With Specified Electrode Structure Or Material Patents (Class 429/405)
  • Publication number: 20150118584
    Abstract: A catalytic cathode, intended for a lithium-air battery comprising catalytic particles supported on electron-conducting particles, comprises a first face intended to be in contact with an ion-conducting material and a second face intended to be in contact with atmospheric oxygen, and comprises at least: a first catalytic layer intended to be in contact with the ion-conducting material, and; a second catalytic layer intended to be in contact with atmospheric oxygen, characterized in that: said first layer comprises first entities of catalytic particles promoting the reaction for the oxidation of lithium-based products, said entities being based on cobalt or on nickel; said second catalytic layer comprises second entities of catalytic particles promoting the reaction for the reduction of oxygen, said second entities being based on manganese or on silver or on platinum. A lithium-air battery comprising the cathode is also provided.
    Type: Application
    Filed: May 20, 2013
    Publication date: April 30, 2015
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Caroline Rozain, Nicolas Guillet
  • Publication number: 20150111114
    Abstract: In a metal-air battery, a negative electrode, an electrolyte layer, and a positive electrode are concentrically disposed in the stated order, radially outward from the central axis, and the outer circumferential surface of the positive electrode is enclosed by a liquid-repellent layer (29). The liquid-repellent layer (29) includes a relatively high-strength inorganic porous material (292) having a continuous pore structure, and a fluorine-based porous part (293) formed by fusing fluorine-based particles to each other. The fluorine-based porous part (293) is fused to the inorganic porous material (292) in pores (294) of and on the outer surface (295) of the inorganic porous material (292). This makes it possible to provide the liquid-repellent layer (29) that is a functional porous material having desired mechanical strength, gas permeability, and liquid impermeability.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 23, 2015
    Applicant: HITACHI ZOSEN CORPORATION
    Inventors: Hidetaka Nakayama, Masanobu Aizawa, Takehiro Shimizu, Akira Taniguchi, Kazuya Kameyama, Yuki Nakamura, Yoshihiro Asari
  • Publication number: 20150111115
    Abstract: Provided is a metal-air battery capable of inhibiting deterioration of battery performance. The metal-air battery includes an anode, a cathode, an electrolyte disposed between the anode and the cathode, and a housing configured to house the anode, the cathode, and the electrolyte, wherein the anode is capable of being ejected from the housing and the anode includes an anode active material, a carbon dioxide absorbent, and an electroconductive holding body configured to hold the anode active material and the carbon dioxide absorbent.
    Type: Application
    Filed: September 11, 2014
    Publication date: April 23, 2015
    Inventor: Iwao NITTA
  • Publication number: 20150104720
    Abstract: A lithium air battery including an anode for intercalating/deintercalating lithium ions; a cathode having oxygen as a cathode active material, a lithium ion conductive solid electrolyte membrane disposed between the anode and the cathode; and an electrolyte, wherein the electrolyte is disposed between the lithium ion conductive solid electrolyte membrane and the cathode, and wherein the electrolyte includes at least one compound selected from a compound represented by Formula 1 and a copolymer including a repeating unit represented by Formula 2 as an additive: wherein in Formulae 1 and 2, groups CY1, CY2, a, b, c, b, R1 to R18, and variables t, u, and v are defined in the specification.
    Type: Application
    Filed: May 30, 2014
    Publication date: April 16, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sang-bok MA, Dong-joon LEE, Dong-min IM, Ki-hyun KIM, Tae-young KIM, Min-sik PARK, Won-sung CHOI
  • Patent number: 9005826
    Abstract: A battery has a cathode and an anode, between which a solid electrolyte is disposed. The battery has a process gas feed on the cathode side. The battery is characterized in that an electrically conductive supporting body is disposed on the cathode surface. At least one chamber connected to the anode has a porous, oxidizable material and a redox pair that is gaseous at an operating temperature of the battery.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: April 14, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harald Landes, Alessandro Zampieri
  • Publication number: 20150099196
    Abstract: The present invention relates to sodium oxygen cells comprising (A) at least one anode comprising sodium, (B) at least one gas diffusion electrode comprising at least one porous support, and (C) a liquid electrolyte comprising at least one aprotic glycol diether with a molecular weight Mn of not more than 350 g/mol. The present invention further relates to the use of the invention sodium oxygen cells and to a process for preparing sodium supperoxide of formula NaO2.
    Type: Application
    Filed: March 20, 2013
    Publication date: April 9, 2015
    Applicant: BASF SE
    Inventors: Arnd Garsuch, Anna Katharina Duerr, Juergen Janek, Philipp Adelhelm, Pascal Hartmann
  • Publication number: 20150099197
    Abstract: A lithium-lanthanum-titanium oxide sintered material has a lithium ion conductivity 3.0×10?4 Scm?1 or more at a measuring temperature of 27° C., the material is described by one of general formulas (1?a)LaxLi2-3xTiO3-aSrTiO3, (1?a)LaxLi2-3xTiO3-aLa0.5K0.5TiO3, LaxLi2-3xTi1-aMaO3-a, Srx-1.5aLaaLi1.5-2xTi0.5Ta0.5O3 (0.55?x?0.59, 0?a?0.2, M=at least one of Fe or Ga), amount of Al contained is 0.35 mass % or less as Al2O3, amount of Si contained is 0.1 mass % or less as SiO2, and average particle diameter is 18 ?m or more.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 9, 2015
    Applicants: Toho Titanium Co., Ltd., NAKASHIMA SANGYO CO., LTD., THE GAKUSHUIN SCHOOL CORPORATION
    Inventors: Mamoru Nakashima, Yoshiyuki Inaguma, Mikio Nakashima
  • Publication number: 20150093659
    Abstract: The invention relates to an electrochemical cell capable of generating and/or accumulating electrical energy, comprising an oxidizable electrode (2) made of aluminium or aluminium alloy, a conductive air electrode (1) allowing the diffusion of air and reduction of the oxygen in air, and an electrolyte (3). Electrolyte (3) is non-aqueous and it comprises a mixture of aluminium trichloride (AlCl3) with a chlorinated cyclic or heterocyclic, aliphatic nitrogen derivative. The invention also relates to an electrochemical system for storing electrical energy comprising at least one such cell.
    Type: Application
    Filed: September 4, 2013
    Publication date: April 2, 2015
    Inventors: Serge Gonzalez, Renaud Revel
  • Publication number: 20150093660
    Abstract: The present invention describes an electrode material based on carbon foam impregnated with particulate carbon, and a method for preparing the electrode material. The electrode material may be used as a cathode active material in a metal-air/metal-oxygen battery, such as a lithium-air, sodium-air, magnesium-air, zinc-air, tin-air or silicon-air battery.
    Type: Application
    Filed: March 19, 2012
    Publication date: April 2, 2015
    Applicant: TOYOTA MOTOR EUROPE NV/SA
    Inventor: Fanny Jeanne Julie Barde
  • Publication number: 20150093658
    Abstract: The invention provides a method for generating Li2O2 or composites of it, the method uses mixing lithium ions with oxygen ions in the presence of a catalyst. The catalyst comprises a plurality of metal clusters, their alloys and mixtures, each cluster consisting of between 3 and 18 metal atoms. The invention also describes a lithium-air battery which uses a lithium metal anode, and a cathode opposing the anode. The cathode supports metal clusters, each cluster consisting of size selected clusters, taken from a range of between approximately 3 and approximately 18 metal atoms, and an electrolyte positioned between the anode and the cathode.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Stefan Vajda, Larry A. Curtiss, Jun Lu, Khalil Amine, Eric C. Tyo
  • Publication number: 20150093657
    Abstract: The present disclosure relates to a direct aluminum fuel cell including: an anode 11 including an aluminum-containing material; a cathode 12 capable of reducing oxygen under neutral or near-neutral conditions; a separator 13 provided between the anode 11 and the cathode 12; and an electrolytic solution with a pH of 3 to 10, wherein the electrolytic solution contains a buffer substance.
    Type: Application
    Filed: April 19, 2013
    Publication date: April 2, 2015
    Inventors: Takaaki Nakagawa, Kenichi Murata, Tsunetoshi Samukawa
  • Patent number: 8993180
    Abstract: There is provided a metal oxygen battery which is capable of obtaining superior batter capacity when starting use from charging. In the metal oxygen battery 1 including a positive electrode 2, which includes an oxygen-storing material and lithium oxide, and uses oxygen as an active substance, a negative electrode 3 capable of absorbing and discharging lithium ions, and an electrolyte layer 4 interposed between the positive electrode 2 and the negative electrode 3, in which the positive electrode 2, the negative electrode 3, and the electrolyte layer 4 are hermetically accommodated in a case 5, the oxygen-storing material has an oxygen amount stored at a start of charge time diluted.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 31, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kiyoshi Tanaami, Hiroshi Sakai, Bunichi Saito, Takuya Taniuchi, Mao Hori, Tomohiro Kinoshita, Satoshi Nakada, Izuru Kanoya
  • Publication number: 20150086882
    Abstract: An air cell includes a positive electrode and a negative electrode, and an outer frame member located at outer peripheries of the positive electrode and the negative electrode. The positive electrode and the outer frame member are integrally joined together. An assembled battery includes a plurality of air cells, the air cells being stacked on top of each other. This configuration can increase mechanical strength and improve sealing performance for an electrolysis solution in the positive electrode. In addition, a reduction in thickness of the entire air cell can be achieved so that the assembled battery suitable for use in a vehicle can be provided.
    Type: Application
    Filed: February 14, 2013
    Publication date: March 26, 2015
    Inventors: Yoshiko Tsukada, Atsushi Miyazawa, Mori Nagayama, Yasuhiro Numao
  • Publication number: 20150086881
    Abstract: A unitary graphene-based current collector in a battery or capacitor. The current collector is or contains a unitary graphene layer that is composed of closely packed and chemically bonded parallel graphene planes having an inter-graphene plane spacing of 0.335 to 0.40 nm and an oxygen content less than 5% by weight (more typically 0.001% to 1%), an average grain size larger than 5 ?m (more typically >100 ?m; some as large as >cm), a physical density higher than 1.8 g/cm3, and is obtained from heat-treating a graphene oxide gel at a temperature higher than 100° C. (typically and preferably from 1,000 to 3,000° C.). Such an integrated or unitary graphene entity is compatible with essentially all electrolytes commonly used in batteries and supercapacitors.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 26, 2015
    Inventors: Aruna Zhamu, Bor Z. Jang, Guorong Chen
  • Publication number: 20150086884
    Abstract: A rechargeable battery includes an iron electrode comprising carbonyl iron composition dispersed over a fibrous electrically conductive substrate. The carbonyl iron composition includes carbonyl iron and at least one additive. A counter-electrode is spaced from the iron electrode. An electrolyte is in contact with the iron electrode and the counter-electrode such that during discharge. Iron in the iron electrode is oxidized with reduction occurring at the counter-electrode such that an electric potential develops. During charging, iron oxides and hydroxides in the iron electrode are reduced with oxidation occurring at the counter-electrode (i.e., a nickel electrode or an air electrode).
    Type: Application
    Filed: September 23, 2014
    Publication date: March 26, 2015
    Inventors: Sri R. NARAYAN, Aswin K. MANOHAR, Chenguang YANG, G. K. Surya PRAKASH, Robert Aniszfeld
  • Publication number: 20150086883
    Abstract: A positive electrode (10) for an air cell of the present invention includes: a catalyst layer (11) composed of a porous layer containing electrical conductive carbon (1), a binder (2), and a catalyst component (3); and a fluid-tight gas-permeable layer (12) composed of a porous layer containing an electrical conductive carbon (1a) and a binder (2). The fluid-tight gas-permeable layer is stacked on the catalyst layer. This configuration can facilitate series connection of the air cells while preventing electrolysis solution from leaking out of a positive electrode. It is therefore possible to enhance the manufacturing efficiency and handleability of the air cells.
    Type: Application
    Filed: March 8, 2013
    Publication date: March 26, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yoshiko Tsukada, Kazufumi Kodama, Shigemasa Kuwata, Atsushi Miyazawa
  • Patent number: 8980485
    Abstract: This disclosure describes metal-air battery devices that are rechargeable, thin film, and all solid-state. The disclosure further describes methods of manufacturing rechargeable, thin film, all solid-state, metal-air batteries. The devices disclosed include a porous cathode structure with an electrolyte incorporated therein. The porous cathode structure may be designed to contain pores of at least two distinct sizes (i.e., having bimodal pore size distribution), a smaller one to increase the active surface area of the cathode and a larger to facilitate the transport of gas-phase oxygen through the cathode. The methods disclosed include using pulsed microwave plasma enhanced chemical vapor deposition (p-?PECVD) to dynamically grow an electrolyte layer on the surface of the carbon within, or a desired portion of, the cathode structure.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: March 17, 2015
    Assignee: ITN Energy Systems, Inc.
    Inventors: Bruce Roy Lanning, Michael Wayne Stowell, Jr., Brian Spencer Berland, Andrew Colclasure
  • Patent number: 8974927
    Abstract: An apparatus for producing hydrogen from an electrolyte solution, in particular an aqueous solution, is described. The apparatus includes a hydrogen-developing body having an electrolyte-contacting surface. The electrolyte-contacting surface of the hydrogen-developing body includes regions formed from magnesium, Mg, zinc, Zn, aluminium, Al, or alloys thereof alternating with regions formed from ferrum, Fe, or a ferrous alloy, Fe alloy. The apparatus may further include means for accumulating hydrogen which has developed on the surface of the body.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: March 10, 2015
    Assignee: NIM Energy Inc.
    Inventor: Mark Fertman
  • Publication number: 20150064580
    Abstract: Compositions and methods of making compositions are provided for nitride- and/or oxide-modified electrode compositions. In certain embodiments, the nitride- and/or oxide-modified compositions have the general formula M1?zM?zOaF3?xNy. Such compositions may be used as bulk or surface compositions, and used in a battery as the anode or cathode. In other embodiments, the electrode includes a surface coating composition selected from metal nitrides and metal oxides, and a core composition having the formula M1?zM?zOaF3?x, or an oxide fluoride.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Applicant: UT-BATTELLE, LLC
    Inventors: Craig A. Bridges, Mariappan Parans Paranthaman, Gabriel M. Veith, Zhonghe Bi
  • Patent number: 8968941
    Abstract: A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: March 3, 2015
    Assignee: Uchicago Argonne, LLC
    Inventors: Khalil Amine, Larry A. Curtiss, Jun Lu, Kah Chun Lau, Zhengcheng Zhang, Yang-Kook Sun
  • Patent number: 8961833
    Abstract: A lithium/fluorinated carbon (Li/CFx) battery having a composite cathode including an electroactive cathode material, a non-electroactive additive, a conductive agent, and a binder. The electroactive cathode material is a single fluorinated carbon having a general formula of CFx, whereby x is an averaged value ranging from about 0.5 to about 1.2. The non-electroactive additive is at least one or a mixture of two or more oxides selected from the group comprising Mg, B, Al, Si, Cu, Zn, Y, Ti, Zr, Fe, Co, or Ni. The conductive agent is selected from the group comprising carbon, metals, and mixtures thereof. Finally, the binder is an amorphous polymer selected from the group comprising fluorinated polymers, ethylene-propylene-diene (EPDM) rubbers, styrene butadiene rubbers (SBR), poly (acrylonitrile-methyl methacrylate), carboxymethyl celluloses (CMC), and polyvinyl alcohol (PVA).
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: February 24, 2015
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Shengshui Zhang, Donald L. Foster, Jeffery Wolfenstine, Jeffery A. Read
  • Publication number: 20150050568
    Abstract: A high-power aluminum-air battery system, which is battery pack electrically connected by at least two single aluminum-air batteries in series or parallel, bottom of the battery pack is provided with two liquid flow handling chambers, and upward side of the battery pack is provided with liquid distributing apparatus, the single aluminum-air batteries are interlinked with the liquid flow handling chambers via the respective liquid outlet pipes, the liquid flow handling chambers are interlinked with the pump liquid chamber via their respective liquid transmission pipes, the pump liquid chamber is interlinked with the liquid flow pump via the liquid sucking pipe, and the liquid delivery pipe of the liquid flow pump is interlinked with the liquid distributing apparatus, the liquid distributing apparatus is interlinked with the single aluminum-air batteries under it via liquid inlet pipes.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 19, 2015
    Applicant: ADVANCED HIGH POWER MULTI SOURCE ENERGY SCIENCE-TE
    Inventors: Wei Wang, Yanling Qi
  • Publication number: 20150050569
    Abstract: An air cell includes a plurality of electrode structures each including a filling chamber for an electrolyte liquid interposed between an air electrode and a metal negative electrode; an electrode housing portion individually housing the plural electrode structures; and a liquid supply unit which supplies the electrolyte liquid to the plural electrode structures. The electrode housing portion includes a plurality of liquid injection holes to inject the electrolyte liquid into the filling chambers of the respective electrode structures and a plurality of liquid junction prevention portions each dividing a space between the liquid injection holes adjacent to each other. The liquid supply unit includes a liquid injection device allowing the electrolyte liquid to flow into the plural liquid injection holes.
    Type: Application
    Filed: March 12, 2013
    Publication date: February 19, 2015
    Inventors: Yoshiko Tsukada, Mori Nagayama, Atsushi Miyazawa
  • Patent number: 8956771
    Abstract: An electrode catalyst for fuel cell, a method of preparing the electrode catalyst, a membrane electrode assembly including the electrode catalyst, and a fuel cell including the membrane electrode assembly. The electrode catalyst includes a crystalline catalyst particle incorporating a precious metal having oxygen reduction activity and a Group 13 element, where the Group 13 element is present in a unit lattice of the crystalline catalyst particle.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: February 17, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kang-hee Lee, Chan-ho Pak, Dae-jong Yoo, Seon-ah Jin
  • Publication number: 20150044581
    Abstract: In an example, the present invention provides a solid state battery device, e.g., battery cell or device. The device has a current collector region and a lithium containing anode member overlying the current collector region. The device has a thickness of electrolyte material comprising a first garnet material overlying the lithium containing anode member. The thickness of electrolyte material has a density ranging from about 80 percent to 100 percent and a porous cathode material comprising a second garnet material overlying the thickness of electrolyte material. The porous cathode material has a porosity of greater than about 30 percent and less than about 95 percent and a carbon bearing material overlying a surface region of the porous cathode material. In an example, the carbon bearing material comprises substantially carbon material, although there can be variations.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Applicant: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly
  • Publication number: 20150044580
    Abstract: A magnesium-air battery system (200) comprises a supplier (210), a battery body (220), a wind-up reel (230) and a driver (240). A magnesium-air battery fuel element (100) is formed from a magnesium film into a roll shape. The supplier (210) is connected to the magnesium-air battery fuel element (100) and is rotationally driven by the driver (240) such that the magnesium-air battery fuel element (100) is delivered to the wind-up reel (230) via the battery body (220). The battery body (220) comprises an anode and an electrolyte and uses the magnesium-air battery fuel element (100) as a cathode acting in synergy with the anode to generate electricity. The wind-up reel (230) winds up the post-reaction magnesium-air battery fuel element that is used to generate electricity in the battery body (220), and forms a used fuel element (500) having a roll shape removable from the wind-up reel (230).
    Type: Application
    Filed: March 1, 2013
    Publication date: February 12, 2015
    Inventor: Takashi Yabe
  • Publication number: 20150037692
    Abstract: Provided is a lithium air battery, and more particular, a lithium air battery including a buffer layer consisting of a conductive ion-exchange resin and a mesoporous carbon formed between an electrolyte and a catalyst layer configuring a cathode to prevent a contact between the catalyst layer and a large amount of electrolyte in the lithium air battery, thereby reducing occurrence of overvoltage at the time of charging and discharging the battery. At the same time, the lithium air battery of the present invention may suppress evaporation of the electrolyte solution to improve durability, thereby preventing deterioration in performance of the battery, and extending a lifespan.
    Type: Application
    Filed: August 4, 2014
    Publication date: February 5, 2015
    Inventors: Myoung Gu Park, Kyong Sik Kim, Seong Ho Chun, Hee Young Sun
  • Publication number: 20150030941
    Abstract: An electrochemical cell includes a permeable fuel electrode configured to support a metal fuel thereon, and an oxidant reduction electrode spaced from the fuel electrode. An ionically conductive medium is provided for conducting ions between the fuel and oxidant reduction electrodes, to support electrochemical reactions at the fuel and oxidant reduction electrodes. A charging electrode is also included, selected from the group consisting of (a) the oxidant reduction electrode, (b) a separate charging electrode spaced from the fuel and oxidant reduction electrodes, and (c) a portion of the permeable fuel electrode. The charging electrode is configured to evolve gaseous oxygen bubbles that generate a flow of the ionically conductive medium. One or more flow diverters are also provided in the electrochemical cell, and configured to direct the flow of the ionically conductive medium at least partially through the permeable fuel electrode.
    Type: Application
    Filed: October 2, 2014
    Publication date: January 29, 2015
    Inventors: Cody A. FRIESEN, Ramkumar Krishnan, Grant Friesen, Joel Hayes
  • Patent number: 8940447
    Abstract: An oxygen cell capable of minimizing overvoltage increases is provided. An oxygen cell 1 comprises a positive electrode 2 that uses oxygen as an active material, a negative electrode 3 that uses metallic lithium as an active material, and an electrolyte layer 4 sandwiched between the positive electrode 2 and the negative electrode 3, wherein the positive electrode 2 contains a lithium compound.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: January 27, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kiyoshi Tanaami, Takuya Taniuchi, Mao Hori, Hiroshi Sakai, Yuji Isogai
  • Patent number: 8940446
    Abstract: In an example, the present invention provides a solid state battery device, e.g., battery cell or device. The device has a current collector region and a lithium containing anode member overlying the current collector region. The device has a thickness of electrolyte material comprising a first garnet material overlying the lithium containing anode member. The thickness of electrolyte material has a density ranging from about 80 percent to 100 percent and a porous cathode material comprising a second garnet material overlying the thickness of electrolyte material. The porous cathode material has a porosity of greater than about 30 percent and less than about 95 percent and a carbon bearing material overlying a surface region of the porous cathode material. In an example, the carbon bearing material comprises substantially carbon material, although there can be variations.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: January 27, 2015
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly
  • Patent number: 8940112
    Abstract: A method of making a solid oxide fuel cell (SOFC) includes forming a first sublayer of a first electrode on a first side of a planar solid oxide electrolyte and drying the first sublayer of the first electrode. The method also includes forming a second sublayer of the first electrode on the dried first sublayer of the first electrode prior to firing the first sublayer of the first electrode, firing the first and second sublayers of the first electrode during the same first firing step, and forming a second electrode on a second side of the solid oxide electrolyte.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: January 27, 2015
    Assignee: Bloom Energy Corporation
    Inventors: Emad El Batawi, Patrick Munoz, Dien Nguyen
  • Patent number: 8940459
    Abstract: An alkaline fuel cell electrode catalyst includes a first catalyst particle that contains at least one of iron (Fe), cobalt (Co) and nickel (Ni), a second catalyst particle that contains at least one of platinum (Pt) and ruthenium (Ru), and a carrier for supporting the first catalyst particle and the second catalyst particle.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 27, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Haruyuki Nakanishi, Yusuke Kuzushima
  • Publication number: 20150024291
    Abstract: A containment vessel of a thin lithium-air battery with improved safety is provided. By using the containment vessel, an explosive reaction (ignition) of the electrolyte including lithium metal or ion can be suppressed. The containment vessel (1001) includes: a containment chamber (201) containing the thin lithium-air battery (101). It further includes: a first gas pipe (202B) and a second gas pipe (202D) communicated with an inside of the containment chamber (201); a third gas pipe (202A) and a fourth gas pipe (202C) communicated with an inside of the thin lithium-air battery (101); and a valve (204C) that is provided to the third gas pipe (202A) and controls opening and closing of communication to the containment chamber (201), wherein an inert gas supply source is provided to the first gas pipe (202B), and an air or oxygen supply source is provided to the third gas pipe (202A).
    Type: Application
    Filed: November 21, 2012
    Publication date: January 22, 2015
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kimihiko Ito, Yoshimi Kubo
  • Publication number: 20150024292
    Abstract: The present invention provides a lithium-air secondary battery that is capable of effectively preventing deterioration of an alkaline electrolytic solution, air electrode, and negative electrode and has a long life and high long-term reliability. The lithium-air secondary battery comprises an air electrode 12 functioning as a positive electrode, an anion exchanger 14 provided in close contact with one side of the air electrode and composed of a hydroxide-ion conductive inorganic solid electrolyte, a separator 16 provided away from the anion exchanger and composed of a lithium-ion conductive inorganic solid electrolyte, a negative electrode 18 provided so as to be capable of supplying and receiving lithium ions to and from the separator and comprising lithium, and an alkaline electrolytic solution 20 filled between the anion exchanger and the separator.
    Type: Application
    Filed: October 7, 2014
    Publication date: January 22, 2015
    Inventors: Naohito YAMADA, Kazuhiro YAMAMOTO, Kenshin KITOH
  • Publication number: 20150024289
    Abstract: The invention provides a unique catalyst system without the need for carbon. Metal nanoparticles were grown onto conductive, two-dimensional material of TiSi2 nanonet by atomic layer deposition. The growth exhibited a unique selectivity with the elemental metal deposited only on defined surfaces of the nanonets in nanoscale without mask or patterning.
    Type: Application
    Filed: February 18, 2014
    Publication date: January 22, 2015
    Inventors: Dunwei Wang, Jin Xie, Xiaogang Yang, Xiahui Yao
  • Publication number: 20150024290
    Abstract: Metal-air button cells including a closed cell housing and, arranged therein, an air cathode and a metal-based anode separated from one another by a separator, wherein the cell housing is substantially composed of a first housing half-part and a second housing half-part; the housing half-parts are configured to be cup-shaped and have a base and a circumferential side wall; the base of the second housing half-part has one or more entry and/or exit openings for atmospheric oxygen; and the air cathode is configured to be disc-shaped and is positioned on the base of the second housing half-part such that it covers the entry and/or exit openings and its periphery bears on the inner side of the circumferential side wall of the second housing half-part.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 22, 2015
    Inventors: Cornelia Csrenko, Hermann Löffelmann, Thomas Haake, Alexander Brenner
  • Publication number: 20150017555
    Abstract: The present invention relates to the use of mesoporous graphitic particles having a loading of sintering-stable metal nanoparticles for fuel cells and further electrochemical applications, for example as constituent of layers in electrodes of fuel cells and batteries.
    Type: Application
    Filed: February 8, 2013
    Publication date: January 15, 2015
    Applicant: STUDIENGESELLSCHAFT KOHLE MBH
    Inventors: Ferdi Schüth, Diana Carolina Galeano Nunez, Hans-Josef Bongard, Stefano Mezzavilla, Karl J. Mayrhofer, Josef C. Meier, Claudio Baldizzone, Jean-Francois Drillet, Sakthivel Mariappan, Tadios Tesfu, Volker Peinecke
  • Publication number: 20150017554
    Abstract: A process for producing oxygen-consuming electrodes, in particular for use in chloralkali electrolysis, which display good transport capability and storage capability. In the process, a silver oxide-containing sheet-like structure as intermediate is electrochemically reduced. Also disclosed are methods of using these electrodes in chloralkali electrolysis or fuel cell technology or in metal-air batteries, and the fuel cells and metal-air batteries produced.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Applicant: BAYER MATERIALSCIENCE AG
    Inventors: Andreas BULAN, Rainer WEBER, Michael STELTER, Hartmund BOMBACH, Katja PALM
  • Patent number: 8932771
    Abstract: Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: January 13, 2015
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Vitaliy Nimon, Lutgard C. De Jonghe, Yury Volfkovich, Daniil Bograchev
  • Publication number: 20150010833
    Abstract: The invention provides for a fully electrically rechargeable metal anode battery systems and methods of achieving such systems. An electrically rechargeable metal anode cell may comprise a metal electrode, an air contacting electrode, and an aqueous electrolyte separating the metal electrode and the air contacting electrode. In some embodiments, the metal electrode may directly contact the liquid electrolyte and no separator or porous membrane is needed between the air contacting electrode and the electrolyte. Rechargeable metal anode cells may be electrically connected to one another through a centrode connection where a metal electrode of one cell and an air contacting electrode of a second cell are electrically connected. Air tunnels or pathways may be provided between individual metal anode cells arranged in a stack. In some embodiments, an electrolyte flow management system may also be provided to maintain liquid electrolyte at constant levels during charge and discharge cycles.
    Type: Application
    Filed: December 14, 2012
    Publication date: January 8, 2015
    Applicant: Eos Energy Storage, LLC
    Inventors: Steven Amendola, Michael Binder, Phillip J. Black, Stefanie Sharp-Goldman, Lois Johnson, Michael Kunz, Michael Oster, Tesia Chciuk, Regan Johnson
  • Publication number: 20150002098
    Abstract: Batteries employing an oxygen (air) electrode, particularly those in which the oxygen electrode is combined with an alkali metal or alkaline earth metal negative electrode useful I for bulk energy storage, particularly for electric utility grid storage, as well as for electric vehicle propulsion. Batteries have an electrochemically reversible oxygen positive having a porous mixed metal oxide matrix for receiving and retaining discharge product and a dense (non-porous) separator element which conducts oxygen ions and electrons in contact with a source of oxygen.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: Anthony F. SAMMELLS
  • Publication number: 20140377670
    Abstract: A lithium ion conducting protective film produced using a layer-by-layer assembly process. The lithium ion conducting protective film is assembled on a substrate by a sequential exposure of the substrate to a first poly(ethylene oxide) (PEO) layer including a cross-linking silane component on the first side of the substrate, a graphene oxide (GO) layer on the first PEO layer, a second poly(ethylene oxide) (PEO) layer including a cross-linking silane component on the GO layer and a poly(acrylic acid) (PAA) layer on the second PEO layer.
    Type: Application
    Filed: December 6, 2013
    Publication date: December 25, 2014
    Applicant: Samsung Electronics, Co. Ltd.
    Inventors: Mariya Khiterer, Paula T. Hammond, Sun Hwa Lee
  • Patent number: 8916296
    Abstract: The present application is directed to mesoporous carbon materials comprising bi-functional catalysts. The mesoporous carbon materials find utility in any number of electrical devices, for example, in lithium-air batteries. Methods for making the disclosed carbon materials, and devices comprising the same, are also disclosed.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 23, 2014
    Assignee: EnerG2 Technologies, Inc.
    Inventors: Aaron M. Feaver, Henry R. Costantino, Richard D. Varjian
  • Publication number: 20140370400
    Abstract: Each air battery stacked in a battery pack includes a cathode layer, an anode layer, an electrolyte layer and a frame member having electrical insulation properties and surrounding at least outer circumferences of the electrolyte layer and the cathode layer. The cathode layer includes a fluid-tight air-permeable member located at a cathode surface thereof and having, when viewed in plan, an outer circumferential edge portion situated outside of the outer circumference of the electrolyte layer. The frame member includes a holding portion located a cathode side thereof so as to hold the outer circumferential edge portion of the fluid-tight air-permeable member. The outer circumferential edge portion of the fluid-tight air-permeable member is adapted as a compressed region to which a compressive load is applied in a thickness direction thereof. By this structure, it is possible to achieve both of thickness reduction and high electrolyte sealing performance.
    Type: Application
    Filed: January 21, 2013
    Publication date: December 18, 2014
    Inventors: Atsushi Miyazawa, Tomokatsu Himeno, Keita Iritsuki, Mori Nagayama
  • Publication number: 20140370399
    Abstract: A metal-air battery with a high discharge capacity is provided. Discharge capacity can be increased by a metal-air battery that includes an air electrode, a negative electrode and an electrolyte layer, where the electrolyte layer includes a porous separator, and a liquid electrolyte infiltrated in the separator, and a contact angle between the liquid electrolyte and a negative electrode side-face of the separator is smaller than that between the liquid electrolyte and an air electrode side-face of the separator.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 18, 2014
    Inventor: Yushi SUZUKI
  • Publication number: 20140363746
    Abstract: A rechargeable lithium cell comprising a cathode having a cathode active material, an anode having an anode active material, a porous separator electronically separating the anode and the cathode, a non-flammable quasi-solid electrolyte in contact with the cathode and the anode, wherein the electrolyte contains a lithium salt dissolved in a first organic liquid solvent with a concentration sufficiently high so that the electrolyte exhibits a vapor pressure less than 0.01 kPa when measured at 20° C., a flash point at least 20 degrees Celsius higher than the flash point of the first organic liquid solvent alone, a flash point higher than 150° C., or no flash point. This battery cell is non-flammable and safe, has a long cycle life, high capacity, and high energy density.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 11, 2014
    Inventors: Hui He, Bor Z. Jang, Yanbo Wang, Aruna Zhamu
  • Publication number: 20140356737
    Abstract: A lithium-air battery includes a positive electrode layer, a negative electrode layer, and an electrolyte layer, where the positive electrode layer, the negative electrode layer and the electrolyte layer are accommodated in a receiving space formed by a housing; a side of the housing adjacent to the positive electrode layer and away from the negative electrode layer is provided with a pore absorbing air from outside the housing; the positive electrode layer includes a positive electrode current collector and a reaction layer that is coated or hot-pressed on the positive electrode current collector; the negative electrode layer includes a lithium storage layer having lithium ion intercalation and deintercalation capabilities and a lithium source negative electrode active material layer coated or hot-pressed on a surface of the lithium storage layer, and the electrolyte layer is sandwiched between the reaction layer in the positive electrode layer and the negative electrode layer.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: Huawei Technologies Co., Ltd.
    Inventor: Hongfeng Song
  • Publication number: 20140356736
    Abstract: A positive electrode for a lithium battery including a protected negative electrode containing a lithium metal or a lithium alloy, wherein the positive electrode contains a positive electrode active material, a polyoxometalate compound, and a conductive material. Also provided is a lithium battery including the positive electrode.
    Type: Application
    Filed: April 9, 2014
    Publication date: December 4, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Won-sung CHOI, Dong-min IM, Victor ROEV, Young-gyoon RYU, Dong-joon LEE, Seung-sik HWANG
  • Patent number: 8900750
    Abstract: A catalyst including: a plurality of porous clusters of silver particles, each cluster of the clusters including: (a) a plurality of primary particles of silver, and (b) crystalline particles of zirconium oxide (ZrO2), wherein at least a portion of the crystalline particles of ZrO2 is located in pores formed by a surface of the plurality of primary particles of silver.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: December 2, 2014
    Assignee: Bar-Ilan University
    Inventors: Ernst Khasin, Arie Zaban
  • Patent number: 8900760
    Abstract: The solid oxide fuel cell has a stack structure formed by stacking sheet bodies each of which comprises three layers of the electrolyte layer, a fuel electrode layer, an air electrode layer, and separators in alternating layers. In an air channel defined between the air electrode and the separator facing the air electrode layer, a SUS mesh made of stainless steel for electrically connecting both of them is confined. On the surface of the SUS mesh, previously by itself before the assembly of the stack structure, an Ag-plating treatment is performed and further a vacuum heat-treatment (heat-treatment under a negative pressure) is performed.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: December 2, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Toshiyuki Nakamura, Masayuki Shinkai, Tsutomu Nanataki