Polymeric Material (e.g., Proton Exchange Membrane (pem), Etc.) Patents (Class 429/492)
  • Publication number: 20130288157
    Abstract: An anion exchange composite membrane is filled with crosslinked polymer electrolytes for fuel cells.
    Type: Application
    Filed: August 17, 2012
    Publication date: October 31, 2013
    Inventors: Young Woo Choi, Mi Soon Lee, Tae Hyun Yang, Chang Soo Kim, Young Gi Yoon, Seok Hee Park, Sung Dae Yim, Gu Gon Park, Young Jun Sohn, Minjin Kim, Byungchan Bae
  • Publication number: 20130280626
    Abstract: An anion conducting electrolyte membrane with high performance where the electric conductivity and the water uptake are balanced, and a method of manufacturing the same are disclosed. The anion conducting electrolyte membrane comprises: a polymeric material which consists of fluorine polymer, olefinic polymer, or aromatic polymer; weak base quaternary salt obtained by the reaction of grafts introduced by graft polymerizing vinyl monomer which contains halogenated alkyl groups using radiation and strong organic bases.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 24, 2013
    Inventors: Kimio YOSHIMURA, Hiroshi KOSHIKAWA, Tetsuya YAMAKI, Masaharu ASANO, Yasunari MAEKAWA, Hideyuki SHISHITANI, Hirohisa TANAKA, Susumu YAMAGUCHI, Koichiro ASAZAWA, Kazuya YAMAMOTO, Fumihiro SANPEI
  • Publication number: 20130280642
    Abstract: A method of manufacturing a proton conducting fuel cell composite membrane includes the step of electrospinning a non-charged polymeric material, such as PVDF and PSF, into fiber mats. The fibers are fused to one another to provide a welded porous mat. The welded porous mat is filled with proton conducting electrolyte, such as PFSA polymer, to generate a proton conducting composite membrane. The resulting proton conducting fuel cell membrane comprises a randomly oriented, three dimensional interlinked fiber lattice structure filled with proton conducting electrolyte, such as PFSA polymer.
    Type: Application
    Filed: January 19, 2011
    Publication date: October 24, 2013
    Applicant: UTC POWER CORPROATION
    Inventors: Mallika Gummalla, Zhiwei Yang, Peter Pintauro, Kyung Min Lee, Ryszard Wycisk
  • Publication number: 20130280636
    Abstract: Disclosed are an electrode for a fuel cell, a method of preparing the fuel cell electrode, a membrane-electrode assembly including the fuel cell electrode, and a fuel cell system including the fuel cell electrode. The electrode includes an electrode substrate having a conductive substrate and a layer-by-layer assembled multi-layer disposed on a side of the conductive substrate and a bilayer including a polymer electrolyte or a conductive nanoparticle, and a catalyst layer disposed on the electrode substrate.
    Type: Application
    Filed: August 3, 2012
    Publication date: October 24, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Jun-Young KIM, Myoung-Ki MIN, Kah-Young SONG, Hee-Tak KIM
  • Publication number: 20130280640
    Abstract: An example fuel cell system includes a fuel cell power plant and a tank providing a volume that is configured to hold a fuel cell fluid. The fuel cell power plant is at least partially disposed within the volume.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Inventor: Jonathan Daniel O'Neill
  • Publication number: 20130280641
    Abstract: The present invention relates to a method for coating fluoropolymers with a coating substance, by atom transfer radical polymerisation and subsequent processing whereas a fluoropolymer is contacted with a reaction mixture comprising at least one ligand selected from the group consisting of multichained and polycyclic amines, at least one metal salt wherein the metal is in a first oxidation state, at least one solvent, and the organic coating substance in monomer form.
    Type: Application
    Filed: February 5, 2010
    Publication date: October 24, 2013
    Applicant: Visitret Displays Ltd.
    Inventor: Jüri Liiy
  • Patent number: 8563194
    Abstract: An electrolyte membrane (1) includes a base material layer (1) containing a hydrocarbon-based electrolyte as a main component, and a surface layer (5) laminated with the base material layer (1). The surface layer (5) is a layer containing, as a main component, a polymeric material having a hydroxyl group and a proton conductive group. The polymeric material that constitutes the surface layer (5) contains, for example, a first polymer having a hydroxyl group, and a second polymer having a proton conductive group. A matrix is formed by cross-linking the first polymer, and the second polymer can be held in the matrix.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: October 22, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Hiroyuki Nishii, Tooru Sugitani, Otoo Yamada, Sakura Toshikawa
  • Patent number: 8563188
    Abstract: A fuel cell system that includes a control system for regulating the power produced by the fuel cell system. The fuel cell system includes a fuel cell stack adapted to produce electrical power from a feed. In some embodiments, the fuel cell system includes a fuel processing assembly adapted to produce the feed for the fuel cell stack from one or more feedstocks. The control system regulates the power produced by the fuel cell system to prevent damage to, and/or failure of, the system.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: October 22, 2013
    Assignee: Idatech, LLC
    Inventors: David J. Edlund, Thomas G. Herron, Craig F. Holmes
  • Patent number: 8562728
    Abstract: The invention relates to a process for preparing proton-conducting clay particles, successively comprising the following steps: a) a step of activating a clay powder, comprising a step in which the said powder is subjected to a gas plasma; b) a grafting step comprising a step of placing the activated powder obtained from step a) in contact with a solution comprising at least one compound comprising at least one group chosen from —PO3H2, —CO2H and —SO3H and salts thereof and comprising at least one group capable of grafting onto the surface of the said powder. Use of these particles for the manufacture of fuel cell membranes.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: October 22, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Hervé Galiano, Magaly Caravanier-Caillon, Philippe Bebin, Patrick Hourquebie, Faïza Bergaya, Fabienne Poncin Epaillard, Fabrice Lafleche
  • Publication number: 20130273450
    Abstract: Provided are a tri-block copolymer and an electrolyte membrane prepared therefrom. The tri-block copolymer has a structure of polar moiety-containing copolymer block/non-polar moiety-containing copolymer block/polar moiety-containing copolymer block, or non-polar moiety-containing copolymer block/polar moiety-containing copolymer block/non-polar moiety-containing copolymer block, and is useful for an electrolyte membrane for fuel cells. The electrolyte membrane for fuel cells prepared from the tri-block copolymer exhibits superior dimensional stability and excellent fuel cell performance.
    Type: Application
    Filed: November 24, 2010
    Publication date: October 17, 2013
    Applicant: LG Chem, Ltd.
    Inventors: Seong Ho Choi, Hyuk Kim, Sang Woo Lee, Tae Geun Noh, Ji Soo Kim
  • Publication number: 20130273455
    Abstract: An electrolyte membrane for solid polymer fuel cell includes a reinforce membrane made of nonwoven fibers and an electrolyte provided in a space among the nonwoven fibers. The nonwoven fibers have a non-uniform mass distribution in a plane of the electrolyte membrane. A mass of the nonwoven fibers per unit area in a region corresponding to at least part of a peripheral portion of a fuel cell-use gasket frame is greater than a mass of the nonwoven fibers per unit area in a region corresponding to a center portion of the gasket frame. The electrolyte membrane for solid polymer fuel cell is attached to the fuel cell-use gasket frame.
    Type: Application
    Filed: November 14, 2011
    Publication date: October 17, 2013
    Inventors: Masahiro Mori, Shinya Kikuzumi, Tsutomu Kawashima, Yasuhiro Ueyama, Kazunori Kubota
  • Patent number: 8557472
    Abstract: There are provided a novel proton-conducting polymer membrane that shows good workability in a fuel cell assembling process and good proton conductivity and durability even under high-temperature, non-humidified conditions, a method for production thereof, and a fuel cell therewith. The proton-conducting polymer membrane includes: a polymer membrane containing a polybenzimidazole compound having a sulfonic acid group and/or a phosphonic acid group; and vinylphosphonic acid contained in the polymer membrane. The fuel cell uses the proton-conducting polymer membrane. The polybenzimidazole compound preferably includes a sulfonic and/or phosphonic acid group-containing component represented by Structural Formula (1): wherein n represents an integer of 1 to 4, R1 represents a tetravalent aromatic linking unit capable of forming an imidazole ring, R2 represents a bivalent aromatic linking unit, and Z represents a sulfonic acid group and/or a phosphonic acid group.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: October 15, 2013
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Fusaki Fujibayashi, Yoshimitsu Sakaguchi, Satoshi Takase
  • Patent number: 8557481
    Abstract: Fuel cell comprising a stack of bipolar plates (1) and polymer films (2), in which the polymer films comprise a lip (3) that overhangs on all sides relative to the adjacent bipolar plates (1).
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: October 15, 2013
    Assignees: Compagnie Generale des Etablissements Michelin, Michelin Recherche et Technique S.A.
    Inventor: David Olsommer
  • Patent number: 8557473
    Abstract: Crosslinked sulfonated triblock copolymers exhibit lower methanol permeability and good physical strength relative to the perfluorinated proton conductive membranes typically used in Direct Methanol Fuel Cells. Examples of triblock copolymers that can be used as fuel cell membranes include SEBS, SIBS, and SEPS. The chemically cross-linked and sulfonated SIBS, SEBS, and SEPS exhibit lower swelling and tolerate higher sulfonation levels than the un-cross-linked counterparts. These copolymers are easily sulfonated using known procedures and can be manufactured at a fraction of the cost of the typical perfluorinated proton conductive membranes.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 15, 2013
    Assignee: Bose Corporation
    Inventor: Agota F. Fehervari
  • Patent number: 8551669
    Abstract: A naphthoxazine benzoxazine-based monomer is represented by Formula 1 below: In Formula 1, R2 and R3 or R3 and R4 are linked to each other to form a group represented by Formula 2 below, and R5 and R6 or R6 and R7 are linked to each other to form a group represented by Formula 2 below, In Formula 2, * represents the bonding position of R2 and R3, R3 and R4, R5 and R6, or R6 and R7 of Formula 1. A polymer is formed by polymerizing the naphthoxazine benzoxazine-based monomer, an electrode for a fuel cell includes the polymer, an electrolyte membrane for a fuel cell includes the polymer, and a fuel cell uses the electrode.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: October 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seongwoo Choi, Jungock Park
  • Patent number: 8552075
    Abstract: A composite proton exchange membrane is made up of dispersed organized graphene in ion conducting polymer as a fuel barrier material. The composite proton exchange membrane includes an inorganic material of 0.001-10 wt % and an organic material of 99.999-90 wt %. The inorganic material is a graphene derivative with two-dimensional structure. The organic material includes a polymer material with sulfonic acid group.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: October 8, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Li-Duan Tsai, Hung-Chung Chien, Yong-Hong Liao
  • Patent number: 8551670
    Abstract: An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: October 8, 2013
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: Cortney K. Mittelsteadt, William A. Braff
  • Publication number: 20130260283
    Abstract: Organic-inorganic hybrid nanofibres comprising two phases: a first mineral phase comprising a structured mesoporous network with open porosity; and a second organic phase comprising an organic polymer, wherein said organic phase is basically not present inside the pores of the structured mesoporous network. A membrane and an electrode comprising said nanofibres. A fuel cell comprising said membrane and/or said electrode. A method of preparing said nanofibres by electrically assisted extrusion (electrospinning).
    Type: Application
    Filed: April 6, 2011
    Publication date: October 3, 2013
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, Commissariat a l'energie atomique et aux energies alternatives, UNIVERSITE PIERRE ET MARIE CURIE (PARIS 6)
    Inventors: Karine Valle, Philippe Belleville, Frank Pereira, Chrystel Laberty, Clément Sanchez, John Bass
  • Patent number: 8546043
    Abstract: This invention provides a method for producing a membrane electrode assembly comprising steps of: preparing a precursor of a membrane electrode assembly wherein a catalyst mixture comprising an electrolyte resin and a catalyst-carrying conductor is applied or placed on an electrolyte membrane; and externally exposing the precursor of the membrane electrode assembly to a superheated medium under oxygen-free or low-oxygen conditions and heating the boundary of the electrolyte membrane and the catalyst mixture in the precursor of the membrane electrode assembly by condensation heat of the superheated medium to fix the catalyst mixture to the electrolyte membrane. This method enables the production of a membrane electrode assembly that is substantially free of boundary and that has a catalyst layer in which a porous and sufficient three-phase boundary is present.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: October 1, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Suzuki
  • Publication number: 20130252135
    Abstract: A Pt—Ru nano-alloy/graphene catalyst comprises graphene as a support, and a Pt—Ru nano-alloy loaded on the graphene. The use of graphene as support for the catalyst takes advantage of the ion effect and tow-dimensional ductility of graphene, which increase the stability of the catalyst. The catalyst is prepared by a reverse micelles system method which provides a micro-environment (i.e. water-in-oil microemulsion), so that the particle size of the resulting nano-alloy particles can be regulated easily and is more uniformly distributed. The use of the catalyst in electrochemistry is also disclosed.
    Type: Application
    Filed: December 29, 2010
    Publication date: September 26, 2013
    Inventors: Mingjie Zhou, Linglong Zhong, Yaobing Wang
  • Publication number: 20130244135
    Abstract: An object of the present invention is to provide a polymer electrolyte membrane meeting power generation properties and physical durability at the same time and having high durability. A polymer electrolyte membrane comprising a microporous membrane and a fluorine-based polymer electrolyte contained in a pore of the microporous membrane, wherein pore distribution of the microporous membrane has a pore distribution with a center of distribution in a pore diameter range of 0.3 ?m to 5.0 ?m, and the fluorine-based polymer electrolyte composition contains a fluorine-based polymer electrolyte (component A) having an ion exchange capacity of 0.5 to 3.0 meq/g.
    Type: Application
    Filed: October 5, 2011
    Publication date: September 19, 2013
    Applicant: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Michiyo Yamane, Naoto Miyake
  • Patent number: 8535849
    Abstract: An electrochemical cell includes an electrolyte membrane containing an ionic conductor. The ionic conductor includes: (a) a cation expressed by one of Formulae (1) and (2): R1R2R3HX+??(1) where, in Formula (1), X indicates any one of N and P, and R1, R2 and R3 each indicate any one of alkyl groups C1 to C18 except a structure in which R1=R2=R3, R1R2HS+??(2) where, in Formula (2), R1 and R2 each indicate any one of alkyl groups C1 to C18 except a structure in which R1=R2; and (b) an anion expressed by Formula (3): R4YOm(OH)n?1O???(3) where, in Formula (3), Y indicates any one of S, C, N and P, R4 indicates any one of an alkyl group and a fluoroalkyl group, and m and n each indicate any one of 1 and 2.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: September 17, 2013
    Assignees: Nissan Motor Co., Ltd., National University Corporation Yokohama National University
    Inventors: Masayoshi Watanabe, Hirofumi Nakamoto, Tomokazu Yamane, Toshihiro Takekawa
  • Publication number: 20130236798
    Abstract: Disclosed is a composite electrolyte membrane for a fuel cell. The composite electrolyte membrane includes a polybenzimidazole-based polymer and a metal-grafted porous structure. The composite electrolyte membrane is doped with phosphoric acid. The metal-containing porous structure is present in an amount of 0.1 to 30% by weight, based on the weight of the polymer. The presence of the metal-containing porous structure allows the fuel cell electrolyte membrane to have excellent thermal properties and high proton conductivity.
    Type: Application
    Filed: October 5, 2010
    Publication date: September 12, 2013
    Applicant: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventors: Haksoo Han, Minsu Jeong, Seung-Hyuk Choi
  • Patent number: 8530110
    Abstract: A lithium-ion secondary battery separator has a porous structure formed by laminating a second polymer layer, a first polymer layer, and a second polymer layer in sequence. The second polymer layer has a melting point lower than that of the first polymer layer. The second polymer layer has a higher molecular part formed on a side in contact with the first polymer layer and a lower molecular part formed on a side farther from the first polymer layer than is the higher molecular part. The higher and lower molecular parts have a weight-average molecular weight ratio (higher molecular part/lower molecular part) of 4 to 19 therebetween.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: September 10, 2013
    Assignee: TDK Corporation
    Inventors: Katsuo Naoi, Kenji Nishizawa, Mitsuo Kougo, Yoshihiko Ohashi, Hidetake Itoh
  • Publication number: 20130230790
    Abstract: Provided are a polymer electrolyte membrane for fuel cells, and a membrane electrode assembly and a fuel cell including the same. More specifically, provided is a polymer electrolyte membrane for fuel cells including a hydrocarbon-based cation exchange resin having hydrogen ion conductivity and fibrous nanoparticles having a hydrophilic group. By using the fibrous nanoparticles having a hydrophilic group in conjunction with the hydrocarbon-based cation exchange resin having hydrogen ion conductivity, it is possible to obtain a polymer electrolyte membrane for fuel cells that exhibits improved gas barrier properties and long-term resistance, without causing deterioration in performance of fuel cells, and a fuel cell including the polymer electrolyte membrane.
    Type: Application
    Filed: December 17, 2010
    Publication date: September 5, 2013
    Applicant: LG CHEM, LTD
    Inventors: Hyuk Kim, Seong Ho Choi, Kyung A. Sung, Sang Woo Lee, Tae Geun Noh, Ji Soo Kim
  • Patent number: 8524415
    Abstract: A high surface area support material is formed of an intimate mixture of carbon clusters and titanium oxide clusters. A catalytic metal, such as platinum, is deposited on the support particles and the catalyzed material used as an electrocatalyst in an electrochemical cell such as a PEM fuel cell. The composite material is prepared by thermal decomposition and oxidation of an intimate mixture of a precursor carbon polymer, a titanium alkoxide and a surfactant that serves as a molecular template for the mixed precursors.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: September 3, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Mei Cai, Suresh K. Donthu, Martin S. Ruthkosky, Ion C. Halalay
  • Publication number: 20130224609
    Abstract: An electrolyte including a lithium ion conductive polymer, a lithium salt, and an ionic liquid including an anion represented by Formula 1 below: wherein, in Formula 1 above, R1 and R2 are defined herein.
    Type: Application
    Filed: November 9, 2012
    Publication date: August 29, 2013
    Applicants: NATIONAL UNIVERSITY CORPORATION MIE UNIVERSITY, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: SAMSUNG ELECTRONICS CO., LTD., National University Corporation Mie University
  • Publication number: 20130224624
    Abstract: The present invention is directed to proton exchange membranes such as for use in fuel cells. In one embodiment, a polyetherquinoxaline is obtained by reaction between a haloquinoxaline and at least one diol, which forms a repeating unit including an ether linkage. The polyetherquinoxaline is suitable for use in a proton exchange membrane, which can be used in a fuel cell.
    Type: Application
    Filed: March 20, 2013
    Publication date: August 29, 2013
    Applicants: Reno
    Inventor: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
  • Patent number: 8518594
    Abstract: A power cell comprises a membrane with a first side and a second side. The membrane has a geometric structure encompassing a volume. The power cell also has a cover that is coupled to the membrane to separate the first flow path from the second flow path at the membrane. In the power cell, first and second catalyst is in gaseous communication with respective first flow path and second flow path and in ionic communication with respective first and second sides of the membrane. Furthermore, a first electrode is electrically coupled to the first catalyst on the first side of the membrane, and a second electrode is electrically coupled to the second catalyst on the second side of the membrane. In another embodiment, the power cell further includes a substrate on which the membrane is coupled.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: August 27, 2013
    Assignee: Encite, LLC
    Inventor: Stephen A. Marsh
  • Patent number: 8519074
    Abstract: Polymers including pendent hydrophobic groups and pendent proton transfer groups are shown to form nanostructured films exhibiting greatly increased proton conductivity compared with films prepared from corresponding polymers lacking hydrophobic groups. The polymers can include repeating units each of which has both a hydrophobic group and a proton transfer group. Alternatively, the polymers can be the product of copolymerizing a first monomer with at least one hydrophobic group and a second monomer with at least one proton transfer group. The polymers are useful for the preparation of fuel cell proton exchange membranes.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: August 27, 2013
    Assignee: The University of Massachusettes
    Inventors: Sankaran Thayumanavan, Mark Tuominen, Ryan Hayward
  • Patent number: 8518597
    Abstract: The present invention provides a catalytic layer-electrolytic membrane laminate for an unhumidified-type fuel cell, comprising an electrolytic membrane containing a strong acid; a conductive layer formed on one surface or both surfaces of the electrolytic membrane; and a catalytic layer formed on the conductive layer; wherein the conductive layer is formed of a fluorine-containing resin and carbon powder, and the conductive layer is thinner than the electrolytic membrane. The present invention provides a catalytic layer-electrolytic membrane laminate for an unhumidified-type fuel cell that can be practically used.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: August 27, 2013
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventor: Masashi Hiromitsu
  • Publication number: 20130216936
    Abstract: A method of producing an alkaline single ion conductor with high conductivity includes: a) providing a hydrocarbon oligomer or polymer having immobilized acidic substituent groups selected from the group consisting of a sulfonic acid group, sulfamide group, a phosphonic acid group, or a carboxy group, in its alkaline ion form wherein at least a part of the acidic protons of the substituent groups have been exchanged against alkali cations, and b) solvating the hydro-carbon oligomer or polymer of step a) in an aprotic polar solvent for a sufficient time to effect a solvent uptake of at least 5% by weight and to obtain a solvated product, wherein the molar ratio of solvent/alkaline cation is 1:1 to 10,000:1, and which solvated product has a conductivity of at least 10?5 S/cm at room temperature (24° C.).
    Type: Application
    Filed: November 2, 2011
    Publication date: August 22, 2013
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Annette Fuchs, Klaus-Dieter Kreuer, Joachim Maier, Andreas Wohlfarth
  • Publication number: 20130216935
    Abstract: Provided is poly(benzimidazole-co-benzoxazole) having polybenzimidazole to which benzoxazole units are introduced, as a polymer electrolyte material. The polymer electrolyte material has both high proton conductivity and excellent mechanical properties even when it is obtained by in-situ phosphoric acid doping. The polymer electrolyte material may substitute for the conventional phosphoric acid-doped polybenzimidazole in a polymer electrolyte membrane fuel cell, particularly in a high-temperature polymer electrolyte membrane fuel cell.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 22, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Korea Institute Of Science And Technology
  • Patent number: 8512909
    Abstract: A laminated electrolyte membrane, a membrane electrode assembly including the laminated electrolyte membrane, and a method of preparing the laminated electrolyte membrane, the laminate electrolyte membrane comprising at least two polymer membranes that are laminated together, and an electrolytic polymer obtained by polymerizing a monomer having a polymerizable functional group and a proton dissociable functional group.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: August 20, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Satoshi Yanase
  • Publication number: 20130209914
    Abstract: Disclosed is a fluororesin-coated polymer film for reinforcing a polymer electrolyte membrane, wherein the fluororesin-coated polymer film is fabricated by forming on at least one side of a polymer film a coating of a reaction product of (A) a fluorine-containing copolymer composed of a fluoroolefin, a cyclohexyl group-containing acrylic ester, and a hydroxyl group-containing vinyl ether, and (B) a crosslinking agent having two or more isocyanate groups. The polymer film according to the present invention not only exhibits sufficiently high initial adhesion strength, with respect to the polymer electrolyte membrane, but also retains thereafter high adhesion strength in actual operating environments.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: W. L. Gore & Associates, Co., Ltd.
    Inventor: W. L. Gore & Associates, Co., Ltd.
  • Patent number: 8507147
    Abstract: A cell of a fuel cell comprises an anode, a cathode, and between the cathode and the anode, a layer of ceramic including activated boron nitride.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: August 13, 2013
    Assignee: Ceram Hyd
    Inventor: Arash Mofakhami
  • Patent number: 8507148
    Abstract: A benzoxazine-based monomer includes a halogen atom-containing functional group and a nitrogen-containing heterocyclic group. A polymer formed from the benzoxazine-based monomer may be used in an electrode for a fuel cell and electrolyte membrane for a fuel cell.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seongwoo Choi, Jungock Park
  • Patent number: 8507146
    Abstract: The present invention discloses a membrane for polymer electrolyte fuel cell, which comprises a hydrocarbon cation exchange resin membrane wherein a cation exchange group is covalently bonded to a hydrocarbon resin, and an adhesive layer formed on at least one side of the hydrocarbon cation exchange resin membrane, wherein the adhesive layer is made of a hydrocarbon cation exchange resin having a Young's modulus of 1 to 300 MPa and a solubility of less than 1% by mass in water of 20° C.; and a membrane-electrode assembly which is obtained by forming a catalyst electrode layer on at least one side of the above-mentioned membrane for polymer electrolyte fuel cell.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 13, 2013
    Assignee: Tokuyama Corporation
    Inventors: Kazuyuki Sadasue, Kenji Fukuta
  • Publication number: 20130202987
    Abstract: A multilayer polyelectrolyte membrane for fuel cell applications includes a first perfluorocyclobutyl-containing layer that includes a polymer having perfluorocyclobutyl moieties. The first layer is characteristically planar having a first major side and a second major side over which additional layers are disposed. The membrane also includes a first PFSA layer disposed over the first major side of the first layer and a second PFSA layer disposed over the second major side of the first layer.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, LLC
    Inventors: Lijun Zou, Scott C. Moose, Timothy J. Fuller
  • Patent number: 8501369
    Abstract: The invention relates to proton-conducting composites comprising a polymer matrix within which inorganic particles are dispersed, grafted to the surface of which particles are polymers comprising repeat units that comprise at least one acid proton-exchange group, optionally in the form of salts, or a precursor group of said acid group, said particles being chosen from particles of zeolites, of zirconium phosphates or phosphonates, or of oxides. Application to the field of fuel cells.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: August 6, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Frédérick Niepceron, Hervé Galiano, Jean-François Tassin
  • Publication number: 20130196251
    Abstract: Hybrid membranes based on crystalline titanium dioxide containing fluorine atoms within the crystalline lattice comprising atoms of titanium and oxygen are described; these hybrid membranes are particularly suitable for the production of fuel cells and electrolysers. The titanium dioxide contained in them may be produced by a process comprising the following stages: (a) a titanium ore is reacted with a NH4HF2 aqueous solution of; (b) the aqueous dispersion so obtained is filtered with subsequent separation of a solid residue and an aqueous solution containing titanium salts; (c) the aqueous solution so obtained is subjected to hydrolysis, said hydrolysis comprising a first stage at pH 6.5-8.0 and a second stage at pH 9-11; (d) the aqueous dispersion thus obtained is filtered and the solid residue is subjected to pyrohydrolysis at a maximum temperature of approximately 500° C., preferably approximately 450° C.
    Type: Application
    Filed: July 21, 2011
    Publication date: August 1, 2013
    Applicant: BRETON SPA
    Inventors: Vito Di Noto, Nicola Boaretto, Enrico Negro, Mauro Bettiol, Fabio Bassetto
  • Publication number: 20130196248
    Abstract: A compound including a cage-type structure of silsesquioxane wherein a group represented by Formula 1 or a salt thereof is directly linked to at least one silicon atom of the silsesquioxane, a composition including the compound, a composite formed therefrom, electrodes and an electrolyte membrane that include the composite, a method of preparing the compound, and a fuel cell including the electrodes and the electrolyte membrane. wherein in Formula 1, n is 1 or 2.
    Type: Application
    Filed: January 23, 2013
    Publication date: August 1, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8492050
    Abstract: A polymer electrolyte membrane (PEM) for fuel cells is provided, as well as a method for manufacturing the PEM by direct casting on the fuel cells electrodes. The PEM, consisting of an ionic liquid entrapped within polysiloxane-RTV matrix, is stable at high temperatures, in acidic and basic environments, and exhibits a high conductivity, without the crossover of methanol.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: July 23, 2013
    Assignee: Ben Gurion University of the Negev Research & Development Authority
    Inventors: Eli Korin, Armand Bettelheim
  • Publication number: 20130183603
    Abstract: The present invention relates to a novel proton-conducting polymer membrane based on polyazole polymers which, owing to their outstanding chemical and thermal properties, can be used widely and are suitable in particular as polymer electrolyte membrane (PEM) for producing membrane electrode assemblies or so-called PEM fuel cells.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 18, 2013
    Inventor: BASF SE
  • Publication number: 20130183602
    Abstract: The present invention relates to a novel proton-conducting polymer membrane based on polyazole polymers which, owing to their outstanding chemical and thermal properties, can be used widely and are suitable in particular as polymer electrolyte membrane (PEM) for producing membrane electrode assemblies or so-called PEM fuel cells.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 18, 2013
    Applicant: BASF SE
    Inventor: BASF SE
  • Patent number: 8486280
    Abstract: The present invention provides a method of forming a nanostructured surface (NSS) on a polymer electrolyte membrane (PEM) of a membrane electrode assembly (MEA) for a fuel cell, in which a nanostructured surface is suitably formed on a polymer electrolyte membrane by plasma treatment during plasma assisted etching in a plasma-assisted chemical vapor deposition (PACVD) chamber, where catalyst particles or a catalyst layer are directly deposited on the surface of the polymer electrolyte membrane having the nanostructured surface.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: July 16, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Kwang Ryeol Lee, Myoung Woon Moon, Sae Hoon Kim, Byung Ki Ahn
  • Patent number: 8486579
    Abstract: The present invention relates to a polymer blend proton exchange membrane comprising a soluble polymer and a sulfonated polymer, wherein the soluble polymer is at least one polymer selected from the group consisting of polysulfone, polyethersulfone and polyvinylidene fluoride, the sulfonated polymer is at least one polymer selected from the group consisting of sulfonated poly(ether-ether-ketone), sulfonated poly(ether-ketone-ether-ketone-ketone), sulfonated poly(phthalazinone ether ketone), sulfonated phenolphthalein poly (ether sulfone), sulfonated polyimides, sulfonated polyphosphazene and sulfonated polybenzimidazole, and wherein the degree of sulfonation of the sulfonated polymer is in the range of 96% to 118%. The present invention further relates to a method for manufacturing the polymer blend proton exchange membrane.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 16, 2013
    Assignee: Prudent Energy Inc.
    Inventors: Mianyan Huang, Yanling Zhao, Linlin Li
  • Publication number: 20130177834
    Abstract: Provided are a polymer electrolyte membrane used in fuel cells, and a method for producing the same, the method including a step of filling a crosslinkable ion conductor in the pores of a porous nanoweb support; and a step of crosslinking the ion conductor filled in the pores of the porous nanoweb support. The method for producing a polymer electrolyte membrane uses a relatively smaller amount of an organic solvent, can ameliorate defects of the support caused by solvent evaporation, and can enhance the impregnability of the ion conductor to the support and the convenience of the process.
    Type: Application
    Filed: April 2, 2012
    Publication date: July 11, 2013
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Dong Hoon Lee, Na Young Kim, Moo Seok Lee, Yong Cheol Shin
  • Patent number: 8481227
    Abstract: Materials are provided that may be useful as ionomers or polymer ionomers, including compounds including bis sulfonyl imide groups which may be highly fluorinated and may be polymers.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: July 9, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Steven J. Hamrock, Mark S. Schaberg, Neeraj Sharma, John E. Abulu
  • Patent number: 8481225
    Abstract: The present invention provides a membrane electrode assembly (MEA) which has a high level of power generation performance under a low humidified condition and a high level of production efficiency, and further, a manufacturing method of such an MEA and a fuel cell having such an MEA. The present invention includes forming first electrode catalyst layer 2, forming polymer electrolyte layer 1 on the first electrode catalyst layer 2 in such a way that a cross sectional surface of the first electrode catalyst layer 2 is also covered with the polymer electrolyte layer 1, and forming second electrode catalyst layer 3 on the polymer electrolyte layer 1 in such a way that a cross sectional surface of the second electrode catalyst layer 3 is covered with the polymer electrolyte layer 1.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: July 9, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventor: Masashi Oota