With Sealing, Spacing, Or Supporting Feature Patents (Class 429/508)
  • Publication number: 20120321986
    Abstract: Fabricating roll-good fuel cell material involves laminating first and second bonding material webs having spaced apart windows to first and second surfaces of a fuel cell membrane web. First and second active regions of the membrane web are positioned within the respective bonding material windows. Third and fourth gasket material webs having spaced apart windows are respectively laminated to the bonding material on the first and second membrane web surfaces. The bonding material windows align with the respective gasket material windows so that at least some of the bonding material extends within the respective gasket material windows. Fluid transport layer (FTL) material portions cut from fifth and sixth FTL material webs are laminated to the respective first and second active regions. The FTL material portions are positioned within respective gasket material windows and contact the bonding material extending within the respective gasket material windows.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 20, 2012
    Inventors: David Robert Mekala, Donald George Peterson, Dennis Earl Ferguson, Duane Douglas Fansler
  • Patent number: 8334078
    Abstract: A separator for a fuel cell according to the present invention includes: a base 1 containing 70 mass % or more of Al; an underlying layer 2 being formed on the base and containing Ti; an intermediate layer 3 being formed on the underlying layer and containing TiNx or TiOy; and a conductive metal layer 4 being formed on the intermediate layer and containing Au or Pt. The separator for a fuel cell according to the present invention has an excellent anticorrosiveness although a base containing aluminum as a main component is used.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: December 18, 2012
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Masayuki Yokota, Fumiaki Kikui, Ken Asada
  • Publication number: 20120315566
    Abstract: The invention relates to an electrical energy unit (2, 102, 202, 302) comprising a plurality of electrical energy cells (4), which are stacked in a stacking direction to form a cell block and are connected to each other in parallel and/or in series within the cell block, the electrical energy cells having planar conductors (14), which protrude from the cell substantially in parallel with each other in two directions, the main surfaces of the conductors being oriented substantially perpendicularly to the stacking direction, the conductors of a cell at least partially not covering each other, as viewed in the stacking direction, and each conductor of a cell at least partially covering a conductor of a subsequent cell in the stacking direction, as viewed in the stacking direction.
    Type: Application
    Filed: December 21, 2010
    Publication date: December 13, 2012
    Applicant: Li-Tec Battery GmbH
    Inventors: Tim Schaefer, Claus-Rupert Hohenthanner
  • Patent number: 8329355
    Abstract: In a fuel cell, an elastic body provides first protrusion T10 that encompasses the perimeter of the passage hole at plate member 40 and the leading edge of which spans the entire region and tightly adheres to plate member 40, provides second protrusion S20 that is disposed within the placement region of reaction membrane 10 so as to encompass the perimeter of the gas diffusion layer, and provides third protrusion S30 that is disposed to encompass the region at which first protrusion T10 is disposed and the region at which second protrusion S20 is disposed, and is disposed outside the placement region for the reaction membrane, and the leading edge of which spans the entire region and tightly adheres to a separator 30.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: December 11, 2012
    Assignee: NOK Corporation
    Inventors: Shigeru Watanabe, Kenichi Oba
  • Patent number: 8329322
    Abstract: In a solid polyelectrolyte fuel cell, with a frame including a frame body main part placed along a peripheral edge portion of a membrane, a plurality of first retaining portions which are arrayed so as to protrude from an inner edge of the frame body main part and which retain the front surface side of the membrane, and a plurality of second retaining portions which are arrayed so as to protrude from the inner edge of the frame body main part and which retain the back surface side of the membrane, the first retaining portions and the second retaining portions are so arrayed that retaining positions of the membrane by the first retaining portions and retaining positions of the membrane by the second retaining portions are alternately placed.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: December 11, 2012
    Assignee: Panasonic Corporation
    Inventors: Takashi Morimoto, Hiroki Kusakabe, Toshihiro Matsumoto, Norihiko Kawabata, Mitsuo Yoshimura
  • Patent number: 8323846
    Abstract: A fuel cell comprising a membrane-electrode assembly having an anode electrode face; an anode plate adjacent said membrane-electrode assembly electrode face and coupled thereto by a sealing gasket. The sealing gasket, electrode face and anode plate together define a fluid containment volume for delivery of anode fluid to the electrode face. A sheet of porous diffuser material is situated in the fluid containment volume and having at least one plenum defined between at least one lateral edge of the sheet of diffuser material and the sealing gasket. Fluid for delivery to an active surface of the membrane-electrode assembly may be delivered by the plenum and by diffusion through the diffuser material to such an extent that fluid flow channels in the anode plate are not required.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: December 4, 2012
    Assignee: Intelligent Energy Limited
    Inventor: Paul Alan Benson
  • Patent number: 8323843
    Abstract: A fuel cell assembly having a terminal plate that is isolated from fluid flows passing to the fuel cell stack through manifolds is provided. A corrosion resistant member is positioned between the fuel cell stack and the terminal plate and sealingly engages with the manifold. The sealing engagement between the manifold and the corrosion resistant member prevents fluid flowing through the manifold to the fuel cell stack from contacting the terminal plate. Thus, a fuel cell assembly according to the present invention can be operated while preventing a fluid flow through the manifold from contacting the terminal plate.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: December 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Stephen Raiser, Ralf Lerch
  • Patent number: 8323845
    Abstract: A solid electrolyte fuel cell plate structure includes a cell element layer composed of a solid electrolyte, an air electrode layer and a fuel electrode layer, a porous base body supporting the cell element layer, and a gas-impermeable member having electric conductivity. The cell element layer is arranged such that the solid electrolyte layer is sandwiched between the air electrode layer and the fuel electrode layer, with the air electrode layer or the fuel electrode layer being joined to the porous base body. The gas-impermeable member is associated with the solid electrolyte layer to allow gas internally passing through the porous base body to be separated from gas flowing outside the porous base body. Such a cell plate structure can be employed in a solid electrolyte fuel cell stack, which in turn can be employed in a solid electrolyte fuel cell electric power generation unit.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: December 4, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masaharu Hatano, Mitsugu Yamanaka, Fuminori Satou, Itaru Shibata, Keiko Kushibiki, Naoki Hara, Tatsuhiro Fukuzawa, Makoto Uchiyama
  • Publication number: 20120301806
    Abstract: A separator includes a first flow path-forming portion and second flow path-forming portions. The first portion has a corrugated shape including a first groove to form a flow path for a first fluid on a first surface and a second groove to form a flow path for a second fluid on a second surface, which are arranged alternately. The first portion includes at least three linear areas, and plural turned areas, each including a plurality of the first and the second grooves to connect between corresponding grooves in adjacent linear areas, and thereby forms serpentine flow paths for the second fluid. Each of the second portions forms a connection flow path to connect between the flow paths for the first fluid on the first surface and forms a connection flow path to connect between the flow paths for the second fluid on the second surface.
    Type: Application
    Filed: January 30, 2012
    Publication date: November 29, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroki OKABE
  • Publication number: 20120301815
    Abstract: In a fuel cell, an electrolyte electrode assembly is sandwiched by a pair of separators, which include a sandwiching section having a fuel gas channel for supplying a fuel gas to an anode and a fuel gas inlet for supplying the fuel gas to the fuel gas channel, a bridge having a fuel gas supply channel for supplying the fuel gas to the fuel gas channel, and a fuel gas supply section having a fuel gas supply passage for supplying the fuel gas to the fuel gas supply channel. During operation of the fuel cell, a pressure loss P1 by the fuel gas in the fuel gas inlet, a pressure loss P2 by the fuel gas in the fuel gas supply channel, and a pressure loss P3 by the fuel gas in the fuel gas supply passage have the relationships of P1>P2 and P1>P3.
    Type: Application
    Filed: March 3, 2011
    Publication date: November 29, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Yuki Yoshimine
  • Patent number: 8318372
    Abstract: A fuel cell stack in accordance with the invention has a cell laminate obtained by stacking multiple plates with at least one of functions of a power generation assembly and a separator, and a pair of end plates located outside and on both ends of the cell laminate in a stacking direction. The fuel cell stack further includes a displacement preventing member extended along the stacking direction of the cell laminate and fastened to the pair of end plates, and a deformable intermediate material located between the cell laminate and the displacement preventing member over an area of two or more plates among the multiple plates. At least either one of the two or more plates and the displacement preventing member is designed to have a concavo-convex shape formed at least partially on a face in contact with the intermediate material.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: November 27, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Norihiko Saito
  • Patent number: 8318378
    Abstract: A fuel cell (10) includes a fuel cell stack (50) in which a plurality of fuel cell units are stacked on one another, a pair of end plates (61, 61b, 63, 63b) respectively contact both ends of the fuel cell stack in a direction (Ds) in which the plurality of fuel cell units are stacked, and a side member (62, 62b, 62g) that extends in the stacking direction and is disposed between the end plates. The fuel cell further includes a connecting bolt portion, having a bolt shank (644, 624g) that penetrates one of the end plates substantially along the stacking direction. The connecting bolt portion connects the one of the end plates and the side member. The fuel cell further includes a cushion joint (66, 66a, 66b, 66c, 66d, 66e, 66f) disposed between the side member and one of the end plates, and through which the bolt shank passes.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: November 27, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Norihiko Saito, Kimihide Horio
  • Publication number: 20120295182
    Abstract: A fuel cell includes separators. A second plate of the separator includes a second circular disk section, a second elongated plate section, and a second rectangular section. A fuel gas supply passage extends through the second circular disk section. The second rectangular section has a fuel gas inlet for supplying a fuel gas to a fuel gas channel, an outer ridge, and a fuel gas outlet for discharging the fuel gas, and a detour path forming wall bent in a V-shape toward the fuel gas inlet. A fuel gas inlet is formed in the V-shaped inner area of the detour path forming wall.
    Type: Application
    Filed: March 3, 2011
    Publication date: November 22, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Atsushi Ishioka, Hiroki Homma
  • Patent number: 8304136
    Abstract: Disclosed is a solid oxide fuel cell bundle, including a plurality of fuel cells each having a polygonal tubular support an outer surface of which has a plurality of planes, an outer connector formed on one plane among the plurality of planes of the tubular support, a plurality of unit cells respectively formed on two or more remaining planes of the tubular support except for the one plane, and inner connectors for connecting the unit cells and the outer connector in series, wherein the fuel cells is connected in series in such a manner that the outer connector of a fuel cell is bonded to the unit cell of an additional fuel cell, and the unit cells are connected in series, thus exhibiting excellent cell performance and high power density per unit volume, and maintaining high voltage upon collection of current to thereby reduce power loss due to electrical resistance.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 6, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Eon Soo Lee, Jae Hyuk Jang, Jae Hyoung Gil, Kyong Bok Min, Sung Han Kim, Hong Ryul Lee
  • Patent number: 8298697
    Abstract: In an MEA member constituted by a polymer electrolyte membrane-electrode assembly (MEA) and a frame and in a polymer electrolyte fuel cell including this MEA member, the MEA and the frame can be easily separated from each other without using any special tool. An MEA member 7 includes an MEA 5 and a plate-shaped resin frame 6, and a separating portion for separating the MEA 5 from the frame 6 is formed in the MEA member 7. The MEA 5 includes a polymer electrolyte membrane 2 and a pair of electrodes 3 and 4 respectively disposed on both main surfaces of the polymer electrolyte membrane 2. The frame 6 sandwiches and holds a peripheral portion of main surfaces of the MEA 5 such that the MEA 5 is located inside the frame. The separating portion is a broken-line cutoff line 50 formed on the frame 6 to divide the frame 6 into two or more parts or a partial sandwiching portion 55 located at an inner peripheral portion of the frame 6 to partially sandwich the peripheral portion of the MEA 5.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 30, 2012
    Assignee: Panasonic Corporation
    Inventors: Shigeyuki Unoki, Takashi Nakagawa, Takashi Morimoto, Mitsuo Yoshimura
  • Patent number: 8298717
    Abstract: A fuel cell unit (1) according to the present invention comprises a fuel cell (6) having an inner electrode layer (16), an outer electrode layer (20) and a through passage (15); and inner and outer electrode terminals (24, 26) fixed at the opposite ends (6a, 6b) of the fuel cell (6). The fuel cell (6) has an inner electrode peripheral surface (21) electrically communicating with the inner electrode layer (16) and an outer electrode peripheral surface (22) electrically communicating with the outer electrode layer (20). The inner and outer electrode terminals are respectively disposed so that they cover over the inner and outer electrode peripheral surfaces (21, 22) and they are electrically connected thereto. The inner and outer electrode terminals have respective connecting passages which are communicated with the through passage (15).
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: October 30, 2012
    Assignee: Toto Ltd.
    Inventors: Naoki Watanabe, Akira Kawakami
  • Patent number: 8298714
    Abstract: A PEM fuel cell includes a first plate having a flow field for directing a first fluid along a surface thereof. A second plate includes a flow field for directing a second fluid along a surface thereof. A seal is disposed between the first plate and the second plate. The seal includes a plate margin defining a header aperture for delivering the first fluid to the first plate. The seal defines a carrier having a first side supported by the flow field of the first plate whereby the first fluid is permitted to flow directly from the first header aperture to the flow field of the first plate. The carrier includes a gasket arranged on a second side. The gasket precludes the first fluid from flowing directly from the header aperture to the flow field of the second plate.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: October 30, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Matthew J. Beutel
  • Patent number: 8293427
    Abstract: A separator unit is inserted between adjacent stacked fuel cells, in each of which an electrolyte layer is sandwiched between a fuel electrode and an oxygen electrode. The separator unit includes a sheet-shaped gas barrier member, which blocks a gas, and a collector, which is inserted between the gas barrier member and the fuel electrode or the oxygen electrode and which is provided with a plurality of openings that diffuse the gas. The collector is provided with an electrode contact portion, which is made up of a flat, porous panel that is in contact with the fuel electrode or the oxygen electrode and collects power, and a gas barrier member contact portion, which is made up of a linear piece that forms a gas flow route by being in contact with the gas barrier member and supports the electrode contact portion. A height dimension of the gas barrier member contact portion is smaller than an equivalent diameter of an opening in the electrode contact portion.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 23, 2012
    Assignee: Kabushiki Kaisha Equos Research
    Inventors: Noriyuki Takada, Toshihiko Nonobe
  • Patent number: 8288056
    Abstract: In a fuel cell including a gasket, which includes a lip portion, as a sealing member, the fuel cell includes a fuel cell constituent element (18) disposed adjacent to the lip portion (50) of the gasket (48), and a non-adhesive layer (54) disposed between the gasket (48) and the fuel cell constituent element (18).
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: October 16, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomokazu Hayashi, Fumihiko Inui, Hiroshi Takamatsu
  • Patent number: 8283086
    Abstract: A separator includes a plurality of first and second sandwiching sections, a plurality of first bridges connected thereto, and first and second fuel gas supply units integrally connected to the first bridges. Electrolyte electrode assemblies are sandwiched between the first and second sandwiching sections. A fuel gas supply channel is formed in each of the first bridges. A fuel gas supply passage extends through the first and second fuel gas supply units in a stacking direction. A pressure loss generator mechanism is provided in the fuel gas supply channel. The pressure loss generator mechanism generates a pressure loss over the entire fuel gas supply channel for distributing a fuel gas equally to each of the electrolyte electrode assemblies.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: October 9, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tetsuya Ogawa, Koji Dan
  • Publication number: 20120251918
    Abstract: A fuel cell separator pair has first and second separators having front and back surfaces, a corrugated plate portion shaped in a wave form at the central portion, and a flat plate portion formed in the peripheral portion and surrounding the corrugated plate portion, wherein the corrugated plate portion of the front surface constitutes a reaction gas channel and the corrugated plate portion of the back surface constitutes a coolant channel. The back surfaces of the first and second separators are facing each other. The flat plate portions of the first and second separators are arranged on top of each other so as to be in contact with each other. The flat plate portion of the second separator protrudes toward the outside beyond the flat plate portion of the first separator.
    Type: Application
    Filed: July 14, 2010
    Publication date: October 4, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Takashi Morimoto, Toshihiro Matsumoto, Atusi Murata, Mitsuo Yoshimura, Yoko Yamamoto
  • Patent number: 8278005
    Abstract: Notches 23e are filled with part of an elastic material that is injection-molded in a region containing the notches 23e, so that a plate member 23b is taken in by the notches 23e through the repulsive force of the elastic material. Thus, the plate member 23b is secured. Further, the elastic material filling the notches 23e enlarges the joined portion between the plate member 23b and the gasket 24b. Accordingly, the gasket 24b is firmly joined to the surface of the plate member 23b, and can be prevented from being lifted up from the plate member 23b. Thus, the plate member 23b is firmly secured to the separator main body 25.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: October 2, 2012
    Assignee: NOK Corporation
    Inventors: Takashi Mashimo, Tomohiro Inoue
  • Patent number: 8273498
    Abstract: In an electrolyte membrane (10) for a solid polymer fuel cell, sealing ribs (12) of a predetermined height made of an electrolyte resin is formed integrally with the electrolyte membrane (10). Using the electrolyte membrane, a membrane-electrode assembly (20) is formed, which is further processed into a fuel cell (30). Thus, an electrolyte membrane and a membrane-electrode assembly which are capable of improving the sealing characteristic when incorporated into a fuel cell are obtained. Besides, a fuel cell improved in the sealing characteristic is obtained.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: September 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Suzuki, Yoshitaka Kino
  • Patent number: 8268510
    Abstract: A fuel cell component is provided, including a substrate disposed adjacent at least one radiation-cured flow field layer. The flow field layer is one of disposed between the substrate and a diffusion medium layer, and disposed on the diffusion medium layer opposite the substrate. The flow field layer has at least one of a plurality of reactant flow channels and a plurality of coolant channels for the fuel cell. The fuel cell component may be assembled as part of a repeating unit for a fuel cell stack. A method for fabricating the fuel cell component and the associated repeating unit for the fuel cell is also provided.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 18, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeffrey A. Rock, Yeh-Hung Lai, Keith E. Newman, Gerald W. Fly, Ping Liu, Alan J. Jacobsen, William B. Carter, Peter D. Brewer
  • Publication number: 20120231371
    Abstract: A system for fabricating a fuel cell component in which a deposition mechanism deposits loading material particles onto the fuel cell component and an actuation mechanism actuates the deposition mechanism. A unit provides a tape fixing agent to the fuel cell component and loaded material particles so as to retain the particles on the fuel cell component. Other fuel components are retained to the fuel cell component also using a tape fixing agent.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 13, 2012
    Inventors: Salvador E. Correa, Thomas M. Lucas, Lawrence J. Novacco
  • Publication number: 20120231370
    Abstract: A seal structure is disclosed for forming a substantially fluid tight seal between a UEA and a plate of a fuel cell system, the seal structure including a sealing member formed in one fuel cell plate, a seal support adapted to span feed area channels in an adjacent fuel cell plate, and a seal adapted to cooperate with a UEA disposed between the fuel cell plates, the sealing member, and the seal support to form a substantially fluid tight seal between the UEA and the one fuel cell plate. The seal structure militates against a leakage of fluids from the fuel cell system, facilitates the maintenance of a velocity of a reactant flow in the fuel cell system, and a cost thereof is minimized.
    Type: Application
    Filed: May 24, 2012
    Publication date: September 13, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey A. Rock, Gerald W. Fly, Steven G. Goebel, Jeff D. Williams
  • Patent number: 8257879
    Abstract: A fuel cell system is provided including a fuel cell stack having a first end and second end. The fuel cell stack includes at least one fuel cell having a membrane-electrode assembly disposed between adjacent gas diffusion layers. The fuel cell system further includes a compression retention system having a plurality of compliant straps adapted to apply a compressive force to the fuel cell stack. The plurality of compliant straps are further adapted to accommodate an expansion of the fuel cell stack during an operation thereof and maintain the compressive force within a desired range.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: September 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Benno Andreas-Schott, Anthony Chinnici, Yeh-Hung Lai, Gerald W. Fly
  • Publication number: 20120219830
    Abstract: A method for using an integrated battery and device structure includes using two or more stacked electrochemical cells integrated with each other formed overlying a surface of a substrate. The two or more stacked electrochemical cells include related two or more different electrochemistries with one or more devices formed using one or more sequential deposition processes. The one or more devices are integrated with the two or more stacked electrochemical cells to form the integrated battery and device structure as a unified structure overlying the surface of the substrate. The one or more stacked electrochemical cells and the one or more devices are integrated as the unified structure using the one or more sequential deposition processes. The integrated battery and device structure is configured such that the two or more stacked electrochemical cells and one or more devices are in electrical, chemical, and thermal conduction with each other.
    Type: Application
    Filed: May 7, 2012
    Publication date: August 30, 2012
    Applicant: Sakti3, Inc.
    Inventors: Fabio Albano, Chia Wei Wang, Ann Marie Sastry
  • Patent number: 8252480
    Abstract: Disclosed is a gasket for reducing stress concentration in a fuel cell stack, which prevents damage or deformation of a separator and further prevents a position shift of the gasket by reducing stress concentration formed at a specific region by deformation of the gasket due to a compression force. In particular, the gasket includes a T-shaped or cross-shaped gasket joint to form hydrogen, air and coolant manifolds, and the gasket joint has a structure in which two joint branches forming an angle of 180° in the opposite direction to each other are joined at one point with a particular angles which reduce stress concentration formed due to compression force by deformation of the gasket.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: August 28, 2012
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sae Hoon Kim, Yoo Chang Yang, Sang Mun Chin, Jong Hyun Lee
  • Patent number: 8252475
    Abstract: Moreover, as a case of not using the press work, in a separator of a polymer electrolyte fuel cell described in a Japanese Unexamined Patent Publication JP-A 2001-76748, a gas channel is formed by printing an electrically conductive material onto an electrically conductive base material. To be specific, as the electrically conductive base material is used a molded plate formed of carbon powder and a thermosetting resin as main components, and as the electrically conductive material is used carbon paste containing carbon powder as a main component.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: August 28, 2012
    Assignee: Nitta Corporation
    Inventors: Yasushi Kobuchi, Ikuzo Usami
  • Publication number: 20120214087
    Abstract: A fuel cell sealing plate taking-out method that may include taking out a sealing plate from a stack of sealing plates one by one while an air layer exists between adjacent sealing plates of the stack of fuel cells. A protrusion may be formed beforehand at one or more surfaces of each sealing plate. Due to the air layer existing between adjacent sealing plates, it may be possible to take out the sealing plate one by one from the stack of sealing plates.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shiro AKIYAMA, Shigemitsu NOMOTO
  • Patent number: 8247128
    Abstract: A fuel cell includes electrolyte electrode assembly and separators. An annular member and a ring foil are provided between the separators. The annular member is provided around an outer circumferential portion of the electrolyte electrode assembly, and includes grooves for discharging a first exhaust gas FGoff which has been consumed at an anode to the outside of the electrolyte electrode assembly. The ring foil is provided adjacent to a cathode, and extends from a position between an outer end of the electrolyte electrode assembly to a position between the annular member and the separator.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: August 21, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hideichi Yamamura, Tadashi Tsunoda
  • Patent number: 8241796
    Abstract: An electrode for use in a fuel cell consists of a porous plastic substrate, a conductive layer and a catalyst layer, in which the substrate is hydrophilic. Preferably the substrate has a water wicking rate no less than 40 mm per 600 s. Such an electrode may be used in a fuel cell, with an electrolyte chamber (8) defined between two opposed electrodes (11, 12), the electrodes having the catalyst layers (5) facing away from the electrolyte in contact with respective gas chambers (7, 9). Preferably the electrolyte is maintained at a negative pressure during operation.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: August 14, 2012
    Assignee: AFC Energy plc
    Inventors: Otto F. Carlisle, Gerard P. T. Sauer
  • Patent number: 8232023
    Abstract: A fuel cell including a power generating body including an electrolyte layer and electrode layers, diffusion layers disposed on opposite major surfaces of the power generating body, separators disposed on major surfaces of the diffusion layers opposite to those facing the power generating body, a first seal formed around the periphery of the power generating body and including an effective seal portion that suppresses leakage of the gas to the outside of the fuel cell between the separators, and a second seal formed integrally with at least one of the diffusion layers to extend along an end face of the diffusion layer. The second seal is in intimate contact with a surface of the power generating body on which the diffusion layer is laminated and a surface of a corresponding one of the separators that is laminated on the diffusion layer.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: July 31, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naohiro Takeshita, Fumishige Shizuku
  • Patent number: 8232021
    Abstract: A fuel cell stack including an electricity generating unit for generating electrical energy by electrochemically reacting a fuel and an oxidizing agent, the electricity generating unit including: a first separator; a second separator; a membrane electrode assembly (MEA) between the first separator and the second separator, each of the first and second separators including a channel on a surface facing the MEA and a manifold in the surface facing the MEA, the manifold communicating with the channel; and a gasket, positioned at an outer circumference portion of an area where the MEA is positioned, for sealing a space between the first and second separators and for covering an open area of a channel extension area of at least one of the first and second separators where the manifold communicates with the channel.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: July 31, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Won Suh, Young-Seung Na, Keun-Yong Lee, Sung-Won Jeong, Chan-Gyun Shin, Kyoung-Hwan Choi, Sang-Kyun Kang
  • Patent number: 8232024
    Abstract: A gasket formed of compressible material and having a first sealing surface and a second sealing surface for providing a fluid seal between a first component and a second component, a plurality of cavities provided within the gasket proximate the first and/or second sealing surfaces and extending over at least a first portion of the gasket to provide increased compressibility of the gasket in the first portion.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: July 31, 2012
    Assignee: Intelligent Energy Limited
    Inventors: Peter D. Hood, Simon E. Foster
  • Patent number: 8227136
    Abstract: A unitized electrode assembly for a fuel cell comprising an electrolyte membrane, a subgasket, and a sealing bead disposed therebetween is disclosed. The sealing bead adapted to fill a tenting region formed between the membrane and the subgasket to maximize an operating life of the electrolyte membrane by militating against wear of membrane expansion during use of the fuel cell.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: July 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Scott L. Peters, Craig S. Gittleman
  • Patent number: 8227141
    Abstract: The method of manufacturing a fuel cell including stacked unit cell constituent members sandwiched by separators includes the steps of arranging the unit cell constituent member in a first area on a first face of the separator; and forming a seal member made of elastic material such that the seal member is adhered or intimately attached to a second area including the first area on the first face of the separator, and that the seal member is unified with an edge portion of the unit cell constituent member.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: July 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroo Yoshikawa, Fumishige Shizuku, Kenji Sato
  • Patent number: 8227145
    Abstract: An interlockable bead seal for a bipolar plate is provided. The interlockable bead seal includes a first elongate bead formed on a first plate and a second elongate bead formed on a second plate. The first elongate bead has a sealing surface and the second elongate bead has a trough. An interlockable bipolar plate having the interlockable bead seals, and a fuel cell stack formed from a plurality of the interlockable bipolar plates, are also provided. A lateral slippage between components of the fuel cell stack is militated against by the interlockable bipolar plates.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark W. Keyser, Gerald W. Fly
  • Publication number: 20120183882
    Abstract: The present invention provides a separator for a fuel cell that improves efficiency of the fuel cell by removing water generated in a membrane-electrode assembly and accumulated in a channel of the separator, a manufacturing method thereof, and a fuel cell stack including the same. The separator for the fuel cell of the present invention includes: a main body of a plate shape; a channel concavely formed in at least one surface of the main body and supplying a fuel or oxygen to a membrane-electrode assembly; and a metal layer provided to a surface of the channel and including an oxide layer formed by an anodic oxidation treatment and minute grooves of a nano-scale formed in the oxide layer, thereby forming the surface of the channel to be super-hydrophilic.
    Type: Application
    Filed: September 27, 2010
    Publication date: July 19, 2012
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Sangmin Lee, Woon Bong Hwang
  • Publication number: 20120178009
    Abstract: A fuel cell plate includes a structure having opposing sides bounded by a periphery providing at least one edge. Gas flow channels are arranged on the one side and arranged within a perimeter that is spaced inboard from the periphery to provide a first gasket surface between the perimeter and the periphery. Inlet and outlet flow channels are arranged on the other side and extend to the periphery and are configured to provide gas at the at least one edge. Holes extend through the structure and fluidly interconnect the inlet and outlet flow channels to the gas flow channels. In one example, the fuel cell plate is a water transport plate in a fuel cell having external manifolds that supply fluid to the plate.
    Type: Application
    Filed: November 9, 2009
    Publication date: July 12, 2012
    Inventors: Robert A. Love, Jeffrey G. Lake
  • Patent number: 8216743
    Abstract: A fuel cell system including, among other things, one or more of a fuel cell, a fuel reservoir, a current collecting circuit, a plenum, or a system cover. The fuel reservoir is configured to store fuel, and may include a regulator for controlling an output fuel pressure and a refueling port. A surface of the fuel reservoir may be positioned adjacent a first fuel cell portion. The current collecting circuit is configured to receive and distribute fuel cell power and may be positioned adjacent a second fuel cell portion. The plenum may be formed when the fuel reservoir and the first fuel cell portion are coupled or by one or more flexible fuel cell walls. The system cover allows air into the system and when combined when a fuel pressure in the plenum, may urge contact between the fuel cell and the current collecting circuit.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: July 10, 2012
    Assignee: Société BIC
    Inventors: Gerard F McLean, Jeremy Schrooten, Joerg Zimmermann, Mark Petersen, Paul Sobejko
  • Publication number: 20120171592
    Abstract: A unit cell of a fuel cell stack, and a fuel cell stack including the unit cell, where the unit cell includes channel plates including first and second manifolds, a plurality of channels and channel connecting units; hard plates arranged to contact surfaces of the channel connecting units; and gaskets arranged to surround the plurality of channels and first and second manifolds between the channel plates and the hard plates.
    Type: Application
    Filed: May 17, 2011
    Publication date: July 5, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Tae-won SONG, Jung-seok Yi, Kyoung-hwan Choi, Ji-rae Kim
  • Patent number: 8211591
    Abstract: A unitized electrode assembly for a fuel cell comprising an electrolyte membrane and a subgasket. The subgasket maximizing an operating life of the electrolyte membrane, militating against adverse effects of membrane expansion during use of the fuel cell and membrane shearing under unitized electrode assembly compression.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: July 3, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Chad A. Dammar, Saurabh Vyas, Ronald L. James, Matthew J. Beutel
  • Patent number: 8206875
    Abstract: The contraction and deformation of a seal member are inhibited. To realize this, in a separator in which the shapes of projections and recesses forming at least fluid passages are inverted from each other on the front surface and the back surface of the separator and which is provided with a manifold for supplying and discharging a fluid, the separator, when a seal member for sealing the fluid is provided along the edge side of the separator forming the contour of the manifold, a projecting section capable of functioning as a spacer between the separator and another member adjacent to the separator is provided between the seal member and the edge side.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: June 26, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Yamamoto, Yuichi Yagami, Jiro Aizaki, Junichi Shirahama
  • Patent number: 8202665
    Abstract: An aspect of the present invention provides a fuel cell apparatus that includes at least one fuel cell stack including a plurality of unit fuel cells, each unit fuel cell including a membrane electrode assembly including an electrolyte membrane and electrodes arranged on each side the electrode membrane, and a pair of separators sandwiching the membrane electrode assembly, a casing arranged and configured to accommodate the fuel cell stack, and at least one elastic member arranged part or whole of the circumference of the fuel cell stack in contact with an inner wall of the casing.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: June 19, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Keita Iritsuki, Yasuhiro Numao
  • Publication number: 20120148940
    Abstract: The present invention relates to high-temperature solid oxide fuel cells, in particular to rotationally symmetrical high-temperature solid oxide fuel cells. The inventive oxide-ceramic high-temperature fuel cell having one or more gas channel(s) open at at least one end. The fuel cell has a substrate surrounding the gas channel(s) at least sectionally, preferably completely. The gas channel(s) and/or the substrate surrounding the gas channel(s) has/have (a) changing cross-sections(s), preferably (a) conically tapering cross-section(s), seen in the direction of the longitudinal axis/axes of the gas channel(s).
    Type: Application
    Filed: May 28, 2010
    Publication date: June 14, 2012
    Inventors: Sascha Kuehn, Katrin Klenln, Gerhard Buchinger
  • Patent number: 8197983
    Abstract: A fuel cell and a method of manufacturing the fuel cell are disclosed. A method of manufacturing a fuel cell by electrically connecting a first cell and a second cell that are coupled over both sides of a membrane with a predetermined gap between the first cell and the second cell, where the first cell and the second cell each has an anode on one side and a cathode on the other side, may include perforating a hole in the membrane between the first cell and the second cell, and electrically connecting the anode of the first cell with the cathode of the second cell through the hole using a conductive member. This method does not entail unnecessary increases in volume or complicated flow paths, and the method can reduce electrical resistance while simplifying the peripheral equipment.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: June 12, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hye-Yeon Cha, Young-Soo Oh, Jae-Hyuk Jang, Sung-Han Kim, Miesse Craig
  • Patent number: 8197984
    Abstract: A fuel cell stack includes a box-shaped casing and a stack body in the box-shaped casing. The stack body is formed by stacking a plurality of unit cells. The casing includes end plates, a plurality of side plates, angle members, and coupling pins. The angle members couple adjacent ends of the side plates. The coupling pins couple the end plates and the side plates.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: June 12, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Narutoshi Sugita, Takashi Kosaka, Ayumu Ishizuka, Ken Takahashi, Hiroshi Morikawa, Teruyuki Ohtani
  • Patent number: 8192896
    Abstract: A membrane-membrane reinforcing member assembly includes: a polymer electrolyte membrane (1); one or more membrane-like first membrane reinforcing members (10) disposed on a main surface (F10) of the polymer electrolyte membrane (1) so as to extend along a peripheral edge of the polymer electrolyte membrane (1) as a whole; and one or more membrane-like second membrane reinforcing members (11) disposed on the first membrane reinforcing members (10) so as to extend along the peripheral edge of the polymer electrolyte membrane (1) as a whole and disposed such that an inner edge of the second membrane reinforcing member (11) and an inner edge of the first membrane reinforcing member (10) do not coincide with each other.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: June 5, 2012
    Assignees: Panasonic Corporation, Asahi Glass Company, Limited
    Inventors: Masaki Yamauchi, Yoichiro Tsuji