Including Platinum Catalyst Patents (Class 429/524)
  • Patent number: 8735019
    Abstract: A fuel cell including a single fuel cell which includes a membrane electrode including a polymer electrolyte membrane, an anode electrode on one surface of the polymer electrolyte membrane, and a cathode electrode on another surface of the polymer electrolyte membrane, the anode electrode including an anode catalyst layer and a gas diffusion layer and the cathode electrode including a cathode catalyst layer and a gas diffusion layer. At least one of the anode cathode catalyst layers includes core-shell type catalyst particles, each having a core and a shell covering the core and including a shell metallic material. At least one of the polymer electrolyte membrane, anode catalyst layer, gas diffusion layer at the anode side, cathode catalyst layer and gas diffusion layer at the cathode side includes metallic nanoparticles having an average particle diameter different from that of the core-shell type catalyst particles and including the shell metallic material.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: May 27, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuya Arai, Naoki Takehiro, Atsuo Iio, Koshi Sekizawa, Hiroko Kimura
  • Publication number: 20140141354
    Abstract: A fuel cell electrode including a catalyst layer including: a catalyst; and a conductor storage material having pores with an average diameter of about 5 nm to about 1000 nm.
    Type: Application
    Filed: June 14, 2013
    Publication date: May 22, 2014
    Inventors: Jung-ock PARK, Yoon-hoi LEE, Jin-su HA, Suk-gi HONG
  • Patent number: 8728680
    Abstract: A fuel cell component includes an electrode support material made with nanofiber materials of Titania and ionomer. A bipolar plate stainless steel substrate and a carbon-containing layer doped with a metal selected from the group consisting of platinum, iridium, ruthenium, gold, palladium, and combinations thereof.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 20, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Youssef M. Mikhail, Mahmoud H. Abd Elhamid, Gayatri Vyas Dadheech
  • Patent number: 8722284
    Abstract: Provided is a catalyst composition comprising an intermetallic phase comprising Pt and a metal selected from either Nb or Ta, and a dioxide of the metal. Also provided is a low temperature method for making such compositions that results in the formation of intermetallic phase with small crystallite size and thus greater mass activity. In particular, a Pt3Nb—NbO2 catalyst composition can be prepared that is useful as a fuel cell catalyst and offers a very stable chemical substrate along with good electrode activity and remarkable durability. The use of Pt3Nb—NbO2 can considerably prolong fuel cell lifetime by reducing Pt dissolution levels and subsequent voltage losses. The Pt3Nb—NbO2 can be used in the cathode and/or anode of a fuel cell.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 13, 2014
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Stephen A. Campbell, Natalia Kremliakova
  • Patent number: 8715370
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. A method of fabricating a thin aluminum anode galvanic cell is provided, the method comprising, forming a recess in the silicon wafer, the recess having no more than three sidewalls, depositing a catalytic metal layer on a bottom surface of the recess, positioning a double-side sticky tape layer having a bottom side positioned to contact the no more than three sidewalls of the recess and positioning an aluminum foil layer to contact a top side of the double-side sticky tape layer and in overlying relation to the recess, thereby forming the galvanic cell.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 6, 2014
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Patent number: 8715881
    Abstract: A benzoxazine-based monomer, a polymer thereof, an electrode for a fuel cell including the same, an electrolyte membrane for a fuel cell including the same, and a fuel cell using the same. The aromatic ring may contain up to 2 nitrogens within the ring. Single ring and fused ring substituents are attached to the pendent nitrogen. The ring substituents may be heterocyclic.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seongwoo Choi, Jungock Park, Wonmok Lee
  • Patent number: 8709969
    Abstract: RuCore—Ptshell nanocatalysts with 1˜3 atomic layers of Pt-shell were developed for enhancing the catalytic activities. Uniform atomic layers of Pt were successfully deposited on the core nanoparticles with high precision. Using such nanocatalysts as the cathode of the dye-sensitized solar cell (DSSC), the efficiency of DSSC can be significantly increased. For direct methanol fuel cell (DMFC) applications, much higher performance can also be achieved by using such RuCore—Ptshell nanocatalysts and the DMFC can be operated at room temperature without the need to raise the cell temperature to above room temperature (such as 80° C.).
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: April 29, 2014
    Assignee: National Tsing Hua University
    Inventors: Tsang-Lang Lin, Tsan-Yao Chen, Chiun-Yi Wu
  • Publication number: 20140113218
    Abstract: Catalysts comprising porous metal nanoparticles, which are individually encapsulated with a reaction-enhancing material, and their use in fuel cell catalysis are provided.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jonah Daedalus Erlebacher, Joshua D. Snyder
  • Publication number: 20140106258
    Abstract: Truncated ditetragonal gold prisms (Au TDPs) are synthesized by adding a dilute solution of gold seeds to a growth solution, and allowing the growth to proceed to completion. The Au TDPs exhibit the face-centered cubic crystal structure and are bounded by 12 high-index {310} facets. The Au TDPs may be used as heterogeneous catalysts as prepared, or may be used as substrates for subsequent deposition of an atomically thin layer of a platinum group metal catalyst. When the Au TDPs are used as substrates, the atomically thin layer of metal reproduces the high-index facets of the Au TDPs.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Fang Lu, Oleg Gang, Yugang Zhang, Yu Zhang, Jia X. Wang
  • Publication number: 20140099568
    Abstract: Disclosed are a catalyst for a fuel cell, a method of preparing the same, and an electrode for a fuel cell, a membrane-electrode assembly for a fuel cell, and a fuel cell system including the same, and the catalyst includes a carrier; and an active metal supported on the carrier, wherein the carrier is crystalline carbon bonded with a functional group represented by the following Chemical Formula 1 at the surface thereof. In Chemical Formula 1, each substituent is the same as described in the detailed description.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 10, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Myoung-Ki Min, Yong-Bum Park, Sung-Chul Lee, Jun-Young Kim, Hee-Tak Kim
  • Patent number: 8691717
    Abstract: The invention discloses core/shell, type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell=outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is in the range of 20 to 100 nm, preferably in the range of 20 to 50 nm. The thickness of the outer shell (tshell) is about 5 to 20% of the diameter of the inner particle core of said catalyst particle, preferably comprising at least 3 atomic layers. The core/shell type catalyst particles, particularly the particles comprising a Pt˜based shell reveal a high specific activity. The catalyst particles are preferably supported on suitable support materials such as carbon black and are used as electrocatalysts for fuel cells.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 8, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stéphanie Chevalliot
  • Patent number: 8691716
    Abstract: The invention describes the preparation of electrocatalysts, both anodic (aimed at the oxidation of the fuel) and cathodic (aimed at the reduction of the oxygen), based on mono- and plurimetallic carbon nitrides to be used in PEFC (Polymer electrolyte membrane fuel cells), DMFC (Direct methanol fuel cells) and H2 electrogenerators. The target of the invention is to obtain materials featuring a controlled metal composition based on carbon nitride clusters or on carbon nitride clusters supported on oxide-based ceramic materials. The preparation protocol consists of three steps. In the first the precursor is obtained through reactions of the type: a) sol-gel; b) gel-plastic; c) coagulation-flocculation-precipitation.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Breton S.p.A.
    Inventors: Vito Di Noto, Enrico Negro, Sandra Lavina, Giuseppe Pace
  • Patent number: 8685594
    Abstract: A cathode catalyst for a fuel cell includes a carrier, and an active material including M selected from the group consisting of Ru, Pt, Rh, and combinations thereof, and Ch selected from the group consisting of S, Se, Te, and combinations thereof, with the proviso that the active material is not RuSe when the carrier is C.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 1, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Alexey AlexandrovichSerov, Chan Kwak, Myoung-Ki Min, Si-Hyun Lee
  • Patent number: 8685878
    Abstract: A multimetallic nanoscale catalyst having a core portion enveloped by a shell portion and exhibiting high catalytic activity and improved catalytic durability. In various embodiments, the core/shell nanoparticles comprise a gold particle coated with a catalytically active platinum bimetallic material. The shape of the nanoparticles is substantially defined by the particle shape of the core portion. The nanoparticles may be dispersed on a high surface area substrate for use as a catalyst and is characterized by no significant loss in surface area and specific activity following extended potential cycling.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 1, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Vojislav Stamenkovic, Nenad M. Markovic, Chao Wang, Hideo Daimon, Shouheng Sun
  • Patent number: 8685200
    Abstract: The present invention relates to the field of electrochemical cells and fuel cells, and more specifically to polymer-electrolyte-membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC). It is directed to catalyst-coated ionomer membranes (“CCMs”) and membrane-electrode-assemblies (“MEAs”) that contain one or more protective film layers for protection, sealing and better handling purposes. The one or more protective film layers are attached to the surface of said catalyst-coated membranes in such a way that they overlap with a region of the passive non-coated ionomer area, and with a region of the active area that is coated with a catalyst layer. Furthermore, the present invention discloses a process for manufacture of CCMs and MEAs that contain protective film layers. The materials may be used as components for the manufacture of low temperature fuel cell stacks.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: April 1, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Klaus Schaack, Sandra Wittpahl, Alexander Kabza, Markus Maier
  • Patent number: 8679705
    Abstract: An electrode for fuel cells including a catalyst layer containing a benzoxazine monomer, a catalyst and a binder, and a fuel cell employing the electrode. The electrode for the fuel cells contains an even distribution of benzoxazine monomer, which is a hydrophilic (or phosphoric acidophilic) material and dissolves in phosphoric acid but does not poison catalysts, thereby improving the wetting capability of phosphoric acid (H3PO4) within the electrodes and thus allowing phosphoric acid to permeate first into micropores in electrodes. As a result, flooding is efficiently prevented. That is, liquid phosphoric acid existing in large amount within the electrodes inhibits gas diffusion which; this flooding occurs when phosphoric acid permeates into macropores in the electrodes. This prevention of flooding increases the three-phase interfacial area of gas (fuel gas or oxidized gas)-liquid (phosphoric acid)-solid (catalyst).
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: March 25, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hee-young Sun, Seong-woo Choi, Tae-young Kim
  • Patent number: 8679704
    Abstract: A catalyst structure for an electrochemical cell includes a catalyst support structure, catalyst particles and an outer carbide film. The catalyst particles are deposited on the catalyst support structure. The outer carbide film is formed on the catalyst support structure. The outer carbide film surrounds the catalyst particles.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: March 25, 2014
    Assignee: United Technologies Corporation
    Inventors: Minhua Shao, Belabbes Merzougui
  • Publication number: 20140080037
    Abstract: An electrode for a fuel cell including a gas diffusion layer, and a catalyst layer bound to at least one surface of the gas diffusion layer and including a catalyst and a binder; and a fuel cell including the electrode.
    Type: Application
    Filed: April 23, 2013
    Publication date: March 20, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Suk-gi HONG, Jung-ock Park, Ki-chun KIL, Seong-eun PARK, Un-gyu PAIK
  • Publication number: 20140080038
    Abstract: The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in proton exchange membrane fuel cells (PEM-FCs).
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Sandia Corporation, Toyota Motor Corporation
    Inventors: Tochi Tudor Nwoga, Kazuo Kawahara, Wen Li, Yujiang Song, John A. Shelnutt, James E. Miller, Craig John Medforth, Yukiyoshi Ueno, Tetsuo Kawamura
  • Publication number: 20140080032
    Abstract: Electrically conductive meshes with pore sizes between about 20 and 3000 nanometers and with appropriately selected strand geometry can be used as engineered supports in electrodes to provide for improved performance in solid polymer electrolyte fuel cells. Suitable electrode geometries have essentially straight, parallel pores of engineered size. When used as a cathode, such electrodes can be expected to provide a substantial improvement in output voltage at a given current.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 20, 2014
    Applicants: Ford Motor Company, Daimler AG
    Inventors: Tatyana Soboleva, Jasna Jankovic, Mohammed Hussain, Jingwei Hu, Andreas Putz
  • Publication number: 20140065516
    Abstract: Disclosed are catalysts, especially catalytic anodes, useful for catalyzing reactions in fuel cells and in other environments. The catalysts have a substrate base made of iridium and/or ruthenium. There is a very thin coating on the substrate which is a mix of platinum and at least one metal selected from gold, palladium, iridium, rhodium, ruthenium, rhenium, and osmium. The anodes are resistant to carbon monoxide adulteration.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Emmanouil Mavrikakis, Anand U. Nilekar, Radoslav R. Adzic, Kotaro Sasaki
  • Publication number: 20140065496
    Abstract: The invention relates to gas diffusion electrodes for rechargeable electrochemical cells, which comprise at least one support material bearing at least one catalyst, wherein the support material comprises at least one compound selected from the group consisting of electrically conductive metal oxides, carbides, nitrides, borides, silicides and organic semiconductors. The present invention further relates to a process for producing such gas diffusion electrodes and also rechargeable electrochemical cells comprising such gas diffusion electrodes.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: BASF SE
    Inventors: Alexander Panchenko, Sigmar Braeuninger, Claudia Querner, Arnd Garsuch
  • Patent number: 8663866
    Abstract: A proton exchange membrane and a membrane electrode assembly for an electrochemical cell such as a fuel cell are provided. A catalytically active component is disposed within the membrane electrode assembly. The catalytically active component comprises particles containing a metal oxide such as silica, metal or metalloid ions such as ions that include boron, and a catalyst. A process for increasing peroxide radical resistance in a membrane electrode is also provided that includes the introduction of the catalytically active component described into a membrane electrode assembly.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: March 4, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Kimberly Gheysen Raiford, Junaid Ahmed Siddiqui
  • Publication number: 20140038078
    Abstract: A catalytic particle for a fuel cell includes a palladium nanoparticle core and a platinum shell. The palladium nanoparticle core has an increased area of {100} or {111} surfaces compared to a cubo-octahedral. The platinum shell is on an outer surface of the palladium nanoparticle core. The platinum shell is formed by deposition of an atomically thin layer of platinum atoms covering the majority of the outer surface of the palladium nanoparticle.
    Type: Application
    Filed: April 18, 2011
    Publication date: February 6, 2014
    Applicant: United Technologies Corporation
    Inventor: Minhua Shao
  • Patent number: 8642495
    Abstract: Catalysts of the invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. A catalyst includes a metal oxycarbonitride containing niobium and at least one metal M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and nickel. A process for making the catalyst involves a heat treatment.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: February 4, 2014
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura, Takuya Imai
  • Patent number: 8637208
    Abstract: The electrode for a fuel cell according to one embodiment of the present invention includes an electrode substrate and a catalyst layer disposed on the electrode substrate, the catalyst layer including metal nanoparticles, a binder and a catalyst. The metal nanoparticles in the catalyst layer improve electrical conductivity, and also have catalyst activity to implement a catalytic synergetic effect so as to provide a high power fuel cell.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: January 28, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: In-Hyuk Son, Sang-Il Han
  • Patent number: 8637193
    Abstract: In some embodiments, the present disclosure provides a fuel cell catalyst having a catalyst surface bearing a non-occluding layer of iridium. In some embodiments, the present disclosure provides a fuel cell catalyst comprising a catalyst surface bearing a sub-monolayer of iridium. In some embodiments, the present disclosure provides a fuel cell catalyst comprising a catalyst surface bearing a layer of iridium having a planar equivalent thickness of between 1 and 100 Angstroms. In some embodiments, the fuel cell catalyst comprises nanostructured elements comprising microstructured support whiskers bearing a thin film of nanoscopic catalyst particles. The layer of iridium typically has a planar equivalent thickness of between 1 and 100 Angstroms and more typically between 5 and 60 Angstroms. The fuel cell catalyst typically comprises no electrically conductive carbon material and typically comprises at least a portion of the iridium in the zero oxidation state.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: January 28, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. L. Steinbach, George D. Vernstrom, Mark K. Debe, Radoslav Atanasoski
  • Publication number: 20140023958
    Abstract: The present subject matter provides a method of manufacturing an electrode for a fuel cell, in which nanocarbons are grown on the surface of a substrate for a fuel cell using a process of simultaneously gasifying a platinum precursor and a carbon precursor, and simultaneously core-shell-structured platinum-carbon composite catalyst particles are highly dispersed between nanocarbons The subject matter also provides an electrode for a fuel cell, manufactured by the method. This method is advantageous in that an electrode for a fuel cell having remarkably improved electrochemical performance and durability can be manufactured by a simple process.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 23, 2014
    Inventors: Hee-Yeon Kim, Seok-yong Hong, Kwang-shik Myung
  • Patent number: 8632929
    Abstract: An oxygen reduction electrode and a fuel cell including the same are provided. A catalyst layer of the oxygen reduction electrode includes a metalloporphyrin derivative as an additive. Accordingly, the oxygen reduction electrode can increase oxygen concentration and can easily form a triple phase boundary by reducing a flooding phenomenon caused by an electrolyte. A fuel cell including the same is also provided.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: January 21, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Woo-sung Jeon, Sang-Hyuk Suh, Suk-gi Hong
  • Publication number: 20140017594
    Abstract: Provided is a fuel cell anode catalyst in which a platinum-ruthenium alloy is supported on a carbon material, and a manufacturing method therefor. The molar ratio (Pt:Ru) of the alloy is in the range of 1:1-5. When the coordination numbers of the Pt atom and the Ru atom of an atom site in the alloy, as measured by x-ray absorption fine structure, are expressed as N(Pt) and N(Ru) respectively, then N(Ru)/(N(Pt)+N(Ru)) in the platinum site is in the range of 0.8-1.1 times the theoretical value, and N(Pt)/(N(Ru)+N(Pt)) in the Ru site is in the range of 0.8-1.1 times the theoretical value. The average particle diameter of the alloy is in the range of 1-5 nm, and the standard deviation for the particle diameter is in the range of 2 nm or lower.
    Type: Application
    Filed: March 21, 2012
    Publication date: January 16, 2014
    Applicant: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Tatsuya Takeguchi, Kiyotaka Asakura
  • Patent number: 8617770
    Abstract: One embodiment of the invention includes a method including providing a cathode catalyst ink comprising a first catalyst, an oxygen evolution reaction catalyst, and a solvent; and depositing the cathode catalyst ink on one of a polymer electrolyte membrane, a gas diffusion medium layer, or a decal backing.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: December 31, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Susan G. Yan, Hubert A. Gasteiger, Paul Taichiang Yu, Wenbin Gu, Jingxin Zhang
  • Publication number: 20130344421
    Abstract: The present invention relates to hollow platinum nanoparticles with a diameter comprised between 3 and 20 nm which comprise a first central cavity and optionally at least one second cavity at the periphery of the first cavity, the shell of which is dense and single-crystal with a thickness comprised between 0.2 and 5 nm. The invention also relates to a method for manufacturing such nanoparticles, as well as to their use as an electrocatalyst in fuel cells.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 26, 2013
    Inventors: Audrey MONTAUT, Sandrine MOUTIN, Marian Julien CHATENET, Julien Frederic Christophe DURST, Frederic Thibaut Maillard
  • Patent number: 8609743
    Abstract: Disclosed is a method for producing an electrolyte membrane for fuel cells, which is characterized in that a radically polymerizable monomer is graft-polymerized to a resin without using a photopolymerization initiator by bringing the radically polymerizable monomer into contact with the resin after irradiating the resin with ultraviolet light. The electrolyte membrane for fuel cells obtained by ultraviolet irradiation graft polymerization has both excellent oxidation resistance and excellent mechanical characteristics. By using such an electrolyte membrane, there can be obtained a fuel cell exhibiting extremely high performance.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: December 17, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Mitsuhito Takahashi
  • Publication number: 20130330657
    Abstract: A catalyst layer for use in a fuel cell includes catalytic nanoparticles and a perfluorosulfonic acid (PFSA) ionomer. The catalytic nanoparticles have a palladium or palladium alloy core and an atomically thin layer of platinum on an outer surface of the palladium or palladium alloy core. The PFSA ionomer has an equivalent weight equal to or greater than about 830. A unitized electrode assembly is also described.
    Type: Application
    Filed: March 11, 2011
    Publication date: December 12, 2013
    Applicant: United Technologies Corporation
    Inventors: Krista Marie Shoemaker, Robert Mason Darling, Laura Roen Stolar, Elise Lorraine Izzo
  • Publication number: 20130330651
    Abstract: A catalyst layer including an electrocatalyst and an oxygen evolution catalyst, wherein the oxygen evolution catalyst includes a crystalline metal oxide including: (i) one of more first metals selected from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, magnesium, calcium, strontium, barium, sodium, potassium, indium, thallium, tin, lead, antimony and bismuth; (ii) one or more second metals selected from the group consisting of Ru, Ir, Os and Rh; and (iii) oxygen characterised in that: (a) the atomic ratio of first metal(s):second metal(s) is from 1:1.5 to 1.5:1 (b) the atomic ratio of (first metal(s)+second metal(s)):oxygen is from 1:1 to 1:2 is disclosed.
    Type: Application
    Filed: December 14, 2011
    Publication date: December 12, 2013
    Applicant: Johnson Matthey Fuel Cells Limited
    Inventors: David Thompsett, Edward Anthony Wright, Janet Mary Fisher, Enrico Petrucco
  • Publication number: 20130330650
    Abstract: A catalyst layer including: (i) a first catalytic material, wherein the first catalytic material facilitates a hydrogen oxidation reaction suitably selected from platinum group metals, gold, silver, base metals or an oxide thereof; and (ii) a second catalytic material, wherein the second catalytic material facilitates an oxygen evolution reaction, wherein the second catalytic material includes iridium or iridium oxide and one or more metals M or an oxide thereof, wherein M is selected from the group consisting of transition metals and Sn, wherein the transition metal is preferably selected from the group IVB, VB and VIB; and the first catalytic material is supported on the second catalytic material. The catalyst can be used in fuel cells, supported on electrodes or polymeric membranes for increasing tolerance to cell voltage reversal.
    Type: Application
    Filed: January 27, 2012
    Publication date: December 12, 2013
    Inventors: Jonathan David Brereton Sharman, Brian Ronald Charles Theobald, Edward Anthony Wright
  • Patent number: 8603400
    Abstract: A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 10, 2013
    Assignee: California Institute of Technology
    Inventors: Charles C. Hays, Sri R. Narayan
  • Publication number: 20130323624
    Abstract: The invention relates to an electrocatalyst for a fuel cell comprising carbon nanotubes as substrate, ruthenium oxide deposited on the substrate, platinum particles supported on the ruthenium oxide, and manganese dioxide layer coated on the surface of the ruthenium oxide-platinum particles deposited carbon nanotubes. The invention also relates to the method of preparing the electrocatalyst for a fuel cell comprising the steps of depositing ruthenium oxide on the surface of carbon nanotubes, depositing platinum particles on the ruthenium oxide, and coating a manganese dioxide layer on the surface of the ruthenium oxide-platinum particles deposited carbon nanotubes.
    Type: Application
    Filed: March 4, 2013
    Publication date: December 5, 2013
    Applicant: NANO AND ADVANCED MATERIALS INSTITUTE LIMITED
    Inventors: Hongjuan Wang, Feng Peng, Hao Yu, Jiadao Zheng
  • Patent number: 8597821
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. In the present invention, semiconductor fabrication methods are used to fabricate aluminum galvanic cells, wherein a catalytic material to be used as the cathode is deposited on a substrate and an insulating spacing material is deposited on the cathode and patterned using photolithography. The spacing material can either be used as a sacrificial layer to expose the electrodes or serve as a support for one of the electrodes. Similarly, the aluminum anode may be deposited and patterned on another substrate and bonded to the first substrate, or can be deposited directly on the insulating material prior to patterning. The cell is packaged and connected to a delivery system to provide delivery of the electrolyte when activation of the cell is desired.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: December 3, 2013
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Patent number: 8597853
    Abstract: An electrode catalyst for a fuel cell including a carbon-based carrier and an active metal supported in the carrier, for example, an electrode catalyst for a fuel cell includes a carrier and an active metal supported in the carrier, wherein the electrode catalyst has an X value of 95 to 100% in Equation 1. X(%)=(XPS measurement value)/(TGA measurement value)×100??[Equation 1] wherein, the XPS measurement value represents a quantitative amount of the active metal present on a surface of the electrode catalyst, the TGA measurement value represents the XPS measurement value using a monochromated Al K?-ray, which is the quantitative amount of total active metal supported in the catalyst.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 3, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myoung-Ki Min, Geun-Seok Chai, Hee-Tak Kim, Tae-Yoon Kim, Sang-Il Han, Kah-Young Song, Sung-Yong Cho
  • Patent number: 8592099
    Abstract: A membrane-electrode assembly for a fuel cell includes an anode and a cathode facing each other and a polymer electrolyte membrane interposed therebetween. At least one of the anode and the cathode includes a conductive electrode substrate and a catalyst layer formed thereon, and the catalyst layer includes a first catalyst layer including a first metal catalyst that grows from the polymer electrolyte membrane toward the electrode substrate and a second catalyst layer including a second metal catalyst covering the first catalyst layer.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 26, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-II Han, In-Hyuk Son
  • Publication number: 20130309595
    Abstract: Disclosed are metallized carbonaceous materials, processes for forming such materials, and electrodes and fuel cells comprising the disclosed materials.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 21, 2013
    Applicant: DREXEL UNIVERSITY
    Inventors: Yossef A. Elabd, Yury Gogotsi, Benjamin Eirich, Daniel Shay
  • Patent number: 8586263
    Abstract: The electrode for a fuel cell includes an electrode substrate and a catalyst layer disposed on the electrode substrate. The catalyst layer includes a first catalyst including a tungsten-containing compound and a second catalyst including a noble metal.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: November 19, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: In-Hyuk Son
  • Patent number: 8580462
    Abstract: The carbon fibers of this invention is characterized in that irreducible inorganic material particles in a mean primary particle size below 500 nm and reducible inorganic material particles in a mean primary particle size below 500 nm were mixed by pulverizing and then, the mixture was heat treated under the reducing atmosphere and metal particles in a mean particle size below 1 ?m were obtained, and the mixed powder of the thus obtained metal particles with the irreducible inorganic material particles are included in the carbon fibers.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: November 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Maki Yonetsu, Norihiro Tomimatsu, Hideyuki Oozu, Yasuhiro Goto, Yoshihiko Nakano, Shinichi Onodera
  • Publication number: 20130295486
    Abstract: A unitized electrode assembly for a fuel cell includes an anode electrode, a cathode electrode, an electrolyte and palladium catalytic nanoparticles. The electrolyte is positioned between the cathode electrode and the anode electrode. The palladium catalytic nanoparticles are positioned between the electrolyte and one of the anode electrode and the cathode electrode. The palladium catalytic nanoparticles have a {100} enriched structure. A majority of the surface area of the palladium catalytic nanoparticles is exposed to the UEA environment.
    Type: Application
    Filed: January 19, 2011
    Publication date: November 7, 2013
    Inventor: Minhua Shao
  • Patent number: 8574789
    Abstract: Embodiment of the present invention relate to dendrimers useful for application as catalysts, in particular as improved electrocatalysts for polymer electrolyte membrane fuel cells (PEM-FCs). Methods of preparing such catalysts are described. Examples include dendritic nanostructured metal catalysts, such as platinum and platinum-alloy catalysts.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: November 5, 2013
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Sandia Corporation
    Inventors: John A. Shelnutt, Wen Li, Yujiang Song, Michael A. Hickner
  • Publication number: 20130280637
    Abstract: Provided are a fuel cell electrode and a membrane electrode assembly in which catalyst particles are prevented from dissolving and the function of added catalyst can be sufficiently exerted when the fuel cell is operating at high current density. The fuel cell electrode includes an electrode material containing: an electrocatalyst having catalyst particles supported on a conductive support; a first ion conductor having anion conductivity; and a second ion conductor having a cation conductivity, the first and second ion conductors covering the electrocatalyst. The first ion conductor is provided to cover the catalyst particles, and the second ion conductor is provided to cover the first ion conductor and exposed part of the conductive support. The membrane electrode assembly includes the fuel cell electrode as at least one of the anode and cathode.
    Type: Application
    Filed: September 13, 2011
    Publication date: October 24, 2013
    Inventor: Norifumi Horibe
  • Publication number: 20130281290
    Abstract: The noble metal colloidal particles of the present invention are noble metal colloidal particles each including: a Pd colloidal particle; and Pt supported on the surface of the Pd colloidal particle. The noble metal colloidal particles are substantially free from a protective colloid. The Pd colloidal particles have an average particle diameter of 7 to 20 nm. The amount of the Pt supported on the surface of the Pd colloidal particle is 0.05 to 0.65 atomic layer thick, when the amount is expressed as the number of atomic layers of the Pt. The noble metal colloidal solution of the present invention can be obtained by dispersing these noble metal colloidal particles of the present invention in a solvent.
    Type: Application
    Filed: December 21, 2011
    Publication date: October 24, 2013
    Applicant: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Haruko Horiguchi, Kiyoshi Miyashita
  • Patent number: 8557470
    Abstract: A membrane/electrode assembly 10 for a polymer electrolyte fuel cell, which comprises an anode 15 having an anode catalyst layer 11 containing an anode catalyst and an ion-exchange resin, a cathode 16 having a cathode catalyst layer 13 containing a cathode catalyst and an ion-exchange resin, and a polymer electrolyte membrane 17 disposed between the anode 15 and the cathode 16, wherein the anode catalyst is one having platinum or a platinum alloy supported on a carbon, and the amount of platinum or a platinum alloy supported in the anode catalyst is from 1 to 25 mass %; and the anode catalyst layer 11 contains fine particles made of at least one member selected from iridium oxide, iridium, ruthenium oxide and ruthenium, and the fine particles have a specific surface area of from 2 to 50 m2/g.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 15, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Shinji Terazono, Kohta Yamada, Hiroshi Shimoda, Widjaja Hardiyanto
  • Patent number: 8557484
    Abstract: A Pt—Ni catalyst is provided which demonstrates an unusually high oxygen reduction mass activity. In some embodiments, the Pt—Ni catalyst is a Pt—Ni binary alloy. In some embodiments, the catalyst may be characterized as having a Pt fcc lattice parameter of less than 3.71 Angstroms or 0.371 nm. In some embodiments the catalyst has a Pt fcc lattice parameter of between 3.69 Angstroms (or 0.369 nm) and 3.73 Angstroms (or 0.373 nm). In some embodiments, the catalyst may be characterized as having a composition of close to PtxNi(1-x), where x is between 0.2 and 0.4. In some embodiments the catalyst comprises nanostructured elements comprising microstructured support whiskers bearing a thin film of nanoscopic catalyst particles comprising a catalyst material described above. The catalyst may be particularly useful as a fuel cell catalyst and more specifically as a fuel cell cathode catalyst.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: October 15, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, George D. Vernstrom, Andrew J. L. Steinbach