Using Multifield Media Patents (Class 435/33)
  • Patent number: 9291614
    Abstract: A method of assaying wound healing can include: growing cells on the matrix in the first flow channel; introducing an agent that removes the matrix from the junction; introducing a matrix material into the second flow channel so as to form the second matrix in the second flow channel and junction; and detecting cellular migration into the junction onto the second matrix. The agent that removes the matrix can include a biomolecule or chemical agent. The method can include removing cells in the matrix in the junction before introducing the matrix material into the second flow channel. A bioactive agent can be introduced into the junction to determine if it modulates cellular migration and/or clot formation into the intersection openings of tissue and vascular channels.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: March 22, 2016
    Assignee: CFD RESEARCH CORPORATION
    Inventors: Balabhaskar Prabhakarpandian, Kapil Pant
  • Patent number: 9164019
    Abstract: A system for the automated dilution and delivery of mixtures of diluent and liquid samples to a particle counter comprises a container positioning member for receiving and retaining congruent sample containers with a volume of liquid sample therein. An automated diluent pumping mechanism draws a respective volume of a diluent from a diluent source and introduces the diluent into the each sample container for mixing with the unknown volume of liquid sample within each sample container to together form a mixture that is substantially equal to a pre-determined threshold volume. A mixer agitates the mixture in the sample containers. An automated mixture pumping mechanism sequentially draws a respective volume of mixture from the sample containers and delivers the drawn volume of the mixture to the optical particle counter for testing.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: October 20, 2015
    Assignee: CINRG Systems Inc.
    Inventor: Alistair Geach
  • Patent number: 9164083
    Abstract: The invention relates to a microfluidic system for controlling a card for the concentration of molecules capable of stimulating a target, for example formed by an assembly of living cells, characterized in that the system comprises a microfluidic device (1) comprising: n?1 microfluidic channel(s) (4, 40), the or each channel being provided with at least one inlet orifice for at least one fluid and with at least one outlet orifice for this fluid; n?2 openings (47, 470) formed in the microfluidic channel or distributed in the various microfluidic channels, said openings being arranged in one and the same plane so that they form a network having at least one dimension in this plane, the numbers n of microfluidic channel(s) and n of openings being linked by the relationship (I) with 1?i?n and n the number of openings for the channel c; at least one microporous membrane (5) covering the network of openings, the target being intended to be positioned on the side of the membrane which is opposite the microfluidic ch
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 20, 2015
    Assignees: Centre National de la Recherche Scientifique-CNRS, Ecole Normale Supérieure, Univerité Pierre et Marie Curie (Paris 6), Fonds de l'ESPCI-Georges Charpak, Université Bordeaux Segalen
    Inventors: Maxime Dahan, Mathieu Morel, Jean-Christophe Galas, Vincent Studer, Denis Bartolo
  • Publication number: 20150147775
    Abstract: A method that includes the steps: inoculating nutrient agar with bacterial stock to form a culture; incubating the culture to form a first incubated culture; incubating a portion of the first culture with nutrient agar to form a second culture; incubating a portion of the second culture to form a third culture; incubating the third culture to form an inoculated test plate; forming an inoculum by suspending bacteria from the inoculated test plate in a buffered test solution, adjusting the pH to ˜7 to 8, and adding organic soil at a concentration of approximately 10% to 30% by weight; inoculating a silver-containing surface region of a test carrier with a portion of the inoculum; incubating the inoculated test carrier; washing the test carrier in a neutralizing solution to form a residual test inoculum; and calculating the percent reduction in the number of surviving bacterial colonies in the residual test inoculum.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 28, 2015
    Inventors: Derek Michael Fiacco, Jeffrey Glenn Lynn, Kaitlyn Mary Matias, Florence Christine Monique Verrier, Ying Wei
  • Patent number: 8673590
    Abstract: The invention provides a microorganism having an ability to produce a protein having a dipeptide synthesizing activity and in which an activity of the protein to transport a dipeptide in a microbial cell to theoutside of the microbial cell is higher than that of a parental strain.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: March 18, 2014
    Assignee: Kyowa Hakko Bio Co., Ltd.
    Inventors: Mikiro Hayashi, Kazuhiko Tabata, Makoto Yagasaki, Yoshiyuki Yonetani
  • Patent number: 8389233
    Abstract: Provided are methods for sampling, testing and validating test lots, comprising: assembling a plurality of product portions from each of a plurality of test lots and combining the portions to provide a corresponding set of test lot samples; enriching the test lot samples; removing portions of each enriched sample, and combining the removed portions to provide a modular composite sample; and testing of the modular composite sample, and individual testing of the enriched test lot samples, using at least one suitable detection assay for a target microbe or organism, wherein when such testing is negative all test lots are validated, and wherein when such testing is positive with respect to the modular composite sample, or with respect to an individual enriched test lot sample, individual test lots may nonetheless yet be validated by further testing of a portion of respective initially-negative enriched test lot samples and obtaining negative results.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: March 5, 2013
    Assignee: Institute for Environmental Health, Inc.
    Inventor: Mansour Samadpour
  • Patent number: 8377685
    Abstract: A microfluidic method and device for testing and analyzing chemotaxis by providing a stable, static fluid gradient. The device includes a sink reservoir for receiving biological cellular material and a source reservoir for receiving a chemoattractant. The biological cellular material migrates through a low fluid volume microfluidic gradient channel located between the source and sink reservoirs. The fluid in the gradient channel is static and stable due to a high fluid volume closed circuit bypass microfluidic channel also in fluid communication with the source and sink reservoirs, whereby the bypass channel relieves any pressure differential imparted across the gradient channel.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: February 19, 2013
    Assignee: BellBrook Labs, LLC
    Inventors: Ivar Meyvantsson, John Majer, Steven Hayes
  • Publication number: 20130029371
    Abstract: The present invention is directed to a disk diffusion assay for determining susceptibility of bacteria to a glycopeptide antibiotic. The assay includes improvements over conventional assays due to the inclusion of polysorbate 80 and Span 80 in the antibacterial solution used to impregnate paper disks used in the assay.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 31, 2013
    Applicant: THE MEDICINES COMPANY
    Inventor: Adam BELLEY
  • Publication number: 20120329675
    Abstract: This invention is an apparatus and method for susceptibility testing one or more biofilms, for selecting one or more anti-microbial combinations with efficacy against the biofilm, and/or in treating a disease or condition mediated by the biofilm The invention includes methods for the selection of antibiotic combinations with efficacy against a specific microbial type and for the formulation of microbe-specific test plates. The invention also includes an assay system to test patient specific isolates for sensitivity to the anti-microbial combinations.
    Type: Application
    Filed: July 20, 2010
    Publication date: December 27, 2012
    Inventors: Merle E. Olson, Howard Ceri
  • Patent number: 8293496
    Abstract: Microorganisms, particularly bacteria, are identified and characterized on the basis of a mass spectrometric measurement of their protein profiles with ionization by matrix-assisted laser desorption. In order to measure the microbial resistance to antibiotics, the protein profiles of microorganisms are measured after cultivation for a short time duration in nutrient media containing the antibiotics.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: October 23, 2012
    Assignee: Bruker Daltonik GmbH
    Inventors: Vadim Markovich Govorun, Jochen Franzen
  • Patent number: 8110375
    Abstract: A high-throughput, anchorage-independent assay is described, which screens compounds for inhibition of cancer cell growth. The assay utilizes a three-dimensional matrix or semi-solid media transfected with the subject compound, and enables live colony growth determination and imaging.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: February 7, 2012
    Assignee: Falcon Genomics, Inc.
    Inventor: Rula Abbud-Antaki
  • Patent number: 8026080
    Abstract: The present invention includes devices, systems, and methods for assaying cells using cell-substrate impedance monitoring. In one aspect, the invention provides cell-substrate impedance monitoring devices that comprise electrode arrays on a nonconducting substrate, in which each of the arrays has an approximately uniform electrode resistance across the entire array. In another aspect, the invention provides cell-substrate monitoring systems comprising one or more cell-substrate monitoring devices comprising multiple wells each having an electrode array, an impedance analyzer, a device station that connects arrays of individual wells to the impedance analyzer, and software for controlling the device station and impedance analyzer. In another aspect, the invention provides cellular assays that use impedance monitoring to detect changes in cell behavior or state. In some preferred aspects, the assays are designed to investigate the affects of compounds on cells, such as cytotoxicity assays.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 27, 2011
    Assignee: Acea Biosciences, Inc.
    Inventors: Xiaobo Wang, Yama A. Abassi, Xiao Xu, Jiangbo Gan
  • Publication number: 20110091930
    Abstract: A well-based flow system for cell culture is described which provides for flow of culture containing compounds for drug screening to be exposed to cells seeded on a membrane. The flow of medium may be planar or radial and means are provided for the removal of waste media through fluid outlets in fluid communication with the assay well plates through conduits. Methods of using the system for cell culture and drug toxicity screening are also provided including coculturing cells such as hepatocytes, stem cells, fibroblasts and smooth muscle cells and selectively exposing cells to test compounds.
    Type: Application
    Filed: February 13, 2009
    Publication date: April 21, 2011
    Applicant: The General Hospital Corporation
    Inventors: Joseph P. Vacanti, Howard I. Pryor, Craig M. Neville, Ira Spool
  • Patent number: 7807439
    Abstract: The invention concerns a medium for specific detection of Staphylococcus aureus and/or discrimination between positive-coagulase Staphylococcus and negative-coagulase enabling Staphylococcus to isolate bacteria of the genus staphylococcus and identify the Staphylococcus aureus species, which use at least an enzymatic substrate, preferably a chromogenic or fluorescent agent, and still more preferably consisting of an indoxyl or naphthol base. The invention also concerns a method for identifying, and optionally counting, Staphylococcus aureus using such a medium. It consists of a Staphylococcus aureus culture medium and at least an enzymatic substrate enabling testing of an ?-glucosidase activity. The invention is particularly applicable in the field of diagnosis.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: October 5, 2010
    Assignee: Biomerieux S.A.
    Inventors: Christine Cotte, Sylvain Orenga, Andréa Re, Denis Robichon
  • Publication number: 20100028863
    Abstract: A high-throughput, anchorage-independent assay is described, which screens compounds for inhibition of cancer cell growth. The assay utilizes a three-dimensional matrix or semi-solid media transfected with the subject compound, and enables live colony growth determination and imaging.
    Type: Application
    Filed: July 2, 2007
    Publication date: February 4, 2010
    Applicant: FALCON GENOMICS, INC.
    Inventor: Rula Abbud-Antaki
  • Patent number: 7625719
    Abstract: A method of using a microsample treatment apparatus and an apparatus for detecting chemotaxis of cells and separating chemotactic cells includes a number of wells that are connected to each other via a part having resistance to fluids. The wells are each provided with tubes for injecting/sucking a sample and, if necessary, tubes for relieving pressure changes at the injection/suction. The tubes have a space in common at the top ends thereof in which a liquid can be held.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: December 1, 2009
    Assignee: ECI, Inc.
    Inventors: Shiro Kanegasaki, Yuji Kikuchi
  • Patent number: 7537913
    Abstract: A high-throughput, anchorage-independent assay is described, which screens compounds for inhibition of cancer cell growth. The assay utilizes a three-dimensional matrix or semi-solid media transfected with the subject compound, and enables live colony growth determination and imaging.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: May 26, 2009
    Assignee: Falcon Genomics, Inc.
    Inventor: Rula Abbud-Antaki
  • Publication number: 20080145879
    Abstract: The invention relates to the use of a combination of two culture media for distinguishing at least three groups of microorganisms in a biological sample, comprising: a first group of microorganisms, belonging to a first taxon of microorganisms and comprising at least a first mechanism of resistance to a first treatment; a second group of microorganisms, belonging to a second taxon of microorganisms and comprising at least a second mechanism of resistance to a second treatment; a third group of microorganisms, that are not resistant to said first and second treatments, said combination of two culture media comprising: a. at least a first substrate for detecting at least a first enzymatic or metabolic activity of said first group of microorganisms; b. at least two markers for differentiating the first group of microorganisms and the second group of microorganisms; c. at least one antimicrobial that is active on said third group of microorganisms.
    Type: Application
    Filed: February 9, 2006
    Publication date: June 19, 2008
    Applicant: BIOMERIEUX
    Inventors: Sylvain Orenga, Celine Roger-Dalbert, John Perry, Vanessa Chanteperdrix, Gilles Zambardi, Nathalie Bal
  • Patent number: 7374906
    Abstract: The present invention discloses a device for monitoring chemotaxis or chemoinvasion. The present invention further provides a flexible assay system and numerous assays that can be used to test biological interactions and systems. Laminar flow gradients are employed that mimic gradient situations present in vivo.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: May 20, 2008
    Assignee: Surface Logix, Inc.
    Inventors: Gregory L. Kirk, Emanuele Ostuni, Enoch Kim, Olivier Schueller, Paul Sweetnam
  • Patent number: 7364899
    Abstract: The present invention discloses a device for monitoring haptotaxis including a housing defining a chamber. The chamber comprises: a first well region including at least one first well, the first well configured to receive a test agent therein and further including biomolecules immobilized therein; a second well region including at least one second well, the second well region configured to receive a sample comprising cells therein and further being horizontally offset with respect to the first well region in a test orientation of the device; and a channel region including at a least one channel connecting the first well region and the second well region with one another, the channel region further including biomolecules immobilized therein.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 29, 2008
    Assignee: Surface Logix Inc.
    Inventors: Gregory L. Kirk, Matthew Brown, Emanuele Ostuni, Enoch Kim, Bernardo D. Aumond, Olivier Schueller, Paul Sweetnam, Brian Benoit
  • Patent number: 7364874
    Abstract: Van A and Van B vancomycin resistant enterococci detection media as well as a method of selectively detecting Van A and Van B vancomycin resistant enterococci clinically important in vancomycin resistant enterococci from testing microorganisms or specimens using the media. The media for selectively detecting Van A and Van B VRE from testing microorganisms and specimens are media where enterococci can grow where vancomycin, D-cycloserine and D-lactate are added. Preferably 32-256 ?g/ml of vancomycin, 1-64 ?g/ml of D-cycloserine, and 0.025-0.8 mol/l of sodium lactate are added to culture medium where enterococci can grow.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: April 29, 2008
    Assignee: Tokyo Women's Medical University
    Inventors: Kyoichi Totsuka, Ken Kikuchi, Yutaka Uzawa
  • Publication number: 20080038770
    Abstract: Disclosed are enriched preparations of neuroblastoma tumor initiating cells (NB TICs). The NB TICs are capable of self-renewal, initiating neuroblastoma tumor growth in vivo and are capable of being passaged in high frequency. These NB TICs have chromosomal abnormalities and are capable of giving rise to secondary tumor spheres. Methods are also disclosed for preparing the enriched preparations of NB TICs, such as from neuroblastoma tumor tissue and metastasized bone marrow. Also disclosed are methods of screening candidate substances to identify therapeutic agents for the treatment of neuroblastoma. Methods are also provided for screening a sample for neuroblastoma, as well as for screening a sample to identify the stage of neuroblastoma present. Kits are also provided for selecting appropriate anti-neuroblastoma compounds for a patient, and utilize isolated compositions of the patients' neuroblastoma tumor initiating cells. In this manner, a customized medicinal profile for the patient may be devised.
    Type: Application
    Filed: November 22, 2006
    Publication date: February 14, 2008
    Applicant: Hospital For Sick Children
    Inventors: Loen M. Hansford, Kristen M. Smith, Alessandro Datti, Freda M. Miller, David R. Kaplan
  • Patent number: 7312046
    Abstract: A nanoporous silicon support comprising a plurality of macropores is provided to function as a bioreactor for the maintenance of cells in culture in a differentiated state. Each cell or group of cells is grown in an individual macropore and is provided with nutrients by means such as perfusion of the nanoporous silicon support with fluid. The macropores may be between 0.2 and 200 microns and be coated with a substance that promotes cell adhesion. The support containing cells may be used to used to test compounds for biological activity, metabolism, toxicity, mutagenicity, carcinogenicity or to characterize novel or unknown comounds. The supports are sufficiently robust that they may be assembled into larger reactors to simulate organ function or be used for the production of biomolecules.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: December 25, 2007
    Assignee: The Regents of the University of California
    Inventors: Vicki I. Chin, Sangeeta N. Bhatia, Michael J. Sailor, Boyce E. Collins
  • Patent number: 7297531
    Abstract: An article for holding a liquefied sample for the quantification of biological material in the sample includes a device having a reaction chamber enclosing a volume therein, the reaction chamber having an upper opening through which a liquefied sample can be poured and a plurality of discrete non-permeable compartments, each of the compartments having an upper rim and being configured and dimensioned to hold separate aliquots of a liquefied sample therein; and a gasket lid removably secured to the top of the device, the gasket lid being configured and dimensioned for sealing the upper rim of each compartment to prevent liquid communication between the compartments.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: November 20, 2007
    Assignee: IDEXX Laboratories, Inc.
    Inventors: Ross Bryan Goldman, David Edward Townsend, Kenneth E. Smith, Kathleen R. McCarthy
  • Patent number: 7270996
    Abstract: The present invention provides a feedback controlled bioculture platform for use as a precision cell biology research tool and for clinical cell growth and maintenance applications. The system provides individual closed-loop flowpath cartridges, with integrated, aseptic sampling and routing to collection vials or analysis systems. The system can operate in a standard laboratory or other incubator for provision of requisite gas and thermal environment. System cartridges are modular and can be operated independently or under a unified system controlling architecture, and provide for scale-up production of cell and cell products for research and clinical applications. Multiple replicates of the flowpath cartridges allow for individual, yet replicate cell culture growth and multiples of the experiment models that can be varied according to the experiment design, or modulated to desired cell development of cell culture end-points.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: September 18, 2007
    Inventors: Thomas F. Cannon, Laura K. Cohn, Peter D. Quinn
  • Patent number: 7262021
    Abstract: Media, kits, and methods are disclosed for use in processes requiring microbial culture. More specifically, the invention provides carrageenan-stabilized agar-based microbial culture media for kits and methods. The media and kits of the invention possess increased shelf-life stability over currently available agar-based media. Further, the media, kits, and methods are useful in the manual determination of identification and antimicrobial susceptibility testing of the pathogen/s contained in a specimen or sample in periods of about 12 to 24 hours. The stabilized culture media of the invention are useful in a broad variety of applications.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: August 28, 2007
    Inventor: Read Taintor
  • Patent number: 7186565
    Abstract: A method and apparatus for testing an aqueous or gaseous environment for the presence of at least one chemical is provided in order to determine the toxicity of the chemical and optionally, the quantity and identity of the chemical.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: March 6, 2007
    Inventors: Kristin Schirmer, Niels Bols, Mario Schirmer
  • Patent number: 7172859
    Abstract: The present invention relates to high-throughput systems and methods to prepare a large number of component combinations, at varying concentrations and identities, at the same time, and high-throughput methods to test tissue barrier transfer, such as transdermal transfer, of components in each combination. The methods of the present invention allow determination of the effects of inactive components, such as solvents, excipients, enhancers, adhesives and additives, on tissue barrier transfer of active components, such as pharmaceuticals. The invention thus encompasses the high-throughput testing of pharmaceutical compositions or formulations in order to determine the overall optimal composition or formulation for improved tissue transport, such as transdermal transport.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 6, 2007
    Assignee: Transform Pharmaceuticals, Inc.
    Inventors: Michael J. Cima, Hongming Chen, J. Richard Gyory
  • Patent number: 7138270
    Abstract: An assay device (1) comprises a base (2) and glass plate lid (3). The base (2) has an array of shallow microwells (4), each having a flat rim (9), all rims being co-planar. When the lid (3) is placed on the base (2) a thin capillary gap (10) is formed on each rim, acting as a liquid seal for a microwell chamber. The liquid is excess sample liquid and further excess is accommodated in overspill cavities (6) between the microwells (4). Because of the liquid seal and shallow configuration the benefits of microfluidic devices are achieved together with the handling convenience and use of conventional detection equipment of conventional microplate devices.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: November 21, 2006
    Assignee: University College Cork—National University of Ireland, Cork
    Inventors: Dmitri Papkovsky, John Charles Alderman, Rosemary O'Connor
  • Patent number: 7106889
    Abstract: An image analysis system for automated reading of printed multi-character codes, for example on antibiotic susceptibility testing disks, makes use of an orientation means, for example an underline printed beneath the code, to bring the code or its image into canonical alignment with an optimum reading direction for the code. Automated reading of the codes on randomly-orientated AST disks is therefore possible.
    Type: Grant
    Filed: July 1, 1998
    Date of Patent: September 12, 2006
    Assignee: Oxoid Limited
    Inventors: Eric Gordon Mahers, Stephen Cyril Joyce, Shail Patel, Derwent Swaine, Roger Fowler
  • Patent number: 7026137
    Abstract: A screening method of identifying a compound for treating hepatitis. Also disclosed is a method for evaluating responsiveness of a subject having hepatitis to a drug.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: April 11, 2006
    Assignee: Chang Gung University
    Inventor: Chau-Ting Yeh
  • Patent number: 7011939
    Abstract: A method and apparatus for running a plurality of tests concurrently to obtain data relating to the electrophysiological properties of receptors and channels in biological membranes of test subjects, such as, for example, Xenopus oocytes. The invention further provides software for controlling, acquiring, and recording data relating to electrophysiological properties of receptors and channels in biological membranes of test subjects, such as, for example, oocytes. This invention increases the throughput rate for experiments and assays employing receptors and ion channels expressed in biological membranes of test subjects, such as, for example, oocytes. In the case of an oocyte, these receptors and channels may be natively expressed (endogenous), may be placed into the oocyte (exogenous), or may be expressed from other RNA or DNA previously placed into the oocyte (exogenous).
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: March 14, 2006
    Assignee: Abbott Laboratories
    Inventors: Jonathan D. Trumbull, Daniel C. Bertrand, Clark A. Briggs, David G. McKenna, Eugene S. Maslana, David P. Blanchard, Jeffrey Y. Pan, Peter Bojan, Thomas A. Nemcek
  • Patent number: 6908760
    Abstract: The assay plate includes a substrate having an substrate surface and at least one raised pad extending from the substrate surface. The raised pad includes a substantially planar sample receiving surface configured for holding a sample thereon for in-situ experimentation. The sample receiving surface preferably has at least one sharp edge at the junction between a sidewall coupling the sample receiving surface to the substrate surface. The sample receiving surface is preferably a circle, oval, square, rectangle, triangle, pentagon, hexagon, or octagon shape that is sized to hold a predetermined volume of the sample. A method of using the above described assay plate is also provided. Once a raised pad extending from a substrate is formed, a sample is deposited on the raised pad. Experiments are subsequently performed using the sample on the raised pad.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: June 21, 2005
    Assignee: Transform Pharmaceuticals, Inc.
    Inventors: Michael Cima, Wendy Pryce Lewis, Javier Gonzalez-Zugasti, J Richard Gyory, Anthony V. Lemmo, Julie Monagle
  • Patent number: 6872545
    Abstract: A microbiological analyzer for performing ID tests on samples using colorimetric techniques to generate a pixel-wise colored map of a test region of interest and also performing MIC tests on samples using nephelometric techniques to determine which antimicrobial agents are most effective against a particular microorganism.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: March 29, 2005
    Assignee: Dade Behring Inc.
    Inventors: Christopher Dallas Griner, Thomas Kenneth McDowell
  • Patent number: 6852526
    Abstract: The transdermal assay apparatus includes first, second, and third members. The first member has one or more sample surfaces, each of which is configured to receive a sample thereon. The second member defines one or more reservoirs, each of which has an opening on a surface of the second member. Each sample surface is substantially the same size as each opening. The transdermal assay apparatus also includes a magnetic clamp configured to clamp a tissue specimen between the sample surface and the opening. The magnetic clamp preferably includes a magnet having a strength that is selected based on the clamping force required between the first member and the second member. The invention also provides a method for using a transdermal assay apparatus.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: February 8, 2005
    Assignee: Transform Pharmaceuticals, Inc.
    Inventors: Michael J. Cima, Hongming Chen, J. Richard Gyory
  • Publication number: 20040241783
    Abstract: An assay device (1) comprises a base (2) and glass plate lid (3). The base (2) has an array of shallow microwells (4), each having a flat rim (9), all rims being co-planar. When the lid (3) is placed on the base (2) a thin capillary gap (10) is formed on each rim, acting as a liquid seal for a microwell chamber. The liquid is excess sample liquid and further excess is accommodated in overspill cavities (6) between the microwells (4). Because of the liquid seal and shallow configuration the benefits of microfluidic devices are achieved together with the handling convenience and use of conventional detection equipment of conventional microplate devices.
    Type: Application
    Filed: July 7, 2004
    Publication date: December 2, 2004
    Inventors: Dmitri Papkovsky, John Charles Alderman, Rosemary O'Connor
  • Publication number: 20040142411
    Abstract: The present invention discloses a device for monitoring chemotaxis or chemoinvasion. The present invention further provides a flexible assay system and numerous assays that can be used to test biological interactions and systems. Laminar flow gradients are employed that mimic gradient situations present in vivo.
    Type: Application
    Filed: October 21, 2003
    Publication date: July 22, 2004
    Inventors: Gregory L. Kirk, Emanuele Ostuni, Enoch Kim, Olivier Schueller, Paul Sweetnam
  • Publication number: 20040142408
    Abstract: A device for monitoring leukocyte migration is provided. The invention also provides a method of using the device to monitor leukocyte migration in the presence of physiological shear flow and therefore simulate physiological conditions of a blood vessel in vivo. The invention further provides a method of using the device to high-throughput screen a plurality of test agents. The present invention further provides a flexible assay system and numerous assays that can be used to test biological interactions and systems. Laminar flow gradients are employed that mimic gradient situations present in vivo.
    Type: Application
    Filed: October 21, 2003
    Publication date: July 22, 2004
    Inventors: Gregory L. Kirk, Emanuele Ostuni, Enoch Kim, Olivier Schueller, Paul Sweetnam
  • Publication number: 20040002131
    Abstract: The present invention discloses a device for monitoring chemotaxis or chemoinvasion including a housing comprising: a support member and a top member, the top member mounted to the support member by being placed in substantially fluid-tight conformal contact with the support member. The support member and the top member are configured such that they together define a discrete chamber adapted to allow a monitoring of chemotaxis or chemoinvasion therein. The discrete chamber includes a first well region including at least one first well, the at least one first well configured to received a test agent therein; a second well region including at least one second well, the at least one second well configured to receive a sample comprising cells therein; and a channel region including at least one channel connecting the first well region and the second well region with one another. The second well region is preferably horizontally offset with respect to the first well region in a test orientation of the device.
    Type: Application
    Filed: March 12, 2003
    Publication date: January 1, 2004
    Inventors: Enoch Kim, Gregory Kirk, Matthew Brown, Emanuele Ostuni
  • Patent number: 6670145
    Abstract: An improved method for detection of total coliforms and E. coli comprising a broth containing an ingredient that will encourage growth and repair of injured coliforms, buffers to maintain a pH in the range of 6.5-8, at least one agent that suppresses growth of gram positive cocci and spore-forming organisms, at least one active agent that will suppress growth of non-coliform gram negative bacteria, and at least one chromogen or fluorogen has been used effectively and is cost effective. In the preferred embodiment, both a fluorogen and chromogen were used. Preferred methods include use of filter and/or plates containing the growth-promoting ingredients and the indicators.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: December 30, 2003
    Assignee: The United States of America as represented by the Administrator of the Environmental Protection Agency
    Inventors: Kristen P. Brenner, Clifford C. Rankin, Yvette R. Roybal-McKenna, Alfred P. Dufour
  • Patent number: 6649365
    Abstract: Compounds of formula X—NH—R, in which X represents an optionally substituted indol-3-yl group and R represents the acyl residue of an amino acid or of a peptide, enabling the detection of peptidase activity in a micro-organism culture medium, including a gelled medium, by forming a stain or fluorescence in the medium.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: November 18, 2003
    Assignee: Bio Merieux
    Inventor: Sylvain Orenga
  • Patent number: 6632656
    Abstract: Apparatus and methods are provided for performing cell growth and cell based assays in a liquid medium. The apparatus comprises a base plate supporting a plurality of micro-channel elements, each micro-channel element comprising a cell growth chamber, an inlet channel for supplying liquid sample thereto and an outlet channel for removal of liquid sample therefrom, a cover plate positioned over the base plate to define the chambers and connecting channels, the cover plate being supplied with holes to provide access to the channels. Means are incorporated in the cell growth chambers, for cell attachment and cell growth. In particular, the invention provides a rotatable disc microfabricated for performing cell growth and cell based assays. The apparatus and method can be used for the growth of cells and the detection and measurement of a variety of biochemical processes and products using non-invasive techniques, that is techniques which do not compromise the integrity or viability of cells.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: October 14, 2003
    Assignee: Gyros AB
    Inventors: Nicholas Thomas, Per Andersson
  • Patent number: 6627432
    Abstract: A microbiological test array with a generally flat base having a plurality of upwardly projecting microwells connected by a microchannel to an open reservoir formed in a top surface generally parallel to the base of the test array. The reservoir has an opening to permit an inoculum-broth liquid solution to flow from the reservoir through the microchannel, to a sacrificial evaporation well having an air vent port adapted to control a vacuum filling process, and subsequently to be distributed into each of the plurality of microwells.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: September 30, 2003
    Assignee: Dade Behring Inc.
    Inventors: Edward Francis Farina, Samuel Garfield Ferguson, Jr., Peter Louis Gebrian, Frank Stephen Krufka, John Charles Mazza, Nicholas Michael Shmel, Jr.
  • Patent number: 6611765
    Abstract: The invention concerns a method for analyzing results of antimicrobial susceptibility tests of micro-organisms, the test consisting in summarily identifying which species the micro-organism belongs to and measuring the minimum inhibitory concentrations (CMI) of several antimicrobial agents for said micro-organism. The method uses a database classifying the micro-organism species and the resistance mechanism to various antimicrobial agents, and containing, for each species and each resistance mechanism, parameters characteristic of the frequency distribution of minimum inhibitory concentrations for a group of antimicrobial agents.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: August 26, 2003
    Assignee: Biomerieux
    Inventors: Jean-Marc Boeufgras, Annie Lazzarini, Michel Peyret
  • Publication number: 20030040033
    Abstract: The invention relates to devices, devices for arraying biomolecules, including cells, methods for arraying biomolecules, assays for monitoring cellular movement, and systems for monitoring cellular movement.
    Type: Application
    Filed: July 29, 2002
    Publication date: February 27, 2003
    Inventors: Enoch Kim, Gregory L. Kirk, Olivier Schueller, Emanuele Ostuni
  • Publication number: 20030022269
    Abstract: The present invention discloses a method of monitoring chemotaxis or chemoinvasion comprising: providing a device for monitoring chemotaxis. The device includes a support member; a top member mounted to the support member by being placed in substantially fluid-tight, conformal contact with the support member. The support member and the top member are configured such that they together define a discrete assay chamber. The discrete assay chamber includes a first well region including at least one first well, the at least one first well being configured to receive a soluble test substance therein; a second well region including at least one second well, the at least one second well being configured to receive a sample comprising cells therein; and a channel region including at least one channel connecting the first well region and the second well region. Preferably, at least one second well is horizontally offset with respect to the first well region in a test orientation of the device.
    Type: Application
    Filed: March 15, 2002
    Publication date: January 30, 2003
    Inventors: Gregory Kirk, Matthew Brown, Emanuele Ostuni, Enoch Kim, Bernardo D. Aumond, Olivier Schueller, Paul Sweetnam, Brian Benoit
  • Patent number: 6485928
    Abstract: The T cell activation marker, granulysin, is demonstrated to be an effective antimicrobial agent. It is used in vitro and in vivo to reduce the population of viable cells in a microbial population. Of particular interest is the use of the active fragment of human granulysin, or modified forms thereof, to treat bacterial infections.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: November 26, 2002
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The Regents of the University of California
    Inventors: Steffen Stenger, Robert L. Modlin, Dennis Alan Hanson, Alan M. Krensky
  • Publication number: 20020106715
    Abstract: An automated system and method for loading individual cells into individual discrete locations. The system includes a cell carrier grid, a cell carrier grid holder, a vacuum source, a liquid reservoir and a loading device facilitating communication between the above components. Application of vacuum via a port causes cells to move into individual discrete locations. The method includes the steps of placing the grid holder into a loading device, automatically filling a space in the grid holder with a liquid, automatically adding to an upper surface of the grid and automatically applying a force to the cells in so that individual cells enter at least some of the individual discrete locations. Further disclosed is an automated system for collection of data from cells further including an electro-optical scanner capable of illuminating the cells and collecting at least a portion of photons therefrom and a computerized control mechanism further controlling same.
    Type: Application
    Filed: February 2, 2001
    Publication date: August 8, 2002
    Applicant: MEDISEL LTD
    Inventors: Tamir Huberman, Alex Sakin, Doron Dangour
  • Publication number: 20020064867
    Abstract: A diagnostic microbiological testing system and method for microorganism identification (ID) and antimicrobial susceptibility determinations (AST). The system includes multiple-well test panels capable of performing ID and AST testing on the same test panel. Each test panel is inoculated with reagents, broth-suspended organisms, and placed into the instrument system. The instrument system includes a rotating carousel for incubation and indexing, multiple light sources each emitting different wavelength light, precision calorimetric and fluorometric detection, barcode test panel tracking and a control processor for making determinations based on measured test data. One light source includes a plurality of LEDs arranged in a linear array. Each of the LEDs' junction currents are controllable to produce a predetermined illumination profile.
    Type: Application
    Filed: January 28, 2002
    Publication date: May 30, 2002
    Applicant: Becton Dickinson Company
    Inventors: Alexander W. Clark, Paul Gladnick, Rober E. Armstrong, Nicholas Bachur, Klaus W. Berndt, Dwight Livingston
  • Patent number: 6365368
    Abstract: The present invention concerns methods of testing water for microbe contamination. The methods of the invention comprise supplementing existing methods with assays using specific reagents such as monoclonal antibodies. The invention also concerns a device for use in the methods of the invention.
    Type: Grant
    Filed: December 7, 1992
    Date of Patent: April 2, 2002
    Assignee: IGEN International, Inc.
    Inventors: Scott A. Minnich, Steven A. Lobel, Gerald Schochetman, Peter Feng, Richard Massey