Abstract: An exemplary embodiment of a reversibly closable vessel suitable for the cultivation of cells and/or tissues can be provided. The exemplary vessel can comprise at least one reversibly closable aperture in the vessel wall, at least one wall provided in the interior of the vessel, with the wall being an integral part of the vessel. The interior can be divided into at least two compartments, whereas the wall comprises at least one of a hole, tube-like hole, opening, or a partially porous structure, which facilitates the flow of fluids from one compartment to another. At least one of the compartments can comprise at least one filler.
Abstract: The culture chamber of the present invention has a fluid-filled culture compartment in which cells, tissues and other biologicals are cultured. The culture compartment is transversed by one or more molecular weight cut-off membranes attached to a membrane carrier assembly. Incoming nutrients are transported through the membrane into the culture compartment and metabolic waste products are transported away from the fluid-filled culture compartment through the membrane and out the chamber outlet. Both reusable and disposable culture chambers are described for culturing cells, cell aggregates, particles, tissues and organoids.
Type:
Grant
Filed:
December 2, 2003
Date of Patent:
June 24, 2008
Assignee:
Synthecon, Inc.
Inventors:
Roger Akers, William J. Anderson, Adrian F. Dinges, Jr., Stephen S. Navran, Jr.
Abstract: A composting apparatus including an electric motor driven drum. The drum is provided with spaced fins on the inner surface and a supporting shaft that can include air holes to provide air within the confines of the drum. In this instance, tubes with holes are secured inside the drum and communicate with a source of air so that air passes into the tubes, and thus into the pile of composting material. The drum is provided with a sliding door that closes an opening in the drum. The door is secured at its ends for movement within a grooved mount attached onto a surface of the drum. The door is moved along a surface of the drum to open the door. The door can be held in position with a small opening or to a full open position, thus opening the entire opening in the surface of the drum.
Abstract: The invention provides a cell/tissue culture apparatus for applying a physical stimulation necessary for the proliferation and growth of a cell or tissue to a material to be cultivated serving as a cell or tissue to be cultivated, thereby realizing the culture as desired and protecting the material to be cultivated from contamination of various bacteria and so forth.
Abstract: The invention provides an advanced roller bottle system for cell culture that efficiently, continually, and automatically replenishes spent media with fresh media. The roller bottle system optimizes media use by removing spent media in response to a predetermined condition change and replenishing the spent media with fresh.
Abstract: Cell lysis may be brought about by contacting a suspension of cells with a lysis reagent such as sodium hydroxide solution; subsequent treatment enables organic molecules such as plasmid DNA to be separated from other cell components. Intimate mixing of the cell suspension with lysis reagent is achieved by passage through a fluidic vortex mixer arranged so the residence time of the cell suspension in the mixer is less than the time for lysis to be completed, and may be less than 0.1 seconds. Such a vortex mixer comprises a cylindrical chamber with an axial outlet duct and at least one tangential inlet duct, but with no internal baffles. The low shear stress to which the cell suspension is subjected minimizes loss of product through denaturation or fragmentation of the product, and indeed of contaminants. The subsequent treatment may also utilize a fluidic vortex mixer.
Abstract: An open, continuous system for culturing Chaetoceros sp. microalgae includes a large outdoor container and full strength sunlight as a light source. The container is preferably a fiberglass tank having an open top, a diameter of approximately 18 inches, and a height of about 5 feet. The container holds a culture medium having the following characteristics: a carbon dioxide controlled pH of about 8.2, a starting nitrogen concentration of at least 3.0 mg N/liter, a starting phosphorous concentration of at least 2.75 mg P/liter, a starting vitamin B12 concentration of at least 5 micrograms/liter, a starting iron chloride concentration of at least 0.3 mg/liter, a starting copper sulfate concentration of at least 0.01 mg/liter, a starting silicate concentration of at least 10 mg SiO2/liter, and a Na2EDTA concentration of 5 mg/liter. The medium is inoculated with a seed stock of Chaetoceros sp. microalgae and exposed direct sunlight.
Abstract: The invention relates to a bioreactor for microbial conversion of substances (2) in lump and/or paste form, comprising a reactor chamber (3) which is heat-insulated in relation to the environment and which comprises at least one reactor tank (4) with an essentially U-shaped cross-section; a segmented worm conveyor (5) located in the or each reactor tank (4), coaxially in relation to said reactor tank, said segmented worm conveyor(s) rotating in the semicircular area of the U-shaped cross section (5); devices (6) for guiding gas and/or liquid and at least one supply and delivery device for each of the substances to be converted. At least a proportion of the devices (6) for guiding gas and/or liquid is located in the U-shaped area of the reactor tank (4) beneath the axle (7) of the segmented worm conveyor (5).
Abstract: The gas dual-dynamic solid state fermentation technique consists of placing the solid materials to be fermented in an air environment with pulsating pressure and cyclic flow to carry out fermentation, the fermentation apparatus comprises a horizontal cylindrical tank with a quick door mechanism, in the tank are axially disposed rectangular spacer barrels of square cross-section constructed by four baffles, in the space between baffles and the tank wall are provided cooler tubes in parallel with the baffles, in the middle of the spacer barrels are provided vertically many sets of cooler tubes, on the lower baffles in the tank is provided axially an fixed track, on which are movable tray racks that can roll on the track, the tray racks having thereon a plurality of layers of trays, at the rear of the tank is provided a centrifugal blowers for forcing gas cycling in the tank.
Abstract: A biofilter reactor includes a housing, an axial pipe rotatably supported in the housing and including a plurality of perforations that open into the interior of the housing for collecting a treated fluid. The axial pipe includes an outlet in communication with the interior thereof for removing the treated fluid from the housing. A porous medium is disposed about the axial pipe and is rotatable therewith. The porous medium is made of a microbial foam.
Type:
Grant
Filed:
June 15, 2001
Date of Patent:
June 11, 2002
Assignee:
U.S. Army Corps of Engineers as represented by the Secretary
of the Army
Abstract: The present invention relates to a biopharmaceutical preservation system for cooling, thawing and freezing a medium. The biopharmaceutical preservation system includes a vessel and a structure removably mounted within the vessel. The structure includes an elongated pipe centrally positioned within the vessel and having one or more heat transfer members.
Type:
Application
Filed:
January 25, 2002
Publication date:
June 6, 2002
Inventors:
Richard Wisniewski, Leonidas Cartwright Leonard
Abstract: Photosynthetic organisms are grown in a tube having a gas inlet at one end and a gas outlet at the other. The tube containing a rotor having vanes adapted to wipe the inside surface, the tube being disposed at an angle to the horizontal in a bath containing liquid, the gas inlet being lowermost.
Abstract: An automated system and method is provided for cultivating bacteria in a fluid medium and thereafter selectively discharging the fluid medium, wherein an initial supply of the selected strain or strains of bacteria is combined with nutrients and water in a biogenerator in the presence of air to promote mixing and bacterial cultivation. The system and method utilize a vortex created by recirculation of the fluid medium to achieve aeration and mixing without substantial foaming. The system and method are particularly useful for supplying bacteria to control grease accumulation in restaurant grease traps. The system and method use a biogeneration chamber which has a cylindrical sidewall and surface on the inner side. Further, the chamber has a top and a conical bottom. The top has inlet ports and a vent port. There is also a outlet port in the conical bottom.
Type:
Grant
Filed:
January 8, 1999
Date of Patent:
January 1, 2002
Assignee:
NCH Corporation
Inventors:
Dale Vilmer Kiplinger, Judith Gayle Pruitt, Jose Eduardo Evaro, Robert Clarence Pearce, III
Abstract: The present invention relates to a process of preparing commercial quantities of glucose and/or fructose from sucrose, a process of preparing commercial quantities of glucose and a polyfructan from sucrose, a reactor for practicing same, a process of preparing commercial quantities of fructose and a polyglucan from sucrose and a reactor for practicing same.
Type:
Application
Filed:
June 5, 2001
Publication date:
December 27, 2001
Applicant:
MAGNOLIA NUTRITIONALS, L.L.C.
Inventors:
Steven J. Catani, Stephen A. Roth, Edward J. McGuire, Juan L. Navia
Abstract: A tissue engineering bioreactor is disclosed for growing three-dimensional tissue. Cells are seeded onto a mesh and provided with two media flows, each contacting a different side of the cells. The media flows contain different concentrations of nutrients, allowing nutrients to be delivered to the cells by diffusion gradient. The bioreactor can be used to grow liver tissue, and designed as an extracorporeal liver assist device in which blood or plasma is exposed to the three-dimensional liver tissue. The blood or plasma from a patient directed to flow against the liver tissue. The liver tissue is further exposed on its opposite side to media providing nutrients and gases. The device provides porous boundaries between the blood or plasma, tissue, and media; allowing nutrient and protein delivery by diffusion gradient to dialyze a patient's blood.
Type:
Grant
Filed:
December 21, 1999
Date of Patent:
April 17, 2001
Assignee:
Advanced Tissue Sciences
Inventors:
Brian A. Naughton, Craig R. Halberstadt, Benson Sibanda
Abstract: The present invention relates to a thermal transfer method for heating or cooling a biopharmaceutical medium. A structure is positioned in the container. A heat exchange member is coupled to an interior surface of the container wherein a distal end of the heat exchange member is placed in close proximity to the structure to allow formation of a thermal transfer bridge that conducts heat into or out of the medium.
Type:
Grant
Filed:
July 17, 1997
Date of Patent:
March 6, 2001
Assignee:
Integrated Biosystems, Inc.
Inventors:
Richard Wisniewski, Leonidas Cartwright Leonard
Abstract: An air emissions treatment system is characterized by a moving biomass filter element which alternately passes through the air being treated and a nutrient laden liquid to remove pollutants from the air. The filter element is in the form of one or more endless loops which are conveyed within an enclosed housing. As a section of the filter element passes through the air, it withdraws pollutants therefrom. When the filter passes through the liquid, it receives moisture and nutrients and releases the pollutants into the liquid.