrolytes and preparation of aluminum-based, silicon-based, and bismuth-based additive compounds that can be used as additives or solutes in electrolytes and test results in various electrochemical devices. The inclusion of these aluminum, silicon, and bismuth compounds in electrolyte systems can enable rechargeable chemistries at high voltages that are otherwise unsuitable with current electrolyte technologies. These compounds are so chosen because of their beneficial effect on the interphasial chemistries formed at high potentials, such as 5.0 V class cathodes for Li-ion chemistries. The application of these compounds goes beyond Li-ion battery technology and covers any electrochemical device that employs electrolytes for the benefit of high energy density resultant from high operating voltages.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Arthur von Wald Cresce, Kang Conrad Xu
  • Publication number: 20150079483
    Abstract: The present disclosure relates to several families of commercially available oxirane compounds that can be used as electrolyte co-solvents, solutes, or additives in non-aqueous electrolyte and their test results in various electrochemical devices. The presence of these compounds can enable rechargeable chemistries at high voltages. These compounds were chosen for their beneficial effect on the interphasial chemistries that occur at high potentials on the classes of 5.0V cathodes used in experimental Li-ion systems.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Arthur von Wald Cresce, Kang Conrad Xu
  • Publication number: 20150072247
    Abstract: An electrolyte for a lithium battery, a lithium battery including the electrolyte, and a method of preparing the electrolyte for a lithium battery. The electrolyte for a lithium battery includes a non-aqueous organic solvent; and about 0.1 wt % to about 1 wt % of lithium nitrate (LiNO3) based on a total weight of the non-aqueous organic solvent. By using the electrolyte for a lithium battery, lifespan cycle properties of the lithium battery may be improved.
    Type: Application
    Filed: July 28, 2014
    Publication date: March 12, 2015
    Inventors: In-Haeng Cho, Ha-Rim Lee, Sang-Hoon Kim, Woo-Cheol Shin, Jung-Hyun Nam
  • Publication number: 20150072220
    Abstract: Provided are a lithium secondary battery wherein gas generation associated with charging and discharging can be suppressed even in case where silicon and silicon oxide are contained as negative electrode active materials, and wherein deformation due to the gas generation can be suppressed even in case where a resin film is used as an outer package; and a method for manufacturing the lithium secondary battery. A lithium secondary battery comprises a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and an electrolytic solution used to immerse the negative electrode active material and the positive electrode active material, wherein the negative electrode active material contains silicon and silicon oxide that have been subjected to a reduction treatment.
    Type: Application
    Filed: March 22, 2013
    Publication date: March 12, 2015
    Applicant: NEC CORPORATION
    Inventors: Tetsuya Kajita, Jiro Iriyama, Shin Serizawa
  • Patent number: 8962192
    Abstract: A nonaqueous electrolytic solution that can provide a battery that is low in gas generation, has a large capacity, and is excellent in storage characteristics and cycle characteristics contains an electrolyte and a nonaqueous solvent dissolving the electrolyte and further contains 0.001 vol % or more and less than 1 vol % of a compound represented by Formula (1) in the nonaqueous solvent. Alternatively, the nonaqueous electrolytic solution contains 0.001 vol % or more and less than 5 vol % of a compound represented by Formula (1) in the nonaqueous solvent and further contains at least one compound selected from the group consisting of cyclic carbonate compounds having carbon-carbon unsaturated bonds, cyclic carbonate compounds having fluorine atoms, monofluorophosphates, and difluorophosphates. In Formula (1), R1 to R3 each independently represent an alkyl group of 1 to 12 carbon atoms, which may be substituted by a halogen atom; and n represents an integer of 0 to 6.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: February 24, 2015
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Minoru Kotato, Shinichi Kinoshita
  • Publication number: 20150050561
    Abstract: A lithium ion cell includes a cathode including a cathode active material having an operating voltage of 4.6 volts or greater; an anode including an anode material and a lithium additive including a lithium metal foil, lithium alloy, or an organolithium material; a separator; and an electrolyte.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 19, 2015
    Applicant: UChicago Argonne, LLC
    Inventors: Zhengcheng Zhang, Libo Hu, Khalil Amine, Christopher S. Johnson
  • Publication number: 20150044573
    Abstract: The invention relates to lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate, the use of lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate as electrolyte salt in lithium-based energy stores and also ionic liquids comprising 1-trifluoro-methoxy-1,2,2,2-tetrafluoro-ethanesulphonate as anion.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 12, 2015
    Inventors: Gerd-Volker Röschenthaler, Martin Winter, Stefano Passerini, Katja Vlasov, Nataliya Kalinovich, Christian Schreiner Schreiner, Raphael Wilhelm Schmitz, Ansgar Romek Müller, Rene Schmitz, Tanja Schedlbauer, Alexandra Lex-Balducci, Miriam Kunze
  • Publication number: 20150037691
    Abstract: An electrolyte may include compounds of general Formula IVA or IVB. where, R8, R9, R10, and R11 are each independently selected from H, F, Cl, Br, CN, NO2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z? is a linkage between X and Y, and at least one of R8, R9, R10, and R11 is other than H.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Wei Weng, Zhengcheng Zhang, Khalil Amine
  • Patent number: 8945765
    Abstract: A secondary lithium battery electrolyte including a lithium salt, a nonaqueous organic solvent, and an electrolyte additive represented by Formula 1: where n is an integer in the range of 1 to 4. A secondary lithium battery having excellent cycle and high temperature retention characteristics can be provided by using such secondary lithium battery electrolyte.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: February 3, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok-soo Lee, Young-gyoon Ryu, Dong-joon Lee
  • Patent number: 8945780
    Abstract: A nonaqueous electrolyte includes: a nonaqueous solvent containing 0.1% by volume or more and not more than 50% by volume of at least one member selected from the group consisting of a halogen element-containing chain carbonate represented by the following formula (1) and a halogen element-containing cyclic carbonate represented by the following formula (2); and an electrolyte salt containing a compound represented by the following formula (3) in an amount of 0.001 moles/L or more and not more than 0.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: February 3, 2015
    Assignee: Sony Corporation
    Inventors: Toru Odani, Tadahiko Kubota
  • Publication number: 20150030939
    Abstract: The invention relates to the use of lithium-2-pentafluoroethoxy-1,1,2,2-tetrafluoro-ethanesulfonate as a conductive salt in lithium-based energy stores and to electrolytes containing lithium-2-pentafluoroethoxy-1,1,2,2-tetrafluoro-ethanesulfonate.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 29, 2015
    Inventors: Marius Amereller, René Schmitz, Raphael Wilhelm Schmitz, Ansgar Romek Müller, Martin Winter, Christian Schreiner, Miriam Kunze, Stefano Passerini
  • Publication number: 20150024282
    Abstract: In an aspect, a lithium secondary battery including a compound as disclosed and described herein; and an electrolyte for a lithium secondary battery including a non-aqueous organic solvent and a lithium salt is provided.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 22, 2015
    Inventors: Ha-Rim Lee, Sang-Hoon Kim, In-Haeng Cho
  • Publication number: 20150024267
    Abstract: The present invention relates to an electrolyte having improved high-rate charge and discharge property, and a capacitor comprising the same, and more particularly to an electrolyte having improved high-rate charge and discharge property comprising an aromatic compound, which comprises at least one compound of the following Chemical Formula 1 to Chemical Formula 11 that can induce resonance effect of electron movement, and which is a substituted organic compound in which a functional group is present at a location that can structurally prevent local polarization effect, and the boiling point of which is 80° C. or higher, wherein R in the Chemical Formula 1 to Chemical Formula 11 is at least one functional group selected from the alkyl group consisting of methyl, ethyl, propyl and butyl, and a capacitor comprising the same.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 22, 2015
    Inventor: Cheol Soo JUNG
  • Publication number: 20150024121
    Abstract: A process for producing a separator-electrolyte layer for use in a lithium battery, comprising: (a) providing a porous separator; (b) providing a quasi-solid electrolyte containing a lithium salt dissolved in a first liquid solvent up to a first concentration no less than 3 M; and (c) coating or impregnating the separator with the electrolyte to obtain the separator-electrolyte layer with a final concentration ?the first concentration so that the electrolyte exhibits a vapor pressure less than 0.01 kPa when measured at 20° C., a vapor pressure less than 60% of that of the first liquid solvent alone, a flash point at least 20 degrees Celsius higher than a flash point of the first liquid solvent alone, a flash point higher than 150° C., or no detectable flash point. A battery using such a separator-electrolyte is non-flammable and safe, has a long cycle life, high capacity, and high energy density.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Inventors: Hui He, Bor Z. Jang, Yanbo Wang, Aruna Zhamu
  • Patent number: 8932768
    Abstract: A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: January 13, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Sang-Ho Park, Khalil Amine
  • Publication number: 20150010831
    Abstract: A lithium secondary battery including a positive electrode including a positive electrode active material capable of intercalating and deintercalating lithium ions, a negative electrode including a negative electrode active material capable of intercalating and deintercalating lithium ions, and a nonaqueous electrolytic solution, wherein the positive electrode active material includes an active material capable of intercalating or deintercalating lithium ions at a potential of 4.5 V or more, and the nonaqueous electrolytic solution includes a particular fluorine-containing ether compound.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 8, 2015
    Inventors: Takehiro Noguchi, Makiko Uehara
  • Patent number: 8927158
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode having a positive-electrode active material, a negative electrode having a negative-electrode active material, and a nonaqueous electrolytic solution having a nonaqueous solvent dissolving a solute. The negative-electrode active material includes powdered silicon and/or a silicon alloy, the nonaqueous electrolytic solution includes additives composed of at least one fluorinated lithium phosphate selected from the group consisting of lithium monofluorophosphate, lithium difluorophosphate, and lithium trifluorophosphate and a diisocyanate compound, and the nonaqueous solvent includes a chain carbonate compound.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 6, 2015
    Assignees: SANYO Electric Co., Ltd., Mitsubishi Chemical Corporation
    Inventors: Hidekazu Yamamoto, Kouhei Tuduki, Taizou Sunano, Maruo Kamino, Youichi Ohashi, Minoru Kotato
  • Publication number: 20150004501
    Abstract: A non-aqueous electrolyte including (i) a compound represented by the general formula X—R—SO2F??(1) where R is a C1-12 linear or branched alkylene group optionally containing an ether bond and optionally hydrogen atoms of the alkylene group are partly substituted by a fluorine atom(s); and X is a carboxylic acid derivative group), (ii) a non-aqueous solvent and (iii) an electrolyte salt.
    Type: Application
    Filed: October 3, 2012
    Publication date: January 1, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Aoi Nakazono, Mayuko Taeda, Akiyoshi Yamauchi
  • Publication number: 20140377667
    Abstract: The invention relates to lithium-2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate, to the use thereof as conductive salt in lithium-based energy accumulators, and ionic liquids comprising 2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate as an anion.
    Type: Application
    Filed: July 25, 2012
    Publication date: December 25, 2014
    Applicants: JACOBS UNIVERSITY BREMEN gGMBH, WESTFALISCHE WILHELMS UNIVERSITAT MUNSTER
    Inventors: Gerd-Volker Roschenthaler, Martin Winter, Katja Vlasov, Nataliya Kalinovich, Christian Schreiner, Raphael Wilhelm Schmitz, Romek Ansgar Muller, Rene Schmitz, Alexandra Lex-Balducci, Miriam Kunze
  • Publication number: 20140356733
    Abstract: Provided are an additive for a lithium battery electrolyte, wherein the additive is an ethylene carbonate based compound represented by the following Formula 1 or 2, an organic electrolyte solution including the additive, and a lithium battery including the organic electrolyte solution: in the above Formulae, R1, R2, R3, and R4 are each independently a non-polar functional group or a polar functional group, the polar functional group including a heteroatom belonging to groups 13 to 16 of the periodic table of elements, and one or more of R1, R2, R3, and R4 are the polar functional groups.
    Type: Application
    Filed: May 5, 2014
    Publication date: December 4, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Makhmut Khasanov, Woo-Cheol Shin, Vladimir Egorov, Pavel Alexandrovich Shatunov, Denis Chernyshov, Sang-Hoon Kim, Ha-Rim Lee, In-Haeng Cho, Alexey Tereshchenko
  • Publication number: 20140356734
    Abstract: An electrolyte for a lithium ion secondary battery and a lithium ion secondary battery including the same are provide. The electrolyte includes a non-aqueous organic solvent, a lithium salt which is dissolved in the non-aqueous solvent and a additive shown as general formula I. Wherein R1, R2 and R3 are each independently selected from H, alkyl group including from 1 to 12 carbon atoms, cycloalkyl group including from 3 to 8 carbon atoms and aromatic group including 6 to 12 carbon atoms; n represents an integer from 0 to 7. This additive in electrolyte can passivate cathode and anode effectively, restrain their reaction with electrolyte, reduce gases generation and battery's expansion in high temperature surrounding, provide as safety lithium ion secondary batteries.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Jianxun Ren, Chenghua Fu, Fenggang Zhao
  • Publication number: 20140342240
    Abstract: An electrolyte solution for use in a battery includes at least: an ionizable salt; at least one organic solvent; and at least one cyclic phosphazene compound.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 20, 2014
    Inventors: Mason Kurt Harrup, Harry Whittier Rollins, Kevin Leslie Gering, Michael Timothy Benson
  • Publication number: 20140342246
    Abstract: A rechargeable lithium battery includes a positive electrode including a positive active material, a negative electrode including a negative active material and an electrolyte including a lithium salt and a non-aqueous organic solvent, wherein the positive active material includes a nickel-based composite oxide represented by the following Chemical Formula 1, the non-aqueous organic solvent includes ethylene carbonate, and the ethylene carbonate is included in an amount of 7.5 to 27.5 volume % based on the total amount of the non-aqueous organic solvent. LiNixCoyMnzO2??[Chemical Formula 1] (In the above Chemical Formula 1, each x, y and z is the same as defined in the specification.
    Type: Application
    Filed: September 24, 2013
    Publication date: November 20, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventor: Seung-Mo Kim
  • Patent number: 8889291
    Abstract: A battery realizing the superior cycle characteristics is provided. An electrode includes a current collector including an active-material-layer-formation region and a flat and smooth region having a surface roughness smaller than that of the active-material-layer-formation region, and an active material layer provided in the active-material-layer-formation region of the current collector. An electrode lead is connected to the flat and smooth region.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: November 18, 2014
    Assignee: Sony Corporation
    Inventors: Masayuki Iwama, Kenichi Kawase, Yoshikazu Kato, Nozomu Morita
  • Publication number: 20140335428
    Abstract: A graphite material having pores which, when 200 rectangular regions of 6 ?m×8 ?m are randomly selected in a surface image of the graphite material observed by a scanning electron microscope, in the surface of the graphite material appearing in the regions, a pore appearing on the surface and having an aperture in a shape having a diameter of 15 nm to 200 nm, a circularity degree of 0.75 to 1.0 and a major axis/minor axis ratio of 1.0 to 1.5 is visible in two regions or more. Also disclosed is a carbon material for battery electrodes, a paste for electrodes, an electrode and a lithium ion secondary battery including the graphite material.
    Type: Application
    Filed: October 19, 2012
    Publication date: November 13, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Yuuichi Kamijou, Masataka Takeuchi, Takayuki Fukai, Chiaki Sotowa, Akinori Sudoh, Masako Tanaka
  • Publication number: 20140335427
    Abstract: An electrolyte for a lithium secondary battery and a lithium secondary battery including the electrolyte are provided. The electrolyte includes a compound represented by Formula 1 below; a nonaqueous organic solvent; and a lithium salt: wherein, in Formula 1, R1, R2, R3, and R4 are each independently a unsubstituted or substituted C1-C20 alkoxy group, a unsubstituted or substituted C1-C20 alkoxyalkyleneoxy group, a unsubstituted or substituted C6-C20 aryloxy group, or R—O—C(?O)— where R is a C1-C20 alkyl group, a C6-C20 aryl group, or a C1-C20 fluoroalkyl group.
    Type: Application
    Filed: September 13, 2013
    Publication date: November 13, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Makhmut Khasanov, Vladimir Egorov, Pavel Alexandrovich Shatunov, Alexey Tereshchenko, Denis Chernyshov, Jung-Yi Yu, SANG-IL HAN, Sang-Hoon Kim, Duck-Hyun Kim, Myung-Hwan Jeong, Seung-Tae Lee, Tae-Hyun Bae, Mi-Hyun Lee, Eon-Mi Lee, Ha-Rim Lee, Moon-Sung Kim, In-Haeng Cho, E-Rang Cho, Dong-Myung Choi, Woo-Cheol Shin
  • Patent number: 8877390
    Abstract: Compounds may have general Formula IVA or IVB. where, R8, R9, R10, and R11 are each independently selected from H, F, Cl, Br, CN, NO2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z? is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: November 4, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Wei Weng, Zhengcheng Zhang, Khalil Amine