Including Platinum Catalyst Patents (Class 429/524)
  • Patent number: 10707510
    Abstract: In pore diameter distribution curves of a first stack body formed by stacking a first gas diffusion layer and a first porous layer of an anode, and of a second stack body formed by stacking a second gas diffusion layer and a second porous layer of a cathode, on a region where a pore diameter is smaller than a reference pore diameter at which a pore volume is maximum, both the curves coincide with each other for the most part. On a region where the pore diameter is equal to or larger than the reference pore diameter, the distribution curve of the second stack body lies above that of the first stack body. A pore volume ratio which is a ratio of the total pore volume of the second stack body to the total pore volume of the first stack body is in the range of 1.10 to 1.60.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: July 7, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Yoichi Asano, Takuma Yamawaki
  • Patent number: 10648961
    Abstract: A core-shell structure (a diameter is about 5 nm) is located on an Al2O3 catalyst support. Platinum (Pt metal) is a core, and a shell that surrounds the core has a solid solution structure (A1-xBxOY) (where X is a composition that composes A and B, and Y is a composition of oxygen (O)) that is composed of platinum, palladium, and oxygen.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: May 12, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Naoyoshi Murata, Yukari Shibuta, Takuya Suzuki, Makoto Okamura
  • Patent number: 10505197
    Abstract: A catalyst layer for use in a fuel cell includes catalytic nanoparticles and a perfluorosulfonic acid (PFSA) ionomer. The catalytic nanoparticles have a palladium or palladium alloy core and an atomically thin layer of platinum on an outer surface of the palladium or palladium alloy core. The PFSA ionomer has an equivalent weight equal to or greater than about 830. A unitized electrode assembly is also described.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 10, 2019
    Assignee: AUDI AG
    Inventors: Krista Marie Shoemaker, Robert Mason Darling, Laura Roen Stolar, Elise Lorraine Izzo
  • Patent number: 10476083
    Abstract: A length L between the markings 11a measured by the pre-coating thickness measuring device 17 and a length L? between the markings 11a measured by the post-coating thickness measuring device 18 are calculated, and a length ratio is obtained. Measurement positions of thickness data measured by the post-coating thickness measuring device 18 are corrected based on the calculated length ratio. A value at each measurement position of pre-coating thickness information on a corrected post-coating thickness interpolation line connecting measurement points of corrected post-coating thickness information obtained by correcting the measurement positions with a line segment is determined as post-coating thickness at each measurement position. A difference between the determined value and the pre-coating thickness is calculated. If it is in a predetermined range, the electrode is determined as a non-defective product.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: November 12, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Yuji Narita, Junichi Nakano
  • Patent number: 10454114
    Abstract: A method of forming metallic particles, comprising: providing precursor particles comprising a transition metal alloy; supplying carbon monoxide (CO) under reaction conditions which differentially remove a first alloy metal from the precursor particles at a faster rate than a second alloy metal; and, maintaining the reaction conditions until the precursor particles are converted to the particles. The precursor particles may comprise PtNi4, and the particles may be Pt3Ni, formed as hollow nanoframes on a carbon support.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: October 22, 2019
    Assignee: The Research Foundation for the State University of New York
    Inventors: Jiye Fang, Yiliang Luan
  • Patent number: 10418189
    Abstract: The present disclosure is directed to structural supercapacitors and electrodes for structural supercapacitors having high energy storage and high mechanical characteristics and methods of making the structural supercapacitors and electrodes. The structural supercapacitors can include a solid electrolyte and carbon fiber electrodes comprising carbon nanotubes, surface functionalized redox-active moieties, and/or a conducting polymer.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 17, 2019
    Assignee: The MITRE Corporation
    Inventors: Nicholas Hudak, Alexander Schlichting, Kurt Eisenbeiser
  • Patent number: 10384201
    Abstract: Disclosed is a direct synthesis method of nanostructured catalyst particles on surfaces of various supports.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: August 20, 2019
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Namjo Jeong, Chan-Soo Kim, Eun-Jin Jwa, Ji Yeon Choi, Joo-Youn Nam, Soon-Chul Park, Moon-Seok Jang, Yong Seok Seo, Kyo Sik Hwang, Han Ki Kim, Ji Hyung Han, Tae Young Kim, Young Gi Yoon
  • Patent number: 10263259
    Abstract: The present invention is to provide a method for producing core-shell catalyst particles with high catalytic activity per unit mass of platinum. Disclosed is a method for producing core-shell catalyst particles including a core containing palladium and a shell containing platinum and covering the shell, wherein the method includes: a step of depositing copper on the surface of the palladium-containing particles by applying a potential that is nobler than the oxidation-reduction potential of copper to the palladium-containing particles in a copper ion-containing electrolyte, and a step of forming the shell by, after the copper deposition step and inside the reaction system kept at ?3° C. or more and 10° C.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: April 16, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiichi Kaneko, Hiroko Kimura, Makoto Adachi
  • Patent number: 10147956
    Abstract: A production method of a fuel cell electrode catalyst includes: a supporting step of causing platinum and yttrium to be supported on a carrier using a nonaqueous solvent; and an acid treatment step of performing an acid treatment on the carrier on which platinum and yttrium are supported.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: December 4, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuo Nagami, Tooru Yamamoto, Masaharu Tsuji, Keiko Uto, Junichiro Hayashi, Hideoki Fukushima
  • Patent number: 10087536
    Abstract: The present invention relates to a water splitting cell having at least one electrode comprising a porous membrane, wherein gas produced at the electrode diffuses out of the cell via the porous membrane, separating the gas from the reaction at the electrode without bubble formation.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: October 2, 2018
    Assignee: AQUAHYDREX PTY LTD
    Inventors: Bjorn Winther-Jensen, Douglas MacFarlane, Orawan Winther-Jensen
  • Patent number: 10003081
    Abstract: According to one aspect of the present invention, there is provided a catalyst assembly. In one embodiment, the catalyst assembly includes a two-dimension (2-D) extensive catalyst including one or more precious catalytic metals and having a catalyst crystal plane; and a substrate supporting the 2-D extensive catalyst, the substrate including one or more non-precious catalytic metals and having a substrate crystal plane in substantial alignment with the catalyst crystal plane.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: June 19, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Jun Yang, Shinichi Hirano, Richard E. Soltis, Andrew Robert Drews, Andrea Pulskamp, James Waldecker
  • Patent number: 9997788
    Abstract: A porous metal that comprises platinum and has a specific surface area that is greater than 5 m2/g and less than 75 m2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m2/g and less than 75 m2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula PtxNi1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: June 12, 2018
    Assignee: The Johns Hopkins University
    Inventors: Jonah D. Erlebacher, Joshua D. Snyder
  • Patent number: 9972876
    Abstract: A metal air battery includes at least one gas diffusion layer assembly; a positive electrode layer disposed on a surface of the at least one gas diffusion layer assembly, wherein the positive electrode layer is capable of using oxygen as an active material; a protective electrolyte membrane disposed on the positive electrode layer; and a negative electrode metal layer disposed on the protective electrolyte membrane, wherein the gas diffusion layer assembly includes a first gas diffusion layer and a second gas diffusion layer, wherein the second gas diffusion layer is disposed on a first surface and an opposite second surface of the first gas diffusion layer, and wherein a gas diffusivity of the first gas diffusion layer is greater than a gas diffusivity of the second gas diffusion layer. Also, the gas diffusion layer assembly described above, and a method of manufacturing a metal air battery including the gas diffusion layer assembly.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: May 15, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jungock Park, Kyounghwan Choi, Mokwon Kim, Joonhee Kim
  • Patent number: 9966197
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 8, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Patent number: 9960431
    Abstract: Provided is a catalyst for solid polymer fuel cell that exhibits excellent initial activity and favorable durability and a method for manufacturing the same. The invention is a catalyst for solid polymer fuel cell which is formed by supporting catalyst particles including platinum, cobalt and manganese on a carbon powder carrier, wherein a composition ratio (molar ratio) among platinum, cobalt and manganese in the catalyst particles is Pt:Co:Mn=1:0.06 to 0.39:0.04 to 0.33, a peak intensity ratio of a Co—Mn alloy appearing in the vicinity of 2?=27° is 0.15 or less with respect to a main peak appearing in the vicinity of 2?=40° in X-ray diffraction analysis of the catalyst particles, and a fluorine compound having a C—F bond is supported at least on the surface of the catalyst particles. The amount of the fluorine compound supported is preferably from 3 to 20% with respect to the entire mass of the catalyst.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: May 1, 2018
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Minoru Ishida, Hitoshi Nakajima, Koichi Matsutani
  • Patent number: 9868804
    Abstract: A method for making a device with a fibrous sheet includes a step of combining a fiber-forming resin with a carrier resin to form a resinous mixture. The fiber forming resin has a fluorinated backbone with a pendent CF2CF2—X group where X is a SO3H or SO2F. The carrier resin is a soluble polyamide. The resinous mixture is extruded to form an extruded resinous mixture. The extruded resinous mixture has fiber strands of the fiber-forming resin within the carrier resin. The extruded resinous mixture is contacted with water to separate the fiber strands of the fiber-forming resin from the carrier resin. Fiber forming strands are optionally cross-linked with ammonia and then are hydrolyzed to form ionomers.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: January 16, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Timothy J. Fuller, Frank D. Coms, Cristin L. Keary
  • Patent number: 9799892
    Abstract: The present disclosure relates to an electrocatalyst for oxygen reduction including a silver/silver halide composite, a fuel cell including the electrocatalyst for oxygen reduction, and a method for preparing the electrocatalyst for oxygen reduction.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: October 24, 2017
    Assignee: Ewha University Industry Collaboration Foundation
    Inventors: Youngmi Lee, Chongmok Lee, Jun Ho Shim, Su-jin Kim
  • Patent number: 9711802
    Abstract: Provided is a method for preparing an alloy catalyst for fuel cells having excellent catalytic activity and high durability. The method includes coating a platinum or platinum-transition metal catalyst supported on carbon with polydopamine as a capping agent. The method for preparing an alloy catalyst supported on carbon uses polydopamine as a capping agent for a platinum or platinum-transition metal catalyst supported on carbon, and thus provides a binary or ternary platinum alloy catalyst supported on carbon having a small particle size and high alloying degree despite the subsequent high-temperature heat treatment. In addition, polydopamine (PDA) is a highly adhesive material and allows thin and uniform coating, and thus inhibits particle size growth during heat treatment while allowing easy diffusion of a transition metal into the metal.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 18, 2017
    Assignee: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventor: Hansung Kim
  • Patent number: 9698428
    Abstract: Electrocatalysts for use in fuel cell membrane electrode assemblies include a support substrate comprising a metal oxide nanotube having an internal support surface and conductive metal oxide particles impregnated on the internal support surface. Fuel cell electrodes are produced using the electrocatalyst coated on a gas diffusion layer.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: July 4, 2017
    Assignee: Nissan North America, Inc.
    Inventor: Kan Huang
  • Patent number: 9640802
    Abstract: In one embodiment, the catalyst assembly includes a two-dimension (2-D) extensive catalyst having a catalyst crystal plane; and a substrate supporting the 2-D extensive catalyst and having a substrate crystal plane in substantial alignment with the catalyst crystal plane. In certain instances, the catalyst crystal plane includes first and second adjacent catalyst atoms defining a catalyst atomic distance, the substrate crystal plane includes first and second adjacent substrate atoms defining a substrate atomic distance, a percent difference between the catalyst and substrate atomic distances is less than 10 percent.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: May 2, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Jun Yang, Shinichi Hirano, Richard E. Soltis, Andrew Robert Drews, Andrea Pulskamp, James Waldecker
  • Patent number: 9634332
    Abstract: A mixed metal oxide material of tungsten and titanium is provided for use in a fuel cell. The material may comprise less than approximately 30 at. % tungsten. The mixed metal oxide may form the core of a core-shell composite material, used as a catalyst support, in which a catalyst such as platinum forms the shell. The catalyst may be applied as a single monolayer, or up to 20 monolayers.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: April 25, 2017
    Assignee: Ilika Technologies, Ltd.
    Inventors: Brian Elliott Hayden, Claire Mormiche, Jonathan Conrad Davies, Laura Jane Offin
  • Patent number: 9627692
    Abstract: The present invention is to provide such a carbon-supported catalyst that an activity expected from a catalytic activity by rotating disk electrode (RDE) evaluation is maintained even after the formation of a membrane electrode assembly (MEA). Disclosed is a carbon-supported catalyst wherein the carbon-supported catalyst includes fine catalyst particles that have a palladium-containing particle and a platinum-containing outermost layer covering at least part of the palladium-containing particle, and a carbon support supporting the fine catalyst particles, and wherein, in a cyclic voltammogram that is obtained by measuring, in an acid solution, the carbon-supported catalyst applied to a measurement electrode made of an electroconductive material, the proportion of the area of a hydrogen adsorption region that appears in a reduction current region to the total area of the hydrogen adsorption region and a hydrogen occlusion region that appears in the reduction current region, is 29% to 36%.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: April 18, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiichi Kaneko, Naoki Takehiro, Norimitsu Takeuchi
  • Patent number: 9614228
    Abstract: A mixed metal oxide material of tantalumand titanium is provided for use in a fuel cell. The material may comprise between 1 and 20 at. % tantalum. The mixed metal oxide may form the core of a core-shell composite material, used as a catalyst support, in which a catalyst such as platinum forms the shell. The catalyst may be applied as a single monolayer, and is preferably between 6.5 and 9.3 monolayers thick.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: April 4, 2017
    Assignee: Ilika Technologies, Ltd.
    Inventors: Brian Elliott Hayden, Jonathan Conrad Davies, Laura Jane Offin
  • Patent number: 9614227
    Abstract: The present application relates to a fuel cell and a method of manufacturing the same.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: April 4, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Kwanghyun Kim, Gyo Hyun Hwang, Sang Hoon Kim, Jun Yeon Cho
  • Patent number: 9608278
    Abstract: A mixed metal oxide material of tin and titanium is provided for use in a fuel cell. The mixed metal oxide may form the core of a core-shell composite material, used as a catalyst support, in which a catalyst such as platinum forms the shell. The catalyst may be applied as a single monolayer, or up to 20 monolayers.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: March 28, 2017
    Assignee: Ilika Technologies, Ltd.
    Inventors: Brian Elliott Hayden, Jonathan Conrad Davies, Laura Jane Offin
  • Patent number: 9525082
    Abstract: Solar cell contact structures formed from metal paste and methods of forming solar cell contact structures from metal paste are described. In a first example, a solar cell includes a substrate. A semiconductor region is disposed in or above the substrate. A contact structure is disposed on the semiconductor region and includes a conductive layer in contact with the semiconductor region. The conductive layer includes a matrix binder having aluminum/silicon (Al/Si) particles and an inert filler material dispersed therein. In a second example, a solar cell includes a substrate. A semiconductor region is disposed in or above the substrate. A contact structure is disposed on the semiconductor region and includes a conductive layer in contact with the semiconductor region. The conductive layer includes an agent for increasing a hydrophobic characteristic of the conductive layer.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 20, 2016
    Assignee: SunPower Corporation
    Inventors: Richard Hamilton Sewell, Michael Cudzinovic
  • Patent number: 9450251
    Abstract: Disclosed is a method of manufacturing an anode for a fuel cell. The method includes: synthesizing a fuel cell catalyst used to oxidize a fuel for the anode in an electrochemical manner; forming an electrode for the anode by use of the synthesized fuel cell catalyst; and synthesizing an electrolysis catalyst, which is used to electrolyze water, on the electrode as the electrolysis catalyst is loaded into the anode. By introducing the electrolysis catalyst on the fuel cell electrode that has already been formed, deformation of the structure of the electrode is minimized and performance of the electrode is improved.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: September 20, 2016
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Hoonhui Lee
  • Patent number: 9440224
    Abstract: The present invention is directed to hollow catalyst particles comprising a layered shell structure and to a method of their manufacture. The catalyst particles have the general formula Hcore/PMinner shell/IL/PMouter shell in which Hcore is the hollow core, PMinner shell is a precious metal forming the innermost layer of the shell, IL is an intermediate layer comprising a base metal/precious metal alloy, and PMouter shell is a precious metal forming the outermost layer of the shell. The precious metal is selected from Pt, Ir and Pd and mixtures or alloys thereof, and IL is an intermediate layer comprising a base metal/precious metal alloy wherein the concentration of the base metal changes from the periphery of the hollow core to the outer surface of the intermediate layer. The base metal is selected from Co, Ni, and Cu and mixtures thereof.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: September 13, 2016
    Assignee: UMICORE AG & CO. KG
    Inventors: Dan V. Goia, Igor V. Sevonkaev, Daniel Herein
  • Patent number: 9431662
    Abstract: Methods of preparing fuel cells and fuel cell electrodes having catalyst with high density catalyst support are provided. One method of fabricating a fuel cell electrode comprises adjusting the gravimetric ratio of ionomer to catalyst support based on the density of the support material to optimize ionomer performance.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: August 30, 2016
    Assignee: NISSAN NORTH AMERICA, INC.
    Inventor: Taehee Han
  • Patent number: 9431181
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: August 30, 2016
    Inventor: Ronald A Rojeski
  • Patent number: 9425462
    Abstract: A method for preparing hollow platinum or platinum-alloy catalysts includes a step of forming a plurality of low-melting-point metal nanoparticles. A platinum or platinum-alloy coating is then deposited onto the low-melting-point metal nanoparticles to form platinum or platinum-alloy coated particles. The low-melting-point metal nanoparticles are then removed to form a plurality of hollow platinum or platinum-alloy particles.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: August 23, 2016
    Assignee: GM Global Technology Operations LLC
    Inventor: Anusorn Kongkanand
  • Patent number: 9401512
    Abstract: A method for manufacturing a membrane/electrode assembly, including depositing an electrocatalyst ink on one face of a support so as to form an electrode on the support and fixedly attaching the support and the electrode formed on a proton-exchange membrane by adhesion. The method also includes withdrawing a part of the support so as to uncover at least one median part of the formed electrode.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: July 26, 2016
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Rémi Vincent, Benoît Barthe, Denis Tremblay
  • Patent number: 9397347
    Abstract: An electrode for use in a fuel cell comprises a flexible carbon-fiber nonwoven fabric and a fuel cell catalyst, such as a metal catalyst or a carbon alloy catalyst, supported on the surfaces of the carbon fibers constituting the flexible carbon-fiber nonwoven fabric. The flexible carbon-fiber nonwoven fabric is formed by carbonizing a nonwoven fabric obtained by electrospinning a composition containing: an electrospinnable macromolecular substance; an organic compound that is different from the macromolecular substance; and a transition metal. This structure allows the provision of an electrode, for use in a fuel cell, which uses a flexible carbon-fiber nonwoven fabric as a substrate and combines the functions of a gas-diffusion layer and an electrocatalyst layer.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: July 19, 2016
    Assignees: NISSHINBO HOLDINGS INC., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Naokazu Sasaki, Katsuyuki Matsubayashi, Kyosuke Iida, Yasuo Imashiro, Jun-ichi Ozaki
  • Patent number: 9397348
    Abstract: A platinum alloy catalyst PtXY, wherein X is a transition metal (other than platinum, palladium or iridium) and Y is a transition metal (other than platinum, palladium or iridium) which is less leachable than X in an acidic environment, has an atomic percentage in the alloy of platinum is from 20.5-40at %, of X is from 40.5-78.5at % X and of Y is from 1-19.5at %.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: July 19, 2016
    Assignee: JOHNSON MATTHEY FUEL CELLS LIMITED
    Inventors: Brian Ronald Charles Theobald, Sarah Caroline Ball, Rachel Louise O'Malley, David Thompsett, Graham Alan Hards
  • Patent number: 9356296
    Abstract: A membrane-electrode assembly (MEA) for a fuel cell includes a fuel cell electrolyte membrane, an anode disposed at a first side of the electrolyte membrane, and a cathode disposed at a second side of the electrolyte membrane, wherein the cathode has a thickness and an area, the cathode area extending in a plane substantially parallel to a major surface of the electrolyte membrane, the cathode area includes a central area and a peripheral area, the peripheral area extending to lateral edges of the cathode, the central area includes hydrophilic portions and hydrophobic portions, the peripheral area includes hydrophilic portions and hydrophobic portions, and the central area is more hydrophobic than the peripheral area.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: May 31, 2016
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Kah-Young Song, Hee-Tak Kim, Sung-Yong Cho, Sang-Il Han, Myoung-Ki Min, Geun-Seok Chai, Tae-Yoon Kim
  • Patent number: 9326173
    Abstract: Methods and apparatus enabling a wireless network to provide differentiated services to a machine-to-machine (M2M) client. In one embodiment, the wireless network comprises a UMTS network, and the Home Location Register (HLR) entity identifies subscriptions as machine-to-machine (M2M) enabled devices based on flags or other descriptors associated with each M2M device, and imposes one or more rule sets (e.g., service restrictions) based on this identification. The classification of M2M devices within the HLR may optionally include additional capability or profile data for the M2M device (e.g. static, low mobility, low data activity, etc.). Various other network entities may use the M2M identification to modify the delivered data service, so as to optimize network resources. Furthermore, monitoring of M2M client behavior can be used to detect and notify the network operator of abnormal, fraudulent, or malicious activity. Business methods utilizing the aforementioned methods and apparatus are also disclosed.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: April 26, 2016
    Assignee: Apple Inc.
    Inventor: Achim Luft
  • Patent number: 9276270
    Abstract: Techniques herein prepare an alloy catalyst using a protective conductive polymer coating. More particularly, an alloy catalyst is prepared by: preparing a platinum catalyst supported on carbon; coating the surface of the platinum catalyst with a conductive polymer; supporting a transition metal salt on the coated catalyst; and heat treating the catalyst on which the transition metal salt is supported. Also, an alloy catalyst may be prepared by: preparing a platinum-transition metal catalyst supported on carbon; coating the surface of the platinum-transition metal catalyst with a conductive polymer; and heat treating the coated catalyst. Accordingly an alloy catalyst with superior dispersity can be prepared by increasing the degree of alloying of the catalyst through heat treatment while preventing the increase of catalyst particle size through carbonization of the conductive polymer. The prepared catalyst may be useful, for example, for a fuel cell electrode.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: March 1, 2016
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Bum Wook Roh, In Chul Hwang, Han Sung Kim, Hyung-Suk Oh
  • Patent number: 9252431
    Abstract: A fuel cell supported catalyst includes an underlying support structure having at least one of a metal oxide and a metal phosphate. Catalyst particles are arranged onto and in engagement with the support structure. An intermediate conductive, corrosion-resistant layer, such as boron-doped-diamond, is arranged onto and in engagement with the support structure to surround the catalyst particles. The supported catalyst is produced by depositing the intermediate layer onto the support structure after the catalyst particles have been deposited on the underlying support structure, in one example. In another example, voids are provided in the intermediate layer, which has been deposited onto the underlying support structure, to subsequently receive the catalyst particles.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: February 2, 2016
    Assignees: Audi AG, Toyota Jidosha Kabushiki Kaisha
    Inventors: Belabbes Merzougui, Tetsuo Kawamura
  • Patent number: 9169569
    Abstract: A method is taught of introducing an alternating voltage between a first electrode and a second electrode in a mixture comprising a depolarizing agent. The method then alternates between forming hydrogen gas at the first electrode while simultaneously oxidizing a depolarizing agent at the second electrode and forming hydrogen gas at the second electrode while simultaneously oxidizing the depolarizing agent at the first electrode.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: October 27, 2015
    Assignee: Phillips 66 Company
    Inventors: Danielle Kristin Smith, Neal Donald McDaniel, Mahaprasad Kar, Dennis Schultz, Bruce B. Randolph
  • Patent number: 9147884
    Abstract: A supported catalyst includes a plurality of support particles that each include a carbon support and a layer disposed around the carbon support. The layer is selected from a metal carbide, metal oxycarbide, and combinations thereof. A catalytic material is disposed on the layers of the support particles.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: September 29, 2015
    Assignee: Audi AG
    Inventors: Belabbes Merzougui, Minhua Shao, Lesia V. Protsailo, Jingguang Chen
  • Patent number: 9123932
    Abstract: A fuel cell membrane and a method of making the same. The membrane includes at least one non-reinforced layer and at least one reinforced layer. Both layers include a proton-conductive ionomer, while the reinforced layer additionally includes nanofiber-supported catalyst that improve mechanical and chemical durability of the membrane. The nanofiber-supported catalyst is made up of structural fibers onto which an electrocatalyst is coated, deposited or otherwise formed. The structural nanofibers give increased strength and stiffness to the layers that include them, while the electrocatalyst helps to resist electrochemical degradation to the membranes that include them. Such a membrane may form the basis of a fuel cell's membrane electrode assembly.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: September 1, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Ruichun Jiang, Zhiqiang Yu, Junliang Zhang
  • Patent number: 9099751
    Abstract: A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: August 4, 2015
    Assignee: California Institute of Technology
    Inventors: Charles C. Hays, Sri R. Narayan
  • Publication number: 20150147681
    Abstract: A self-supporting porous alloyed metal material and methods for forming the same. The method utilizes a sacrificial support based technique that enables the formation of uniquely shaped voids in the material. The material is suitable for use as an electrocatalyst in a variety of fuel cell and other applications.
    Type: Application
    Filed: October 2, 2014
    Publication date: May 28, 2015
    Applicant: STC.UNM
    Inventors: Alexey Serov, Plamen B. Atanassov
  • Publication number: 20150147680
    Abstract: The present invention relates to highly functional composite nanoparticles including a support body formed of nanoparticles and first phase nanoparticles which are condensed on the surfaces of the support body particles after being evaporated through a physical vapor deposition process, and to a method for producing same. According to the present invention, a physical vapor deposition process is used instead of a wet process so as to produce eco-friendly composite nanoparticles that do not emit hazardous chemicals while having high economic feasibility and process reproducibility.
    Type: Application
    Filed: March 26, 2013
    Publication date: May 28, 2015
    Inventors: Han-Shin Choi, Hye-Sook Joo, Chul-Woong Han
  • Publication number: 20150147682
    Abstract: Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 28, 2015
    Inventors: Kurian Abraham Kuttiyiel, Kotaro Sasaki, Radoslav R. Adzic
  • Patent number: 9040210
    Abstract: A carbon supported catalyst composition for solid polymer electrolyte fuel cells is disclosed that shows a high mass activity and favorable stability and durability. The catalyst composition comprises an intermetallic phase or alloy comprising Pt and a metal selected from the group consisting of Nb, Ta, V and Mo, and comprises an oxide of the metal. The carbon supported catalyst composition can be prepared at relatively low temperature either by first depositing and heating an oxide precursor of the metal on a suitable carbon to make a hybrid support, and then depositing and heating a Pt precursor on the hybrid support, or by depositing both an oxide precursor of the metal and a Pt precursor on a suitable carbon support, and directly heating to a final temperature.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: May 26, 2015
    Assignees: Daimler AG, Ford Motor Company
    Inventor: Natalia Kremliakova
  • Publication number: 20150140474
    Abstract: The present invention provides a method for producing metal-supported carbon, which includes supporting metal microparticles on the surface of carbon black, by a liquid-phase reduction method, in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, as well as a method for producing crystals comprising fullerene molecules and fullerene nanowhisker/nanofiber nanotubes, which includes uniformly stirring and mixing a solution containing a first solvent having fullerene dissolved therein, and a second solvent in which fullerene is less soluble than in the first solvent, in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 21, 2015
    Applicant: M. TECHNIQUE CO., LTD.
    Inventor: Masakazu ENOMURA
  • Publication number: 20150125783
    Abstract: The present invention is a catalyst for a solid polymer fuel cell including: catalyst particles of platinum, cobalt and manganese; and a carbon powder carrier supporting the catalyst particles, wherein the component ratio (molar ratio) of the platinum, cobalt and manganese of the catalyst particles is of Pt:Co:Mn=1:0.06 to 0.39:0.04 to 0.33, and wherein in an X-ray diffraction analysis of the catalyst particles, the peak intensity ratio of a Co—Mn alloy appearing around 2?=27° is 0.15 or less on the basis of a main peak appearing around 2?=40°. It is particularly preferred that the catalyst have a peak ratio of a peak of a CoPt3 alloy and an MnPt3 alloy appearing around 2?=32° of 0.14 or more on the basis of a main peak.
    Type: Application
    Filed: June 19, 2013
    Publication date: May 7, 2015
    Applicant: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Minoru Ishida, Koichi Matsutani
  • Publication number: 20150118599
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: April 30, 2015
    Inventor: Joze Bevk
  • Patent number: 9006128
    Abstract: The present invention provides a support for an electrode of a polymer electrolyte membrane fuel cell, a fuel cell, and a platinum-supported catalyst, and an electrode using the same. In particular, the present invention provides a method in which linear crystalline carbon nanofibers and nonlinear crystalline carbon particles with increased surface area and improved crystallinity are used to enhance the active site of catalyst particles and ensure the durability of the catalyst by the crystalline carbon materials. The linear crystalline carbon nanofibers are grown to have a predetermined fiber diameter by heat treatment at a high temperature in a gas phase of hydrocarbon in an inert gas atmosphere using an oxide such as Ni, Fe, Mn, etc. as a catalyst. The crystallinity of the linear crystalline carbon nanofibers is also improved by the heat treatment.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 14, 2015
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Bum Wook Roh, Ki Sub Lee