Metal Or Alloy Containing Patents (Class 429/485)
  • Patent number: 8450026
    Abstract: A membrane electrode assembly for a solid electrolyte fuel cell comprises: an electrode having a layer of nano-structured material on one of its faces, an electrocatalyst deposited on the nano-structured material and an electrolyte deposited on the electrocatalyst/nano-structured material. The nano-structured material can comprise carbon, silicon, graphite, boron, titanium and be in the form of multi-walled nano-tubes (MWNTs), single-walled nano-tubes (SWNTs), nano-fibers, nano-rods or a combination thereof. The nano-structured material can be grown or deposited on one face of an electrode of the cell or on a substrate such as a flexible sheet material of carbon fibers using chemical vapor deposition. The electrocatalyst and electrolyte can be incorporated in the nano structured material using physical vapor deposition (PVD), ion beam sputtering or molecular beam epitaxy (MBE).
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: May 28, 2013
    Assignee: Intematix Corporation
    Inventors: Mina Farag, Chris Bajorek
  • Publication number: 20130095410
    Abstract: A fuel cell includes an anode, a cathode and a solid electrolyte layer. The cathode has a main phase and a sub phase. The main phase is composed of a perovskite type oxide including cobalt. The sub phase is composed of tricobalt tetroxide. The solid electrolyte layer is disposed between the anode and the cathode. An area occupancy of the sub phase in a sectional surface of the cathode is equal to or less than 9.8%.
    Type: Application
    Filed: September 13, 2012
    Publication date: April 18, 2013
    Applicant: NGK INSULATORS, LTD.
    Inventors: Makoto OHMORI, Ayano KOBAYASHI
  • Patent number: 8420276
    Abstract: In a membrane-electrode assembly for polymer electrolyte fuel cells comprising a polymer electrolyte membrane and two gas diffusion electrodes being bonded to the membrane so that the membrane can be between them, at least one catalyst layer constituting the gas diffusion electrodes characterized in that the ion-conductive binder comprises a block copolymer having a particle size of 1 ?m or less comprising a polymer block (A) having ion-conductive groups and a polymer block (B) having no ion-conductive group, both polymer blocks phase separate from each other, polymer block (A) forms a continuous phase, and the contact parts of the block copolymer with catalyst particles are comprised of polymer block (A) having ion-conductive groups; a membrane-electrode assembly and a polymer electrolyte fuel cell.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: April 16, 2013
    Assignee: Kuraray Co., Ltd.
    Inventors: Shinji Nakai, Keiji Kubo, Hiroyuki Ohgi, Tomohiro Ono
  • Patent number: 8399152
    Abstract: Provided is a method of producing a fuel cell catalyst layer which has a large specific surface area and high activity and which includes the steps of: forming a dendritic structural member including a catalyst precursor by a vapor phase method; providing a coating layer on a surface of the dendritic structural member; and subjecting the dendritic structural member having the coating layer provided thereon to a reduction treatment. The dendritic structural member including a catalyst precursor is a dendritic structural member including platinum oxide or a dendritic structural member containing a composite oxide of platinum oxide and an element except platinum.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 19, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Atsuhito Yoshizawa, Shinnosuke Koji, Kazuhiro Yamada
  • Patent number: 8399147
    Abstract: An electrolyte-electrode assembly (MEA) includes: an electrolyte; an anode side electrode and a cathode side electrode formed so as to sandwich the electrolyte via intermediate layers. The anode side electrode has a thickness set to 1 ?m, for example. A method for manufacturing the electrolyte-electrode assembly, i.e., the MEA includes a step for forming the anode side electrode by sputtering.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: March 19, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshikatsu Higuchi, Yuji Saito
  • Patent number: 8383286
    Abstract: A metal oxide thin film structure for a solid oxide fuel cell, prepared by a method comprising dispersing a metal oxide nanopowder in a metal oxide salt solution and subsequent coating of the resulting metal oxide powder dispersed sol and the metal oxide salt solution on a porous substrate, has excellent gas impermeability, excellent phase stability, and is devoid of cracks or pinholes.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: February 26, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Hae-Weon Lee, Jong Ho Lee, Eun Oak Oh, Ji-Won Son, Hae-Ryoung Kim, Hyoungchul Kim, Kyung-ryul Lee
  • Patent number: 8361671
    Abstract: The present invention relates to a solid electrolyte fuel-cell device wherein a plurality of fuel cells are formed on a single plate. A plurality of cathode layers are formed on one surface of the flat plate-like solid electrolyte substrate, and a plurality of anode layers on the opposite surface thereof, and each fuel cell is formed from a pair of the cathode layer and the anode layer. An electromotive force extracting lead wire is attached to the cathode layer, and a lead wire is attached to the anode layer. The plurality of fuel cells are connected in series by electrically connecting the cathode layer of one fuel cell to the anode layer of an adjacent fuel cell. Flames formed by combustion of a fuel such as a methane gas are supplied to the entire surface of each anode layer, and air is supplied to each cathode layer.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: January 29, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Michio Horiuchi, Shigeaki Suganuma, Misa Watanabe
  • Patent number: 8354137
    Abstract: The present invention provides a method for manufacturing an electrode catalyst layer for a fuel cell which includes a polymer electrolyte, a catalyst material and carbon particles, wherein the electrode catalyst layer employs a non-precious metal catalyst and has a high level of power generation performance. The electrode catalyst layer is used as a pair of electrode catalyst layers in a fuel cell in which a polymer electrolyte membrane is interposed between the pair of the electrode catalyst layers which are further interposed between a pair of gas diffusion layers. The method of the present invention has such a feature that the catalyst material or the carbon particles are preliminarily embedded in the polymer electrolyte.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: January 15, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Hiroyuki Morioka, Haruna Kurata, Saori Okada, Kenichiro Oota
  • Patent number: 8349518
    Abstract: A copper foil for a current collector of a lithium secondary battery has a crystalline structure, in which a ratio of the sum of texture coefficients of a (111) surface and a (200) surface to the total sum of texture coefficients of the (111), (200) and (220) surfaces is 60 to 85%, a ratio of the texture coefficient of the (111) surface to the total sum of texture coefficients of the (111), (200) and (220) is 18 to 38%, a ratio of the texture coefficient of the (200) surface thereto is 28 to 62%, and a ratio of the texture coefficient of the (220) surface thereto is 15 to 40%. The copper foil has surface roughness (Rz-JIS) of 2 ?m or less, weight deviation of 3% or less, tensile strength of 30 to 40 kgf/mm2, elongation of 3 to 20%, and thickness of 1 to 35 ?m.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 8, 2013
    Assignee: LS Mtron Ltd.
    Inventors: Dae-Young Kim, Byoung-Kwang Lee, Seung-Jun Choi
  • Patent number: 8343321
    Abstract: The invention relates to membrane-electrode assemblies for the electrolysis of water (electrolysis MEAs), which contain an ion-conducting membrane having a front and rear side; a first catalyst layer on the front side; a first gas diffusion layer on the front side; a second catalyst layer on the rear side, and a second gas diffusion layer on the rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, whereas the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane (“semi-coextensive design”). The MEAs also comprise an unsupported free membrane surface that yields improved adhesion properties of the sealing material. The invention also relates to a method for producing the MEA products. Pressure-resistant, gastight and cost-effective membrane-electrode assemblies are obtained, that are used in PEM water electrolyzers, regenerative fuel cells or in other electrochemical devices.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: January 1, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Klaus Schaack, Sandra Wittpahl, Holger Dziallas, Peter Seipel, Pia Braun, Lutz Rohland
  • Patent number: 8338051
    Abstract: This invention relates to an electrode catalyst for a fuel cell comprising catalyst metal particles of noble metal-base metal-Ce (cerium) ternary alloy carried on carbon materials, wherein the noble metal is at least one member selected from among Pt, Ru, Rh, Pd, Ag and Au, the base metal is at least one member selected from among Ir, Co, Fe, Ni and Mn, and the relative proportion (i.e., the molar proportion) of noble metal:base metal:Ce (cerium) is 20 to 95:5 to 60:0.1 to 3. The electrode catalyst for a fuel cell inhibits deterioration of an electrolyte membrane or an electrolyte in an electrode catalyst layer, improves durability, and, in particular, improves the capacity for power generation in the high current density region.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: December 25, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Hiroaki Takahashi, Yosuke Horiuchi, Takahiro Nagata, Tomoaki Terada, Toshiharu Tabata
  • Patent number: 8318375
    Abstract: A cathode for an electrochemical reactor including a diffusion layer and a catalyst layer. The cathode has bimetallic or multimetallic nanoparticles, dispersed in direct contact with the diffusion layer, at least one of the metals being chromium (Cr) wholly or partly in oxidized form. The cathode is fabricated by depositing the bimetallic or multimetallic nanoparticles on the diffusion layer by DLI-MOCVD in the presence of O2.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: November 27, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Sophie Mailley, Frédéric Sanchette, Stéphanie Thollon, Fabrice Emieux
  • Patent number: 8318385
    Abstract: Disclosed are processes for producing a fuel cell electrode and a membrane electrode assembly. In one preferred embodiment, the process comprises (a) preparing a suspension of catalyst particles dispersed in a liquid medium containing a polymer dissolved or dispersed therein; (b) dispensing the suspension onto a primary surface of a substrate selected from an electronically conductive catalyst-backing layer (gas diffuser plate) or a solid electrolyte membrane; and (c) removing the liquid medium to form the electrode that is connected to or integral with the substrate, wherein the polymer is both ion-conductive and electron-conductive with an electronic conductivity no less than 10?4 S/cm and ionic conductivity no less than 10?5 S/cm and the polymer forms a coating in physical contact with the catalyst particles or coated on the catalyst particles.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: November 27, 2012
    Assignee: Nanotek Instruments, Inc.
    Inventors: Bor Z. Jang, Aruna Zhamu, Jiusheng Guo
  • Patent number: 8309218
    Abstract: Components for the manufacture of polymer electrolyte membrane fuel cells are provided, as well as apparatus and automatable methods for their manufacture by rotary die cutting and by lamination of various layers to form membrane electrode assemblies. A method and apparatus for performing the method are provided comprising die-cutting webs of catalyst decal materials or electrode materials to make first and second workpieces at first and second rotary die stations; holding the die-cut workpieces by action of sub-ambient air pressure to an endless perforated belt of first and second vacuum conveyors, typically before they are fully cut from the first and second webs; transporting first and second workpieces to opposing sides of a membrane in a laminating station; concurrently feeding the first and second workpieces into the laminating nip adjacent to the membrane, and laminating the first and second workpieces to the membrane.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 13, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Scott Alan Ripley, Donald Ivan Hirsch, William Frederic Bader
  • Patent number: 8309269
    Abstract: A fuel cell of the present invention includes a membrane-electrode assembly (10), an anode separator (20), and a cathode separator (30). The membrane-electrode assembly (10) includes: a polymer electrolyte membrane (1); a first anode catalyst layer (2A) and an anode gas diffusion layer (4) sequentially stacked on one of main surfaces of the polymer electrolyte membrane (1); a second anode catalyst layer (2B) disposed between the polymer electrolyte membrane (1) and the first anode catalyst layer (2A); and a cathode catalyst layer (3) and a cathode gas diffusion layer (5) sequentially stacked on the other main surface of the polymer electrolyte membrane (1). The second anode catalyst layer (2B) contains a catalyst which adsorbs a sulfur compound.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 13, 2012
    Assignee: Panasonic Corporation
    Inventors: Haruhiko Shintani, Atsushi Nogi, Miho Gemba, Takashi Nakagawa, Yoichiro Tsuji
  • Publication number: 20120270138
    Abstract: A membrane-electrode assembly having catalyst layers containing an electrode catalyst disposed on the both sides of an electrolyte membrane, wherein at least one of the above-described catalyst layers contains a non-precious metal electrode catalyst and an ionomer having an ion exchange capacity of 1.2 meq/g or more.
    Type: Application
    Filed: November 15, 2010
    Publication date: October 25, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Nobuyoshi Koshino, Toru Onodera
  • Publication number: 20120270139
    Abstract: A cathode material for a fuel cell, the cathode material including a first metal oxide having a perovskite crystal structure, and a second metal oxide including cerium and at least two lanthanide elements, the lanthanide elements having an average ionic radius of about 0.90 to about 1.02 ?.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 25, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hee-jung PARK, Chan KWAK
  • Patent number: 8288054
    Abstract: A membrane electrode assembly includes an anode, a cathode, a membrane disposed between the anode and the cathode, wherein at least one of the anode, cathode and membrane contains a hydrocarbon ionomer, and an electrode catalyst disposed in at least one of the anode and the cathode, wherein the catalyst is a metal alloy catalyst.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: October 16, 2012
    Assignee: UTC Power Corporation
    Inventors: Sathya Motupally, Ned Cipollini, Lesia Protsailo, Andrew Haug, Tommy Skiba, Chi-Hum Paik
  • Patent number: 8247130
    Abstract: A hydrogen electrode constituted of a mixed phase composed of an oxide sinter having particles of at least one member selected from Ni, Co, Fe, and Cu on a surface part thereof and coated wholly or partly with a film having mixed conductivity and a sinter having ionic conductivity is formed on a surface of an electrolyte having oxygen ion conductivity.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: August 21, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Norikazu Osada, Takayuki Fukasawa, Keizo Shimamura
  • Patent number: 8236462
    Abstract: An electrode catalyst for a fuel cell, which has improved performance compared with conventional platinum alloy catalysts, a method for producing the electrode catalyst, and a polymer electrolyte fuel cell using the electrode catalyst are provided. The electrode catalyst for a fuel cell comprises a noble-metal-non-precious metal alloy that has a core-shell structure supported on a conductive carrier. The composition of the catalyst components of the shell is such that the amount of the noble metal is greater than or equal to the amount of the non-precious metal.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 7, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukiyoshi Ueno, Tetsuo Nagami, Tetsuya Shoji
  • Publication number: 20120183878
    Abstract: The present invention provides an electrode catalyst layer and a manufacturing method thereof, wherein the electrode catalyst layer contains an oxide type of non-platinum catalyst as the catalyst and enables a fuel cell employing the electrode catalyst layer to achieve a high level of power generation performance, as well as an MEA and the fuel cell which employ the electrode catalyst layer. The manufacturing method of the electrode catalyst layer of the present invention includes preparing a “catalyst provided with electrical conductivity on the surface”. In addition, the manufacturing method may further include preparing a catalyst ink, in which the “catalyst provided with electrical conductivity on the surface”, carbon particles and a polymer electrolyte are dispersed in a solvent, and coating the catalyst ink to form the electrode catalyst layer.
    Type: Application
    Filed: March 27, 2012
    Publication date: July 19, 2012
    Inventors: Saori Okada, Haruna Kurata, Hiroyuki Morioka, Kenichiro Oota
  • Patent number: 8221934
    Abstract: A fuel cell component includes an electrode support material made with nanofiber materials of Titania and ionomer. A bipolar plate stainless steel substrate and a carbon-containing layer doped with a metal selected from the group consisting of platinum, iridium, ruthenium, gold, palladium, and combinations thereof.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: July 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Youssef M. Mikhail, Mahmoud H. Abd Elhamid, Gayatri Vyas Dadheech
  • Patent number: 8216739
    Abstract: A support wafer made of silicon wafer comprising, on a first surface a porous silicon layer having protrusions, porous silicon pillars extending from the porous silicon layer to the second surface of the wafer, in front of each protrusion. Layers constituting a fuel cell can be formed on the support wafer.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: July 10, 2012
    Assignee: STMicroelectronics S.A.
    Inventor: Sébastien Kouassi
  • Publication number: 20120156589
    Abstract: An electrode catalyst for a fuel cell with excellent durability, a manufacturing method thereof, and a fuel cell using the same. The electrode catalyst for the fuel cell includes a carbon support, a metal catalyst material supported by the carbon support, and a benzimidazole-based or benzotriazole-based compound.
    Type: Application
    Filed: August 2, 2011
    Publication date: June 21, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Suk-gi HONG, Chan-ho Pak
  • Patent number: 8202669
    Abstract: A precursor electro-catalyst composition for producing a fuel cell electrode. The precursor composition comprises (a) a molecular metal precursor dissolved or dispersed in a liquid medium and (b) a polymer dissolved or dispersed in the liquid medium, wherein the polymer is both ion-conductive and electron-conductive with an electronic conductivity no less than 10?4 S/cm (preferably greater than 10?2 S/cm) and ionic conductivity no less than 10?5 S/cm (preferably greater than 10?3 S/cm). Also disclosed is an electro-catalyst composition derived from this precursor composition, wherein the molecular metal precursor is converted by heat and/or energy beam to form nanometer-scaled catalyst particles and the polymer forms a matrix that is in physical contact with the catalyst particles, coated on the catalyst particles, and/or surrounding the catalyst particles as a dispersing matrix with the catalyst particles dispersed therein when the liquid is removed.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: June 19, 2012
    Assignee: Nanotek Instruments, Inc.
    Inventors: Bor Z. Jang, Aruna Zhamu, Jiusheng Guo
  • Patent number: 8173307
    Abstract: A metal-air fuel cell has electrodes including a cathode and an anode, current pickups provided for each of said electrodes for taking currents from a respective one of the electrode, wherein at least one of the electrodes being formed as a frameless box-shaped element, wherein additional hydrogen electrode, an electrolyte container, and a power source are provided.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: May 8, 2012
    Assignee: Altek Capital, Inc
    Inventor: Evgeny B. Kulakov
  • Patent number: 8163437
    Abstract: A molten carbonate fuel cell anode comprising a porous anode body, which comprises a nickel-based alloy and at least one ceramic additive dispersed throughout the anode body. The amount of the ceramic additive in the anode body is between 5 and 50% by volume. The nickel-based alloy is Ni—Cr or Ni—Al, and the ceramic additive is one of CeO2, yttrium doped ceria, yttrium doped zirconia, TiO2, Li2TiO3, LiAlO2 and La0.8Sr0.2CoO3.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: April 24, 2012
    Assignee: FuelCell Energy, Inc.
    Inventors: Abdelkader Hilmi, Chao-Yi Yuh, Mohammad Farooque
  • Publication number: 20120045704
    Abstract: The present invention provides a proton exchange membrane and a membrane electrode assembly for an electrochemical fuel cell. A catalytically active component is disposed within the membrane electrode assembly. The catalytically active component comprises particles of cobalt cations and boron stabilized silicon oxide. The present invention also provides for a process for increasing peroxide radical resistance in a membrane electrode that includes the introduction of the catalytically active component described into a membrane electrode assembly.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 23, 2012
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventor: BISWAJIT CHOUDHURY
  • Publication number: 20120028165
    Abstract: A composite including a metal having oxygen-reducing activity, nitrogen and carbon, the composite comprising polyhedral particles, an electrode catalyst including the composite, a method of preparing the composite, and a fuel cell using the composite.
    Type: Application
    Filed: July 19, 2011
    Publication date: February 2, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kang-hee LEE, Chan-ho Pak, Kyo-sung Park, Seon-ah Jin, Kyung-jung Kwon, Dae-jong Yoo
  • Publication number: 20120021333
    Abstract: The disclosure provides a porous metal substrate structure with high gas permeability and redox stability for a SOFC and the fabrication process thereof, the porous metal substrate structure comprising: a porous metal plate composed of first metal particles; and a porous metal film composed of second metal particles and formed on the porous metal plate; wherein the porous metal plate has a thickness more than the porous metal film, and the first metal particle has a size more than the second metal particle. Further, a porous shell containing Fe is formed on the surface of each metal particle by impregnating a solution containing Fe in a high temperature sintering process of reducing or vacuum atmosphere, and the oxidation and reduction processes. The substrate uses the porous shells containing Fe particles to absorb the leakage oxygen.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 26, 2012
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Chang-Sing Hwang, Chun-Huang Tsai, Jen-Feng Yu, Chun-Liang Chang, Jun-Meng Lin, Shih-Wei Cheng
  • Patent number: 8071259
    Abstract: Nanoparticles which contain noble metals alone or noble metals in combination with base metals. The nanoparticles are embedded in an aqueous solution of a temporary stabilizer based on a polysaccharide.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: December 6, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Karl-Anton Starz, Dan Goia, Joachim Koehler, Volker Bänisch
  • Patent number: 8057951
    Abstract: Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: November 15, 2011
    Assignee: Ohio University
    Inventors: Matthew Ellis Cooper, David J. Bayless, Jason P. Trembly
  • Patent number: 8053135
    Abstract: A microporous thin film, a method of forming the same and a fuel cell including the microporous thin film, are provided. The microporous thin film includes uniform nanoparticles and has a porosity of at least about 20%. Therefore, the microporous thin film can be efficiently used in various applications such as fuel cells, primary and secondary batteries, adsorbents, and hydrogen storage alloys. The microporous thin film is formed on a substrate, includes metal nanoparticles, and has a microporous structure with porosity of 20% or more.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: November 8, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyuk Chang, Ji-rae Kim
  • Patent number: 8039175
    Abstract: The present invention provides a method for producing a multilayer structure, comprising the steps of: providing a composition comprising a Fe—Cr alloy powder and at least one of the oxides of Fe, Cr, Ni, Co, Zn, Cu; forming a first layer of said composition; forming at least one additional layer on one side of said first layer; heat treating said layers in an oxygen-containing atmosphere; and sintering in a reducing atmosphere so as to provide a final alloy, wherein the amount of Fe in the final alloy of the first layer after the sintering step is in the range of from about 50-90% by weight, based on the total weight of the final alloy.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: October 18, 2011
    Assignee: Technical University of Denmark
    Inventors: Søren Linderoth, Peter Halvor Larsen
  • Patent number: 8026014
    Abstract: A reduced cost solid oxide fuel cell having enhanced surface exchange rates and diffusivity of oxide ions is provided. The invention cell includes a first porous electrode and a second porous electrode, where the porous electrodes have a layer of electronically conductive porous non-precious metal, and the porous non-precious metal layer is a gas diffusion layer. The porous electrodes further include at least one atomic layer of catalytic metal deposited on the non-precious metal layer, and an electrolyte layer disposed between the first porous electrode and the second porous electrode. The electrolyte layer includes a first dense ion-conductive doped oxide film layer, and a second dense ion-conductive doped oxide film layer deposited on the first doped oxide film layer, where the catalytic metal layer on the conductive porous non-metal layer enhances surface exchange rates and diffusivity of the oxide ions, thus the material costs of the fuel cell are reduced.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: September 27, 2011
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd
    Inventors: Joon Hyung Shim, Hong Huang, Masayuki Sugawara, Friedrich B. Prinz
  • Patent number: 8021799
    Abstract: The embodiments generally relate to a high performance ceramic anode which will increase flexibility in the types of fuels that may be used with the anode. The embodiments further relate to high-performance, direct-oxidation SOFC utilizing the anodes, providing improved electro-catalytic activity and redox stability. The SOFCs are capable of use with strategic fuels and other hydrocarbon fuels. Also provided are methods of making the high-performance anodes and solid oxide fuel cells comprising the anodes exhibiting improved electronic conductivity and electrochemical activity.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 20, 2011
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Raymond J. Gorte, John M. Vohs, Michael D. Gross
  • Publication number: 20110183234
    Abstract: The invention has an object of providing catalysts that are not corroded in acidic electrolytes or at high potential, have excellent durability and show high oxygen reducing ability. An aspect of the invention is directed to a process wherein metal carbonitride mixture particles or metal oxycarbonitride mixture particles are produced from an organometallic compound of a Group IV or V transition metal, a metal salt of a Group IV or V transition metal, or a mixture of these compounds using laser light as a light source.
    Type: Application
    Filed: October 6, 2009
    Publication date: July 28, 2011
    Inventors: Yasuaki Wakizaka, Toshikazu Shishikura
  • Patent number: 7972988
    Abstract: Noble metal catalysts and methods for producing the catalysts are provided. The catalysts are useful in applications such as fuel cells. The catalysts exhibit reduced agglomeration of catalyst particles as compared to conventional noble metal catalysts.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: July 5, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Kostantinos Kourtakis
  • Patent number: 7955756
    Abstract: The cathode catalyst for a fuel cell of the present invention includes A-S—B, where A is selected from the group consisting of Ru, Rh, and combinations thereof, and B is selected from the group consisting of Se, Te, and combinations thereof.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: June 7, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Alexey Alexandrovichserov
  • Patent number: 7951281
    Abstract: Described herein are methods for diminishing or preventing in electrochemical operating systems the deposition of a metal oxide on an electrode surface. The metal oxide is formed by electrochemically assisted reduction of volatile metal oxides formed from a metallic component exposed to oxidative environments. In one example, described herein are methods for diminishing or preventing poisoning of a cathode by applying a negative protection potential to the metallic component. In another example, described herein are methods for diminishing or preventing the deposition of a metal oxide on a cathode surface by removing oxygen from the metallic component itself and thereby decreasing the amount of released volatile oxide from the metallic component by use of an auxiliary oxygen pump cell.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: May 31, 2011
    Assignee: Corning Incorporated
    Inventor: Monika Backhaus-Ricoult
  • Patent number: 7931998
    Abstract: A catalyst for a fuel cell includes platinum. The catalyst has an oxide reduction potential (ORP) that is not less than 430 mV. The ORP is estimated by a cyclic voltammetry test using a saturation calomel electrode.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: April 26, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Kyu-Woong Cho
  • Patent number: 7927748
    Abstract: A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 19, 2011
    Assignee: Uchicago Argonne, LLC
    Inventors: Di-Jia Liu, Junbing Yang, Xiaoping Wang
  • Patent number: 7901837
    Abstract: The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: March 8, 2011
    Assignee: The Regents of the University of California
    Inventors: Craig P. Jacobson, Steven J. Visco, Lutgard C. De Jonghe
  • Patent number: 7901835
    Abstract: A platinum alloy catalyst can be used as a fuel cell catalyst. The platinum alloy is a PtAuX alloy wherein X is one or more metals chosen from the group consisting of transition metals, and wherein the alloy contains 40-97% Pt, 1-40% Au and 2-20% X. Electrodes, catalysed membranes and membrane electrode assemblies comprising the catalyst are also disclosed.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: March 8, 2011
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Brian Elliott Hayden, Christopher Edward Lee, Claire Mormiche, David Thompsett
  • Publication number: 20110039184
    Abstract: A carbon nanosphere has at least one opening. The carbon nanosphere is obtained by preparing a carbon nanosphere and treating it with an acid to form the opening. The carbon nanosphere with at least one opening has higher utilization of a surface area and electrical conductivity and lower mass transfer resistance than a conventional carbon nanotube, thus allowing for higher current density and cell voltage with a smaller amount of metal catalyst per unit area of a fuel cell electrode.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Hyuk CHANG, Chan-ho PAK, Jian Nong WANG
  • Patent number: 7887972
    Abstract: A cathode catalyst for a fuel cell includes an Ru—Se alloy having an average particle size of less than or equal to 6 nm. The Ru—Se alloy is amorphous catalyst. A membrane electrode assembly and a fuel cell system include the cathode catalyst. A catalyst for a fuel cell is prepared by drying a ruthenium solution including a water-soluble ruthenium precursor to obtain a first dried product; subjecting the first dried product to a first heat-treatment to obtain a heat-treated product; adding an Se solution including a water-soluble Se precursor to the heat-treated product to obtain a mixture; drying the mixture to obtain a second dried product including ruthenium and Se; and subjecting the second dried product to second heat-treatment.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: February 15, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Alexey Alexandrovichserov, Chan Kwak, Ho-Jin Kweon, Si-Hyun Lee
  • Publication number: 20110027689
    Abstract: Silver-copper-zinc compositions are employed as catalysts, e.g., for fuel cell and/or electrolyzer applications. These compositions have been experimentally tested in solid oxide fuel cell and proton exchange membrane fuel cell configurations. Such catalysts can be effective for both the anode and cathode half-reactions. A preferred composition range is AgxCuyZnz, where 0?x?0.1, 0.2?y?0.5, and 0.5?z?0.8.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 3, 2011
    Inventors: Timothy P. Holme, Friedrich B. Prinz
  • Patent number: 7875569
    Abstract: A supported catalyst includes a carbonaceous catalyst support and first metal-second metal alloy catalyst particles adsorbed on the surface of the carbonaceous catalyst support, wherein the difference between a D10 value and a D90 value is in the range of 0.1 to 10 nm, wherein the D10 value is a mean diameter of a randomly selected 10 wt % of the first metal-second metal alloy catalyst particles and the D90 value is a mean diameter of a randomly selected 90 wt % of the alloy catalyst particles. The supported catalyst has excellent membrane efficiency in electrodes for fuel cells due to uniform alloy composition of a catalyst particle and supported catalysts that do not agglomerate.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: January 25, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Victor Roev, Sang-hyuk Suh, Kyung-jung Kwon, Hae-kyoung Kim
  • Patent number: 7875394
    Abstract: A proton exchange membrane fuel cell comprises an cathodic compartment including a cathode, an oxidant consisting of oxygen and at least one enzyme catalyst, an anodic compartment comprising an anode, a fuel and at least one catalyst. The anodic and cathodic compartments are arranged at either end of the membrane. The cell is characterized in that the enzyme catalyst of the anodic compartment is an oxidoreductase type enzyme capable of catalyzing the reduction of oxygen into hydrogen peroxide and the hydrogen peroxide is a direct receptor of the electrons from the cathode.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: January 25, 2011
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique
    Inventors: Damien Feron, Alain Bergel
  • Publication number: 20100323274
    Abstract: This invention provides a fuel cell electrode catalyst in which at least one transition metal element and at least one chalcogen element are supported on a conductive support, wherein the fuel cell electrode catalyst comprises a core portion comprising a transition metal crystal and a shell portion comprising surface atoms of the transition metal crystal particle and chalcogen elements coordinating to the surface atoms, and the outer circumference of the core portion is being partially covered with the shell portion. The fuel cell electrode catalyst has a high level of oxygen reduction performance, high activity as a fuel cell catalyst and comprises a transition metal element and a chalcogen element.
    Type: Application
    Filed: July 9, 2008
    Publication date: December 23, 2010
    Inventors: Yukiyoshi Ueno, Hirofumi Iisaka