With Specified Electrode Structure Or Material Patents (Class 429/405)
  • Patent number: 10840545
    Abstract: Provided are a slurry for a solid electrolyte, which can reduce the usage of a polymer binder, a method for producing a solid electrolyte layer, and a method for producing an all-solid-state battery. Disclosed is a slurry for a solid electrolyte, the slurry comprising a solvent, a lithium compound, and crystal particles of a garnet-type ion-conducting oxide represented by a general formula (Lix?3y?z,Ey,Hz)L?M?O? (where E is at least one kind of element selected from the group consisting of Al, Ga, Fe and Si; L is at least one kind of element selected from an alkaline-earth metal and a lanthanoid element; M is at least one kind of element selected from a transition element that can be six-coordinated with oxygen and typical elements in groups 12 to 15 of the periodic table; 3?x?3y?z?7; 0?y?0.25; 0<z?2.8; 2.5???3.5; 1.5???2.5; and 11???13).
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: November 17, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasutoshi Houjyou, Shingo Ohta
  • Patent number: 10790560
    Abstract: An air electrode has a plurality of carbon nanotubes and a plurality of layered double hydroxide particles. The plurality of layered double hydroxide particles is supported on the plurality of carbon nanotubes.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: September 29, 2020
    Assignee: NGK Insulators, Ltd.
    Inventors: Tatsuya Hattori, Kenshin Kitoh
  • Patent number: 10784535
    Abstract: Provided are a slurry for a solid electrolyte, which can reduce the usage of a polymer binder, a method for producing a solid electrolyte layer, and a method for producing an all-solid-state battery. Disclosed is a slurry for a solid electrolyte, the slurry comprising a solvent, a lithium compound, and crystal particles of a garnet-type ion-conducting oxide represented by a general formula (Lix?3y?z,Ey,Hz)L?M?O? (where E is at least one kind of element selected from the group consisting of Al, Ga, Fe and Si; L is at least one kind of element selected from an alkaline-earth metal and a lanthanoid element; M is at least one kind of element selected from a transition element that can be six-coordinated with oxygen and typical elements in groups 12 to 15 of the periodic table; 3?x?3y?z?7; 0?y?0.25; 0<z?2.8; 2.5???3.5; 1.5???2.5; and 11???13).
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: September 22, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasutoshi Houjyou, Shingo Ohta
  • Patent number: 10770734
    Abstract: The present invention relates to a lithium air battery and a method of manufacturing the same, wherein the lithium air battery comprises; a positive electrode which uses oxygen as an anode active material and is formed by laminating carbon black secondary particles which are composed of carbon black primary particles and graphene, and including macropores having a pore size range of exceeding 100 nm formed between the carbon black secondary particles; a negative electrode disposed to face the positive electrode; and a separation membrane disposed between the positive electrode and the negative electrode. The lithium air battery provides an increase in discharge capacity in a discharge test and a decrease in overvoltage, and can be manufactured by a simple method.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: September 8, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Eunkyung Cho, Kwonnam Sohn, Jonghyun Chae, Doo Kyung Yang
  • Patent number: 10749049
    Abstract: An energy conversion device for conversion of various energy forms into electricity. The energy forms may be chemical, photovoltaic or thermal gradients. The energy conversion device has a first and second electrode. A substrate is present that has a porous semiconductor or dielectric layer placed thereover. The substrate itself can be planar, two-dimensional, or three-dimensional, and possess internal and external surfaces. These substrates may be rigid, flexible and/or foldable. The porous semiconductor or dielectric layer can be a nano-engineered structure. A porous conductor material is placed on at least a portion of the porous semiconductor or dielectric layer such that at least some of the porous conductor material enters the nano-engineered structure of the porous semiconductor or dielectric layer, thereby forming an intertwining region.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: August 18, 2020
    Assignee: QuSwami, Inc.
    Inventors: Jawahar M. Gidwani, Andrew Lam, Attila Horvath
  • Patent number: 10741894
    Abstract: A metal/air battery includes an oxygen management system that delivers oxygen to the battery during a discharge cycle. The oxygen management system includes an oxygen separations unit and an oxygenated gas supply reservoir that are fluidly coupled to a positive electrode of the battery via a valve system. The valve system selectively places the oxygen separations unit and the oxygenated gas supply reservoir in fluid communication with the positive electrode during the discharge cycle. The oxygen management system also includes a compressor with an outlet fluidly coupled to the oxygenated gas supply reservoir and an inlet fluidly connected to the oxygen separations unit via the valve system. The valve system selectively places the oxygen separations unit in fluid communication with the oxygenated gas supply reservoir during one or more of the discharge cycle and a charge cycle of the battery.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: August 11, 2020
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Aleksandar Kojic, Boris Kozinsky
  • Patent number: 10734636
    Abstract: A Li—O2 battery and method for fabricating the same are provided herein. The battery cathode comprises a carbon structure filled with a palladium nanoparticle catalyst, including palladium-filled carbon nanotubes (CNTs). The carbon structure provides a barrier between the catalyst and the electrolyte providing an increased stability of the electrolyte during both discharging and charging of a battery.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: August 4, 2020
    Assignee: The Florida International University Board of Trustees
    Inventors: Bilal El-Zahab, Amir Chamaani, Neha Chawla, Meer Safa
  • Patent number: 10700385
    Abstract: Provided is a battery including a layered double hydroxide. The battery includes a positive electrode, a negative electrode, an electrolytic solution being an aqueous alkali metal hydroxide solution, and a layered double hydroxide having a fundamental composition represented by the formula: M2+1?xM3+x(OH)2An?x/n·mH2O where M2+ represents a divalent cation, M3+ represents a trivalent cation, An? represents an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is any real number, the layered double hydroxide being in contact with the electrolytic solution, wherein a metal compound containing a metal corresponding to M2+ and/or M3+ is dissolved in the electrolytic solution such that erosion of the layered double hydroxide by the electrolytic solution is suppressed. The present invention provides a highly reliable battery such that the degradation of a layered double hydroxide (LDH) contained in the battery can be significantly reduced.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: June 30, 2020
    Assignee: NGK Insulators, Ltd.
    Inventors: Shohei Yokoyama, Sho Yamamoto, Naohito Yamada
  • Patent number: 10693170
    Abstract: Disclosed herein are a lithium air battery having a multi-layered electrolyte membrane and a method of manufacturing the same. The lithium air battery includes a first electrolyte membrane capable of obtaining high ionic conductivity on a lithium negative electrode surface while minimizing the content of polymer and positioning a second electrolyte membrane with high resistance to oxygen radicals on the air electrode. Accordingly, the multi-layered electrolyte membrane can improve an electrolyte filling characteristic and a conductive characteristic of lithium ions, suppress oxygen radicals from being carried from an air electrode, and suppress a growth of lithium dendrite to largely improve a battery lifespan.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: June 23, 2020
    Assignees: Hyundai Motor Company, IUCF-HYU (Industry-University cooperation Foundation Hanyang University)
    Inventors: Dae Gun Jin, Kyoung Han Ryu, Won Keun Kim, Dong Won Kim, Jae Hong Kim, Hyun Sik Woo
  • Patent number: 10693184
    Abstract: Provided is a high-density lithium-containing garnet crystal body. The lithium-containing garnet crystal body has a relative density of 99% or more, belongs to a tetragonal system, and has a garnet-related type structure. A method of producing a Li7La3Zr2O12 crystal, which is one example of this lithium-containing garnet crystal body, includes melting a portion of a rod-like raw material composed of polycrystalline Li7La3Zr2O12 belonging to a tetragonal system while rotating it on a plane perpendicular to the longer direction and moving the melted portion in the longer direction. The moving rate of the melted portion is preferably 8 mm/h or more but not more than 19 mm/h. The rotational speed of the raw material is preferably 30 rpm or more but not more than 60 rpm. By increasing the moving rate of the melted portion, decomposition of the raw material due to evaporation of lithium can be prevented and by increasing the rotational speed of the raw material, air bubbles can be removed.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: June 23, 2020
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kunimitsu Kataoka, Junji Akimoto
  • Patent number: 10686234
    Abstract: An ionic liquid comprising a cationic chemical species and an anionic chemical species. The cationic chemical species comprising a nitrogen containing moiety and a partially fluorinated alkyl chain moiety, wherein the partially fluorinated alkyl chain moiety is bonded to a nitrogen atom of the nitrogen containing moiety. The ionic liquid can be used as an electrolyte, as an additive to an organic solvent, as a lubricant, as a hydrophobic coating, as a treatment for fluorinated pollutants, as an electrolyte for sensor applications, as a stabilizing additive for existing battery electrolytes, and as an emulsifier.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: June 16, 2020
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Ryan A. Zarkesh, Forrest S. Gittleson
  • Patent number: 10669159
    Abstract: Provided is a complex oxide that has a high hydrogen content, contains almost no impurity phase, and is suitable for proton conductivity. The complex oxide is represented by a chemical formula Li7-xHxLa3M2O12 (M represents Zr and/or Hf, and 3.2<x?7) and is a single phase of a garnet type structure belonging to a cubic system. A method for producing the complex oxide includes an exchange step of bringing a raw material complex oxide represented by a chemical formula Li7-xHxLa3M2O12 (M represents Zr and/or Hf, and 0?x?3.2) and a compound having a hydroxy group or a carboxyl group into contact with each other to exchange at least some of lithium of the raw material complex oxide and hydrogen of the compound having a hydroxy group or a carboxyl group.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 2, 2020
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Junji Akimoto, Naoki Hamao, Kunimitsu Kataoka
  • Patent number: 10665867
    Abstract: An air battery includes a negative electrode allowing a metal ion to be occluded in the negative electrode and released from the negative electrode, a positive electrode configured to use oxygen in the air as a positive electrode active material, a nonaqueous metal ion conductor disposed between the negative electrode and the positive electrode, and oxygen evolving catalysts. The positive electrode includes a carbon material. At least one of the oxygen evolving catalysts is fixed to the surface of the carbon material through a Si—O bond.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: May 26, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masako Moriishi, Yu Otsuka
  • Patent number: 10654028
    Abstract: The present invention relates to a catalyst comprising manganese oxides wherein the manganese oxides comprise: MnO in an amount of 40-60 mole %, based on mole of Mn; Mn2O3 in an amount of 40-60 mole %, based on mole of Mn; and Mn3O4 in an amount of 1-10 mole %, based on mole of Mn. The present invention also relates to a method for preparing the catalysts and the use of the catalyst in an air purifier. The catalyst according to the present invention can effectively catalyze formaldehyde oxidation at ambient temperature so as to effectively remove indoor formaldehyde being present in relative low amounts.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 19, 2020
    Assignee: Lumileds Holding B.V.
    Inventors: Jiangliang Wang, Chen Cai, Xiaoqiang Li
  • Patent number: 10651492
    Abstract: The present disclosure relates to electrochemical energy storage systems. In particular, the present disclosure relates to particular systems and methods for providing a compact framework in which to house an electrochemical energy storage system. Various embodiments of electrochemical energy storage systems are disclosed that include a flow manifold and a flow manifold cover. The flow manifold may provide a plurality of channels for distributing liquid reactant to an electrical cell stack. The flow manifold may be utilized in conjunction with a flow manifold cover. The flow manifold cover may be configured to support a variety of components of a liquid reactant distribution system. Such components may include liquid reactant pump motors, inlet and outlet ports, a reference cell, and a variety of sensors. The distribution of liquid reactants to the cell stack from the inlet and outlet ports may be accomplished by way of the flow manifold cover.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: May 12, 2020
    Assignee: VRB ENERGY INC.
    Inventors: Matthew Albert MacLennan Harper, Gary Lepp
  • Patent number: 10637114
    Abstract: A lithium air battery including: a composite cathode including a porous material and a first solid electrolyte; a lithium metal anode; an oxygen blocking layer adjacent to the anode; and a cathode interlayer disposed between the composite cathode and the oxygen blocking layer, wherein the cathode interlayer includes a lithium ion conducting second solid electrolyte.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: April 28, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Taeyoung Kim, Dongjoon Lee, Heungchan Lee, Dongmin Im, Wonsung Choi
  • Patent number: 10581060
    Abstract: A lithium-ion secondary battery having stable charge characteristics and lifetime characteristics is manufactured. Before the secondary battery is completed, a positive electrode is subjected to an electrochemical reaction in a large amount of electrolyte solution in advance, so that the positive electrode can have stability. The use of the positive electrode enables the secondary battery to be highly reliable. If a negative electrode is also subjected to an electrochemical reaction in a large amount of electrolyte solution in advance, the secondary battery can be more highly reliable.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: March 3, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Yohei Momma
  • Patent number: 10573947
    Abstract: An electrochemical battery including: a battery module comprising at least one electrochemical cell; an air supplier configured to supply air to the battery module and constantly maintain an oxygen concentration in the air that is supplied to the battery module; and an air recirculator configured to recirculate air exhausted from the battery module, wherein the battery module comprises an air inlet port though which air is introduced from the air supplier, and an air outlet port through which air remaining after a reaction in the at least one electrochemical cell is exhausted, and wherein the air recirculator is configured to recirculate the air exhausted through the air outlet port of the battery module to the air inlet port of the battery module.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: February 25, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyukjae Kwon, Jeongsik Ko, Heungchan Lee
  • Patent number: 10573897
    Abstract: Embodiments of the present disclosure aim to provide a catalyst layer ensuring a high cell voltage and having both excellent robustness and sufficient endurance, and also to provide a process for producing the layer, a membrane electrode assembly and an electrochemical cell. The catalyst layer comprises two or more noble metal-containing layers, and a porous ceramic layer placed between the noble metal-containing layers. Further, in the catalyst layer, voids exist between the porous ceramic layer and the noble metal-containing layers.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: February 25, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Wu Mei, Shigeru Matake, Taishi Fukazawa, Yoshihiro Akasaka
  • Patent number: 10566670
    Abstract: An electrochemical cell including: an anode assembly having opposite surfaces; and a cathode having at least one folded portion and having ionic continuity with the opposite surfaces of the anode assembly, wherein the anode assembly includes an anode, and an active metal ion conducting membrane that is disposed between the anode and the cathode, wherein the active metal ion conducting membrane has at least one folded portion. Also an electrochemical cell, an electrochemical cell module including the electrochemical cell, and methods of manufacturing the same.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: February 18, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Kyounghwan Choi
  • Patent number: 10566623
    Abstract: Batteries and methods of forming the same include a lithium anode, an electrolyte having a high solubility for lithium ions and oxygen, and a thin graphene cathode formed on a substrate. Lithium ions migrate from the lithium anode through the electrolyte to form Li2O2 at a surface of the thin graphene cathode.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: February 18, 2020
    Assignees: ASELSAN ELEKTRONIK SANAYI VE TICARET A.S, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Esin Akca, Cagla Akgun, Gokhan Demirci, Damon B. Farmer, Shu-Jen Han, Hareem T. Maune, Dahyun Oh
  • Patent number: 10541410
    Abstract: The present application relates to a positive electrode and a Li-ion battery including the positive electrode, the positive electrode comprises a positive electrode current collector and a first active material layer including a first positive electrode active material arranged on the positive electrode current collector, a buffer layer including a carbon material and a binder, and a second active material layer including a second positive electrode active material, the buffer layer is arranged between the first active material layer and the second active material layer. The positive electrode provided by the present application, when applied to the lithium battery, not only can improve the safety performance of the Li-ion battery, but also improve the cycle performance of the Li-ion battery.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: January 21, 2020
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Zhenhua Li, Zhenxing Pei, Wuyuan Zou
  • Patent number: 10511051
    Abstract: Disclosed herein is a secondary lithium-water electrochemical battery cell-comprising a water splitting bi-functional electrode in contact with an inorganic electrolyte, a reversible lithium electrode in contact with an organic electrolyte, a lithium salt and a Li+-ion conductive membrane disposed between the organic and inorganic electrolytes. Cell charged as Li—O2 couple and discharged as Li—H2 couple.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: December 17, 2019
    Inventor: Boris Tsenter
  • Patent number: 10505159
    Abstract: The present invention relates to a method for manufacturing a battery comprising a casing provided with a cup and a closure part for said cup, the method comprising the successive steps consisting in: providing at least three parts with a first part defining one pole, and a second part and a third part defining the other pole and intended to form together the cup, the first and second parts respectively comprising a first surface and a second surface (6a) of matching shape, at least one adhesive portion of each of said surfaces extending in a geometric surface non-parallel to the general axis of the battery; bonding the aforementioned first and second surfaces to provide a structure with an adhesive joint between the first and second parts; welding the third part to the second part; the adhesive joint being arranged against an inner face of the cup, the aforementioned adhesive portion of the second part forming a stop, along the general axis, for the first part, which is located inside the cup.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: December 10, 2019
    Assignee: The Swatch Group Research and Development Ltd
    Inventors: Pierry Vuille, Francois Erdemli, Pascal Haering, Burhan Yildiz
  • Patent number: 10483573
    Abstract: This invention relates to fuel cell unit for use in aggregating fuel cells, particularly useful for use when fuel cells are connected in parallel. Improving the management of fuel cell outputs across a plurality of aggregated fuel cells improves efficiency of the fuel cells. The invention relates to a fuel cell unit comprising a fuel cell and a regulating voltage converter, and further relates to a fuel cell module comprising a plurality of fuel cell units connected in parallel.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: November 19, 2019
    Assignee: LG FUEL CELL SYSTEMS INC.
    Inventor: Gerard D. Agnew
  • Patent number: 10418676
    Abstract: An electrode structure includes a first electrode unit, a second electrode unit and a first insulating frame, in which the electrode units are adjacent to each other. The first insulating unit has an airflow space therein and includes an electrically conducive base with an airflow plane and an air cell cathode disposed on an outer surface of the airflow plane. The second insulating unit includes an electrically conductive base and an air cell anode disposed on an outer surface of the electrically conductive base. The first insulating frame spaces and joins the adjacent electrode units to each other such that the air cell cathode and the air cell anode of the adjacent electrode units are opposed to each other. The first insulating frame together with the adjacent electrode units forms an electrolytic solution container.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: September 17, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Itaru Shibata, Noriko Uchiyama, Hirokazu Komatsu, Yoshiko Tsukada
  • Patent number: 10418188
    Abstract: In a method for manufacturing a supercapacitor, a first graphene current collector, a first electrode and a first separating layer are sequentially formed on a first metal layer, to form a first stacked layer. A second graphene current collector and a second electrode are sequentially formed on a second metal layer, to form a second stacked layer. The second electrode of the second stacked layer is formed on the first separating layer of the first stacked layer, to form a third stacked layer. The third stacked layer is compressed to remove the first and second metal layers, to form a unit stacked layer. The unit stacked layer and a second separating layer or an insulating layer are alternately formed.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: September 17, 2019
    Assignee: KOREA INSTITUTE OF MACHINERY & MATERIALS
    Inventors: Jae-hyun Kim, Seung-mo Lee, Bong-kyun Jang, In-kyu You, Sung-hoon Hong, Ju-mi Kim, Bit-na Kim
  • Patent number: 10411317
    Abstract: A metal-air battery includes an anode and a passivation layer formed on the anode. The passivation layer functions as electrolyte and cathode, so that no additional electrolyte or cathode is included. During discharge, metal cations derived from oxidation of the anode migrate across the passivation layer, and react with nucleophilic gas and electrons received from a gas diffusion layer. The metal-air battery, by virtue of having no added electrolyte or cathode, is compact and contains no volatile materials.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: September 10, 2019
    Assignee: Toyota Research Institute, Inc.
    Inventor: Jens Strabo Hummelshøj
  • Patent number: 10396347
    Abstract: A positive electrode for an air battery that can remarkably improve the battery performance is provided by uniformly dispersing fine Nb (Nb oxide) therein. An air battery using the positive electrode as well as a method of manufacturing the positive electrode is also provided. A positive electrode for an air battery includes an expanded graphite sheet containing expanded graphite and Nb dispersed within the sheet. It is desirable that the Nb be contained in a weight proportion of from 5 ppm to 50000 ppm with respect to the expanded graphite.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: August 27, 2019
    Assignees: NATIONAL INSTITUTE OF TECHNOLOGY, TOYO TANSO CO., LTD.
    Inventors: Hiroshi Okano, Tomofumi Kurosaki, Takurou Tsuruoka, Toshihiro Hosokawa, Nobuya Misaki, Tetsuya Yuki
  • Patent number: 10390719
    Abstract: A patch-type module includes a substrate provided with one surface and another surface that is a sticky surface; an air cell mounted to the substrate; a seal that blocks air from entering the air cell whose first surface is attached to the air cell; an electronic component mounted on the substrate; and a protection sheet that is attached to the sticky surface of the substrate through an adhesion layer, wherein a second surface of the seal is attached to the protection sheet through the adhesion layer, wherein when the protection sheet is peeled, the adhesion layer and the seal are peeled together to expose the sticky surface of the substrate and start introduction of air inside the air cell so that electric power is capable of being power supplied to the electronic component from the air cell.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: August 27, 2019
    Assignees: SHINKO ELECTRIC INDUSTRIES CO., LTD., NIHON KOHDEN CORPORATION
    Inventors: Kazuyuki Kubota, Norihito Konno
  • Patent number: 10367218
    Abstract: Provided is an electrode catalyst layer excellent in gas transportability by using an electrode catalyst layer for fuel cell comprising a catalyst containing a catalyst carrier and a catalytic metal carried on the catalyst carrier and an electrolyte, wherein the catalyst partially is coated with the electrolyte, and a specific surface area of the catalytic metal which gas can reach without passing through an electrolyte is 50% or more, with respect to the total specific surface area of the catalytic metal.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: July 30, 2019
    Assignees: NISSAN MOTOR CO., LTD., DAIMLER AG, FORD MOTOR COMPANY
    Inventors: Hiroshi Iden, Atsushi Ohma, Shinichi Takahashi, Tetsuya Mashio, Norifumi Horibe
  • Patent number: 10367222
    Abstract: The present disclosure relates to a mixture that includes a mediator having a first redox potential, a non-liquid active material having a second redox potential that is less than the first redox potential, and a cation. In addition, the non-liquid active material has a first condition that includes a first oxidation state, where the cation is intercalated within the non-liquid active material, and the non-liquid active material has a second condition that includes a second oxidation state that is higher than the first oxidation state, where the non-liquid active material is substantially free of the cation. In addition, the mediator has a first condition that includes a third oxidation state and a second condition that includes a fourth oxidation state that is higher than the third oxidation state.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: July 30, 2019
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Thomas Gennett, Chunmei Ban, Wade A. Braunecker, Arrelaine A. Dameron, Chaiwat Engtrakul
  • Patent number: 10367206
    Abstract: A method for preparing a metal catalyst supported on a porous carbon support using a plant, including: (a) a step of preparing a plant; (b) a step of preparing a metal precursor-absorbed plant by absorbing a metal precursor into the plant; (c) a step of preparing a catalyst precursor by drying the metal precursor-absorbed plant; (d) a step of preparing a char by charring the catalyst precursor; and (e) a step of preparing a metal catalyst supported on a porous carbon support by treating the char with an acid. The method for preparing a metal catalyst supported on a porous carbon support of the present disclosure, whereby a plant itself is charred, is environment-friendly and allows for convenient large-scale synthesis. The metal catalyst supported on a porous carbon support prepared thereby can be used as electrode materials of various energy devices, particularly as an electrode catalyst of a fuel cell.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 30, 2019
    Assignee: Korea Institute of Science and Technology
    Inventors: Sung Jong Yoo, Dong Wook Lee, So Young Lee, Jin Young Kim, Jong Hyun Jang, Hyoung-Juhn Kim, Hyun Seo Park, Gil-Pyo Kim
  • Patent number: 10340528
    Abstract: Provided herein are three-dimensional ion transport networks and current collectors for electrodes of electrochemical cells. Exemplary electrodes include interconnected layers and channels including an electrolyte to facilitate ion transport. Exemplary electrodes also include three dimensional current collectors, such as current collectors having electronically conducting rods, electronically conducting layers or a combination thereof.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: July 2, 2019
    Assignee: California Institute of Technology
    Inventors: Farshid Roumi, Mahshid Roumi
  • Patent number: 10297834
    Abstract: A method and/or electrochemical cell for utilizing one or more gas diffusion 5 electrodes (GDEs) in an electrochemical cell, the one or more gas diffusion electrodes have a wetting pressure and/or a bubble point exceeding 0.2 bar. The one or more gas diffusion electrodes can be subjected to a pressure differential between a liquid side and a gas side. A pressure on the liquid side of the GDE over the gas side does not exceed the wetting pressure of the GDE during 10 operation (in cases where a liquid electrolyte side has higher pressure), and/or a pressure on the gas side of the GDE over the liquid side, does not exceeds the bubble point of the GDE (in cases where the gas side has the higher pressure).
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: May 21, 2019
    Assignee: AQUAHYDREX PTY LTD
    Inventors: Gerhard Frederick Swiegers, Andrew Nattestad, Dennis Antiohos, Fletcher William Thompson, Stephen Thomas Beirne, Steven DuWayne Kloos, Paul Brendan Denis Michael Barrett
  • Patent number: 10290891
    Abstract: Metal-halogen flow battery cell, stack, system, and method, the stack including flow battery cells that each include an impermeable first electrode, an insert disposed on the first electrode and comprising sloped channels, a cell frame disposed around the insert and including a cell inlet manifold configured to provide a metal halide electrolyte and an opposing cell outlet manifold configured to receive the electrolyte, a porous second electrode disposed on the insert, such that sloped separation zones are formed between the second electrode and the channels, conductive connectors electrically connecting the first and second electrodes, and ribs disposed on the second electrode and extending substantially parallel to the channels of the insert. A depth of the channels increases as proximity to the cell outlet manifold increases.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: May 14, 2019
    Assignee: PRIMUS POWER CORPORATION
    Inventors: Paul Kreiner, Simo Alberti, Kyle Haynes, Timothy Bekkedahl, Andrew Choi, Tom Stepien
  • Patent number: 10263305
    Abstract: A rechargeable magnesium oxygen battery including a negative electrode, a positive electrode, a non-aqueous magnesium ion electrolyte layer between the negative and positive electrodes, and an oxygen restrictor. The oxygen restrictor is configured to restrict oxygen crossover from the positive electrode to the negative electrode.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: April 16, 2019
    Assignees: DENSO CORPORATION, The Regents of The University of Michigan
    Inventors: Junichi Naruse, Donald Siegel
  • Patent number: 10263306
    Abstract: A metal air battery including: a gas diffusion layer having a first surface and a second surface opposite to the first surface; at least one positive electrode layer disposed on the first surface and the second surface of the gas diffusion layer, wherein the positive electrode layer is configured to use oxygen as an active material and includes a first electrolyte; a second electrolyte disposed on the positive electrode layer; and a negative electrode metal layer disposed on the second electrolyte, wherein a side surface of the gas diffusion layer, which connects the first surface and the second surface of the gas diffusion layer, is exposed to an outside of the metal air battery, and the gas diffusion layer comprises an air flow channel that extends from the side surface of the gas diffusion layer which is exposed to the outside, to an inside of the gas diffusion layer.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: April 16, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyounghwan Choi, Jungock Park
  • Patent number: 10256516
    Abstract: Provided are electrochemical cells that include a compound having the general formula wherein R1 is moiety associated with a lithium ion, X1 and X3 are unsubstituted methylene moieties, X2 and X4 are each independently selected from a substituted or unsubstituted methylene moiety, X is a substituted or unsubstituted C1-C10 alkylene moiety, arylene moiety or heteroarylene moiety, R2 is selected from Li, H, an alkyl moiety, or a heteroalkyl moiety, 0<m?1, 0?n?1, and m+n=1.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: April 9, 2019
    Assignees: SAMSUNG ELECTRONICS CO., LTD., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Sang Bok Ma, Mariya Khiterer, Young-Gyoon Ryu, Paula T. Hammond, Yang Shao-Horn, Chibueze Vincent Amanchukwu
  • Patent number: 10249882
    Abstract: A positive electrode for a lithium air battery includes a current collector and a catalyst layer positioned on the current collector. The catalyst layer includes a binder, a conductive particle surrounding the binder, and a catalyst particle spaced apart from the binder, the catalyst particle being on the surface of the conductive particle.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: April 2, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventor: In Kim
  • Patent number: 10218044
    Abstract: A rechargeable lithium air battery is provided. The battery contains a ceramic separator forming an anode chamber, a molten lithium anode contained in the anode chamber, an air cathode, and a non-aqueous electrolyte. The cathode has a temperature gradient comprising a low temperature region and a high temperature region, and the temperature gradient provides a flow system for reaction product produced by the battery.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: February 26, 2019
    Assignee: Johnson IP Holding, LLC
    Inventors: Lonnie G. Johnson, Tedric D. Campbell
  • Patent number: 10218017
    Abstract: A system and methods for managing water content in one or more electrochemical cell is disclosed. The system includes a gas-phase conduit for receiving humid gas-phase associated with the electrochemical cell, a desiccator unit connected to each electrochemical cell and configured for extracting water from the humid gas-phase, a heater for selectively heating the desiccator unit, and a carbon dioxide (CO2) scrubber connected to the desiccator unit. The system may capture water vapor at the desiccator unit from a humid gas-phase exiting electrochemical cell, or release water vapor in desiccator unit, via actuation of heater, that is transported into the electrochemical cell depending on the mode of operation. The CO2 scrubber may also be used to capture water vapor, based on the mode of operation.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: February 26, 2019
    Assignee: NANTENERGY, INC.
    Inventors: Ramkumar Krishnan, Joel Hayes, Grant Friesen, Shawn Fink
  • Patent number: 10170812
    Abstract: An electrochemical assembly module of a system for storing energy, including an assembly of a plurality of elementary gas-electrode electrochemical cells, the assembly including a plurality of lugs respectively associated with the plurality of elementary electrochemical cells, the lugs being connected together by a connecting holder and receiving terminals of the elementary electrochemical cells so that the terminals are all electrically connected to one another by the connecting holder, and a plurality of elements forming connecting clips each receiving at least two terminals of at least two elementary electrochemical cells so that the at least two terminals are electrically connected to each other by the element forming a connecting clip that is associated therewith.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: January 1, 2019
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Guillaume Turin, Philippe Azais, Yves Berthe De Pommery, Lionel Picard
  • Patent number: 10164237
    Abstract: An air battery includes: a cell frame of an insulating material having a bottomed frame shape in which an electrolytic solution and an anode are stored; a cathode that is disposed opposite the anode across the electrolytic solution stored in the cell frame; and a current collecting member that is electrically connected to the anode, wherein the anode and the current collecting member are electrically connected to each other via a plurality of electrically conducting members that penetrate a bottom of the cell frame.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 25, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Fuminori Satou
  • Patent number: 10143118
    Abstract: In one exemplary embodiment, an arrangement for protecting electronics from interference radiation includes a housing and a circuit carrier for accommodating the electronics in an interior of the housing. The housing defines an opening for compensating the different pressures inside and outside the housing. The arrangement of the exemplary embodiment is also distinguished by a contact-making element of an electronic component of the electronics arranged between the opening and the circuit carrier in such a manner that the electronics are at least partially screened from interference radiation entering the housing through the opening.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: November 27, 2018
    Assignee: CONTINENTAL TEVES AG & CO. OHG
    Inventors: Jürgen Gilb, Michael Jürgens, Erwin Kreitmeyr, Ralf Weyrich
  • Patent number: 10138317
    Abstract: A method of forming lightweight structures from particle networks includes functionalizing edges of particles of an anisotropic material, exfoliating of the particles to form sheets of the material, aligning the sheets of material to form a network of multi-layered and aligned particles, and forming a structure out of the network of particles. One example uses graphite powder mixed into 4-aminobenzoic acid for edge functionalization, and exfoliation occurs with sonication in a solvent. The resulting particles undergo alignment with an aligning nozzle that also dispenses the aligned particles to form a structure.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: November 27, 2018
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Gabriel Iftime, John Steven Paschkewitz
  • Patent number: 10135094
    Abstract: Provided are an electrolyte for a lithium secondary battery and a lithium secondary battery containing the same.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: November 20, 2018
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Jin Sung Kim, Seong Il Lee, Kwang Kuk Lee, Jin Su Ham
  • Patent number: 10026958
    Abstract: A non-aqueous Na-oxygen battery utilizes a gas mixture of CO2 and O2 as fuel. The battery exhibits a comparatively high specific energy of 6500-7000 Whkg?1 over a range of CO2 feed compositions. The energy density achieved is higher, by 200% to 300%, than obtained with pure oxygen feed. Ex-situ FTIR and XRD analysis confirm Na2O2, Na2C2O4 and Na2CO3 as discharge products. The Na—O2/CO2 battery provides a promising approach for CO2 capture and conversion into electrical energy. The Na—O2/CO2 battery may be extended to other metals. In addition, operation of a metal battery fueled at least in-part by carbon dioxide within an optimal temperature range is considered.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: July 17, 2018
    Assignee: Cornell University
    Inventors: Lynden A. Archer, Shaomao Xu, Wajdi Issam Al Sadat
  • Patent number: 10010671
    Abstract: Embodiments include a displacement-generating battery cell for driving a drug-delivery device. The cell includes at least one volume-changing element. The cell also includes a housing formed according to a concertina-shaped design with folds in the walls thereof and containing an internal chemical reaction system. The arrangement of the chemical reaction system is such that as the cell is discharged, the volume-changing element expands, thereby lengthening the battery and thus reducing the extent of said folds, such that the cell becomes taller to reflect the expansion of the volume-changing component.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: July 3, 2018
    Assignee: STEADYMED LTD.
    Inventors: Amir Genosar, Doron Aurbach, Elena Markevich, Grigory Salitra, Jonathan Goldstein, Mikhail Levi, Niles Fleischer, Yehuda Bachar, Yossi Aldar
  • Patent number: 10008738
    Abstract: A nanoconfined metal-containing electrolyte comprising a layer of enclosed nanostructures in which each enclosed nanostructure contains a liquid metal-containing electrolyte, wherein said enclosed nanostructures are in physical contact with each other. Metal-ion batteries containing the nanoconfined electrolyte in contact with an anode and cathode of the battery are also described. Methods for producing the nanoconfined electrolyte are also described.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: June 26, 2018
    Assignee: UT-BATTELLE, LLC
    Inventors: Sheng Dai, Jinshui Zhang, Xiao-Guang Sun