Liberation Or Purification Of Sample Or Separation Of Material From A Sample (e.g., Filtering, Centrifuging, Etc.) Patents (Class 436/177)
  • Patent number: 10775368
    Abstract: A fluidic device includes: a circulation flow path; and a capture part arranged on the circulation flow path and configured to capture a sample substance in a solution and/or a detection part arranged on the circulation flow path and configured to detect a sample substance in a solution.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 15, 2020
    Assignees: The University of Tokyo, NIKON CORPORATION
    Inventors: Takanori Ichiki, Taro Ueno, Ryo Kobayashi, Hirofumi Shiono
  • Patent number: 10732167
    Abstract: A multi-phase system includes a phase-separated solution comprising at least two phases, each phase having a phase component selected from the group consisting of a polymer, a surfactant and combinations thereof, wherein at least one phase comprises a polymer, wherein the phases, taken together, represent a density gradient. Novel two-phase, three-phase, four-phase, five-phase, or six-phase systems are disclosed. Using the disclosed multi-phase polymer systems, particles, or other analyte of interest can be separated based on their different densities or affinities.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: August 4, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Charles R. Mace, Ozge Akbulut Halatci, Ashok A. Kumar, Nathan D. Shapiro, George M. Whitesides
  • Patent number: 10731201
    Abstract: A microfluidic device includes an input port for inputting a particle-containing liquidic samples into the device, a retention member, and a pressure actuator. The retention member is in communication with the input port and is configured to spatially separate particles of the particle-containing liquidic sample from a first portion of the liquid of the particle containing fluidic sample. The pressure actuator recombines at least some of the separated particles with a subset of the first portion of the liquid separated from the particles. The device can also include a lysing chamber that receives the particles and liquid from the retention member. The lysing chamber thermally lyses the particles to release contents thereof.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: August 4, 2020
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Gene Parunak, Aaron Kehrer, Betty Wu, Karthik Ganesan
  • Patent number: 10730042
    Abstract: A biological detection system for detecting a liquid sample containing a plurality of target biological particles includes a capturing device including a cell structure, an inlet, an outlet, a monolithic chip, and a layer of binding agent. The monolithic chip includes a substrate and a plurality of discrete nano-sized structures which are displaced from each other and each of which extends uprightly from the substrate to terminate at a top end. The layer of binding agent is formed on the top end of each of the discrete nano-sized structures for capturing the target biological particles.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: August 4, 2020
    Assignee: CE Biotechnology, Inc.
    Inventors: Chung-Er Huang, Sheng-Wen Chen, Hsin-Cheng Ho, Wei-Cheng Hsu, Ming Chen
  • Patent number: 10696646
    Abstract: The present disclosure is generally directed to methods for purifying cannabinoids from Cannabis plants.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 30, 2020
    Assignee: Taba IP, LLC
    Inventors: Joshua Mayo, Aaron Rieder
  • Patent number: 10639628
    Abstract: Systems and methods for concentrating a sample and detecting an analyte of interest. The system can include a sample detection container that can include a microcavity. The microcavity can include a top opening, a base, and a longitudinal axis. The container can further include a wall that extends to the microcavity, wherein at least a portion of the wall located adjacent the top opening of the microcavity has a slope that is oriented at an effective angle ? with respect to the longitudinal axis of the microcavity. The effective angle ? can be greater than 45 degrees and less than 90 degrees, and at least the portion of the wall located adjacent the top opening of the microcavity that is oriented at the effective angle ? can have a length of at least 5 times a transverse dimension of the microcavity.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 5, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Raj Rajagopal, Kurt J. Halverson, Shawn C. Dodds, Ramasubramani Kuduva Raman Thanumoorthy
  • Patent number: 10576472
    Abstract: Provided is a container for preparing a diluted solution of a biological sample to be used for biological sample analysis. Specifically, provided is a container for specimen dilution, including: an open; a first bottom; a second bottom formed on an inner side wall of the container; and a groove upwardly formed, on the inner side wall of the container, from the second bottom, in which the groove has a constant width equal to a width of the second bottom, or the groove has, at a lower end thereof, a width equal to the width of the second bottom and upwardly widens.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: March 3, 2020
    Assignee: SEKISUI MEDICAL CO., LTD.
    Inventors: Kumiko Yuki, Hiroaki Taira
  • Patent number: 10512913
    Abstract: A method of separating a plurality of particles (14) from a portion of fluid, comprising directing the plurality of particles (14) into a microchannel (12). A first portion (16) of particles (14) is focused into an equilibrium position in the microchannel (12). The focused first portion (16) is directed into a first outlet (18) aligned with the equilibrium position. A portion of the fluid is directed into one or more outlets (20, 22). A microfluidic device (10) for separating a plurality of particles (14) from a portion of fluid, comprising a microchannel (12) having a first aspect ratio and a length L, thereby focusing the particles (14) directed therein into an equilibrium position in the microchannel, wherein at least a first portion (16) of the particles (14) focuses at distance X from a beginning of the microchannel (12).
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: December 24, 2019
    Assignee: University of Cincinnati
    Inventors: Ian Papautsky, Jian Zhou
  • Patent number: 10486157
    Abstract: A device system, and method of use thereof, for collecting, transporting, and processing a biological sample is provided.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: November 26, 2019
    Assignee: Omega Bio-Tek, Inc.
    Inventors: Travis Butts, Qi Guo
  • Patent number: 10300454
    Abstract: A system includes a first chamber, a second chamber, an ultraviolet light source and a microwave source. The first chamber includes an inlet. The second chamber is adjacent the first chamber and includes an outlet and a waveguide. The ultraviolet light source resides within the waveguide of the second chamber. Related apparatus, systems, techniques and articles are also described.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: May 28, 2019
    Assignee: BREAKTHROUGH TECHNOLOGIES, LLC.
    Inventor: Kamal Jaffrey
  • Patent number: 10215429
    Abstract: A system is disclosed comprising a plurality of vapor devices and a computing device, in communication with the plurality of vapor devices, configured for, receiving sensor data and locations from each of the plurality of vapor devices, determining one or more vaporizable materials to be vaporized by each of the plurality of vapor devices based on the sensor data and the locations, and transmitting an instruction to each of the plurality of vapor devices to vaporize the determined one or more vaporizable materials.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: February 26, 2019
    Assignee: Lunatech, LLC
    Inventor: Jonathan Seamus Blackley
  • Patent number: 10124300
    Abstract: Hierarchical porous membranes suitable for use in oil/water separation processes are provided. The membranes described herein are particularly well suited for separating trace amounts of water (e.g., no greater than 3 wt % water content, no greater than 1 wt % water content, or 50-1000 ppm water) from oil in droplets less than 1 um in size. The membranes have a wide range of applications, including deep seep oil exploration, oil purification, and oil spill cleanup.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: November 13, 2018
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Brian Richmond Solomon, Kripa K. Varanasi, Md. Nasim Hyder
  • Patent number: 10099002
    Abstract: The present disclosure describes a system and method for microfluidic separation. More particularly, the disclosure describes a system and method for the purification of a fluid by the removal of undesired particles. The device includes microfluidic separation channels that include multiple outlets. The device also includes isolation slots positioned between each of the microfluidic separation channels. The device's base includes multiple acoustic transducers which in some implementations are configured to protrude into the isolation slots. The acoustic transducers are configured to generate aggregation axes within the separation channels, which are used to separate out undesired particles.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: October 16, 2018
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Hoi-Cheong Steve Sun, Jason Oliver Fiering
  • Patent number: 9951114
    Abstract: Recombinant therapeutic cytokines (“therakines”) for the treatment of cancer are provided. The recombinant therakines include a truncated region of MDA-7/TL-24 (“M4”) not normally found in nature that has anti-cancer activity and a secretory signal which causes secretion of the therakine from plasmid/virus transduced normal and cancer cells and interaction of the therakine to MDA-7/IL-24 receptors on adjacent, neighboring and distant cancer cells. Therakine interaction results in bystander killing of the target cancer cell as well as adjacent, neighboring and distant cancer cells.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: April 24, 2018
    Assignee: Virginia Commonwealth University
    Inventors: Paul B. Fisher, Praveen Bhoopathi, Swadesh K. Das, Luni Emdad, Devanand Sarkar, Upneet Sokhi
  • Patent number: 9895342
    Abstract: The present invention relates to cannabinoids for use in the treatment of neuropathic pain. Preferably the cannabinoids are one or more phytocannabinoids of: cannabigerol (CBG), cannabichromene (CBC), cannabidivarin (CBDV) or tetrahydrocannabivarin (THCV). More preferably the phytocannabinoids are isolated and/or purified from cannabis plant extracts.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: February 20, 2018
    Assignee: GW Pharma Limited
    Inventors: Sabatino Maione, Francesco Rossi, Geoffrey Guy, Colin Stott, Tetsuro Kikuchi
  • Patent number: 9784678
    Abstract: There is provided an improved method for enhancing fluorescence images of an object, such as a biological tissue, by selectively eliminating or reducing unwanted fluorescence from fluorophores other than the fluorophore of interest. The method is based on the measurement of the lifetime of fluorophores while preserving information related to the fluorescence intensity of the fluorophore of interest.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: October 10, 2017
    Assignee: SOFTSCAN HEALTHCARE GROUP LTD.
    Inventor: Guobin Ma
  • Patent number: 9765000
    Abstract: The present specification discloses methods of purifying one or more cannabinoids from a plant material, purified cannabinoids and pharmaceutical compositions comprising one or more cannabinoids produced by the disclosed method, methods and uses for treating a disease or condition employing such purified cannabinoids and pharmaceutical compositions.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: September 19, 2017
    Assignee: Phytoplant Research S.L.
    Inventor: Xavier Nadal Roura
  • Patent number: 9725690
    Abstract: An acoustic standing wave is utilized to separate components from a multi-component fluid, such as animal cells from fluid-cell mixture, in a fluid flow scheme with an acoustophoresis device. For example, the flow scheme and device allows for trapping of falling cells as the cells coalesce, agglomerate, and the weight of the agglomerated mass overcomes the drag and ultrasonic standing wave forces in the device.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: August 8, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Walter M. Presz, Jr., Bart Lipkiens, Jason Dionne, Thomas J. Kennedy, III
  • Patent number: 9708581
    Abstract: The present invention has its object to provide a material for separating stem cell and a filter for separating stem cell, each is capable of selectively separating and recovering, in a simple and easy manner, stem cells from body fluids or biological tissue-derived treated fluids, a method for separating and recovering stem cells, and stem cells obtained by such method. The present invention is a material for separating stem cell which has a density K of 1.0×104?K?1.0×106 and a fiber diameter of 3 to 40 ?m; a filter for separating stem cell which comprises the material for separating stem cell as packed in a container having a fluid inlet port and a fluid outlet port; a method of separating and recovering stem cells which comprises using the material for separating stem cell or the filter for separating stem cell; and a method of producing a multipotent cell fraction.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: July 18, 2017
    Assignee: KANEKA CORPORATION
    Inventors: Akira Kobayashi, Kazuaki Yamamoto, Shinya Yoshida, Hideo Niwa, Naohiro Imai, Hirokazu Kurata, Yoshiaki Miyamoto
  • Patent number: 9581579
    Abstract: The present invention provides a quick extraction kit adapted to a procedure of detecting pesticide residues in agricultural products and a method of obtaining a primary test liquid from an agricultural sample by the quick extraction kit. The quick extraction kit comprises a pipe, a first powder mixture layer and a second powder mixture layer. The method of taking primary test liquid is performed as follows. First, obtaining fragments of the agricultural sample. Second, adding an extraction solvent into the fragments of the agricultural sample to obtain a sample solution. Third, adding the sample solution into the pipe. Finally, driving the sample solution to export from the pipe to become the primary test liquid. The quick extraction kit and the method solve the problem of being unable to quickly obtain the result of detecting pesticide residues.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: February 28, 2017
    Assignee: AGRICULTURAL CHEMICALS AND TOXIC SUBSTANCES RESEARCH INSTITUTE, COUNCIL OF AGRICULTURE, EXECUTIVE YUAN
    Inventors: Shao-Kai Lin, Wei-Chen Chuang, Jou-Wen Chen
  • Patent number: 9409176
    Abstract: A collection container for collecting biological fluid specimens having an integral fill-line indicator which corresponds to a desired specimen volume is disclosed. The integral fill-line indicator may comprise a ridge that is raised from the surface of the collection container. The integral fill-line indicator may also be altered by surface modification to impart a distinct visual appearance and/or texture. The collection container may have a single or a plurality of integral fill-line indicators which correspond to a desired specimen volume range. A method of manufacturing a collection container having an integral fill-line indicator is also disclosed.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: August 9, 2016
    Assignee: Becton, Dickinson and Company
    Inventors: Donald J. Carano, Rick Cook, Michael Iskra, C. Mark Newby
  • Patent number: 9409166
    Abstract: Disclosed are integrated devices capable of performing a polymerase chain reaction within a single vessel. Also disclosed are related methods of sample analysis.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: August 9, 2016
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Michael G Mauk, Haim H Bau, Daniel Malamud, William Abrams
  • Patent number: 9399226
    Abstract: A floating element for separating components of a physiological fluid comprises two parts that are relatively movable. The two parts define a prescribed volume between them when at their maximum separation, and one of the parts may be moved toward the other to express the fluid contained in the volume between the parts. The parts are made of materials having densities so that they assume a desired position in the fluid to allow selected components to be easily obtained and expressed.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: July 26, 2016
    Assignee: HARVEST TECHNOLOGIES CORPORATION
    Inventors: James R. Ellsworth, Paul McGovern, Mark L. Kibbe
  • Patent number: 9347055
    Abstract: The object is to remove substances that can inhibit nucleic acid amplification from biological samples and nucleic acid extracts, and to allow convenient and accurate evaluation of the presence or absence of a target nucleic acid or the expression level of a target gene in a biological sample, by nucleic acid amplification means employing an enzyme. The invention provides a method for preparation of a sample for use in nucleic acid amplification, to be used for amplification of nucleic acid in a biological sample, which method comprises an extraction step in which a nucleic acid extraction reagent is added to the biological sample to obtain a nucleic acid extract, and a purification step in which the nucleic acid extract is contacted with zeolite to obtain a nucleic acid amplification sample suitable for nucleic acid amplification, to allow nucleic acid detection at high sensitivity.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 24, 2016
    Assignee: EIKEN KAGAKU KABUSHIKI KAISHA
    Inventors: Yasuyoshi Mori, Tsugunori Notomi, Tsuyoshi Shindome
  • Patent number: 9250221
    Abstract: In one embodiment, a method of preparing a standard sample includes forming a second layer containing an analysis target element on a substrate via a first layer. The method further includes dissolving the first and second layers to form a plurality of droplets containing the analysis target element on the substrate. The method further includes drying the droplets to form a plurality of particles containing the analysis target element on the substrate.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: February 2, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Shoko Ito
  • Patent number: 9222921
    Abstract: A real-time method and analytical system for determining haloacetic acids in water which operate by: (1) extracting samples on ion-exchange absorbent medium; (2) concentrating haloacetic acids on hyper-crosslinked medium; (3) eluting the analytes from the concentration medium for injection into an HPLC system; (4) separating individual haloacetic acid in reverse-phase chromatography performed by the HPLC system; and (5) measuring optical characteristics (UV-absorbance) of haloacetic acids, to determine concentration. The entire process can be performed using a completely self-contained, in-situ mechanism that sits at a water distribution point for 24/7 testing, with automated control, monitoring, reporting, and employment of remedial measures (e.g., automated adjustment of the water treatment process).
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: December 29, 2015
    Inventor: Harmesh K. Saini
  • Patent number: 9180452
    Abstract: A microfluidic resistance network (20) is disclosed that comprises a first microfluidic channel (112) in fluidic communication with a first fluid inlet (22); and a second microfluidic channel (114) in fluidic communication with a second fluid inlet (24); wherein the microfluidic resistance network (20) further comprises a cross-shaped dilution stage (100) having the first microfluidic channel (112) as a first dilution stage inlet and the second microfluidic channel (114) as a second dilution stage inlet, the dilution stage further comprising a first microfluidic outlet channel (122) for combining a portion of a first fluid from the first microfluidic channel with a second fluid from the second microfluidic channel (114) and a second microfluidic outlet channel (124) for receiving the remainder of first fluid. A microfluidic device (200) comprising such a microfluidic resistance network (20) is also disclosed.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 10, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Steven Charles Deane
  • Patent number: 9144801
    Abstract: Sample tube racks having retention bars to retain sample tubes in the racks during processing of the contents of the sample tubes are described. An example rack for holding sample tubes includes a sample tube carrier having an elongated body and walls defining apertures. Each of the apertures is configured to receive a respective one of the sample tubes. The walls define elongated openings, each of which corresponds to a respective one of the sample tubes and extends along at least a portion of a length of the respective sample tube, and the elongated openings enable viewing of information on the outer surfaces of the sample tubes. The example rack also includes an elongated retention bar to be pivotally coupled to one end of the sample tube carrier. The retention bar has openings, each of which is positioned over a respective one of the apertures, and the openings are dimensioned to prevent removal of the sample tubes from the sample tube carrier through the retention bar.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 29, 2015
    Assignee: Abbott Laboratories
    Inventors: Brett W. Johnson, Kenneth E. Pawlak, Bryan K. Pawlak
  • Patent number: 9103786
    Abstract: An apparatus for analysis of a sample and in particular of a biological sample. The apparatus contains a microfluidic chip with dies, adapted to be selectively activated or deactivated by presence of target molecules in the biological sample. The apparatus further contains a light source to emit light for illumination of the microfluidic chip and an optical filter to allow passage of the light from the dies once activated or deactivated by the presence of the target molecules. A method for pressurizing a microfluidic chip is also disclosed, where a chamber is provided, the chamber is connected with the microfluidic chip and pressure is applied to the chamber.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: August 11, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: George Maltezos, Jeremy Witzens, Axel Scherer
  • Patent number: 9103782
    Abstract: Automated isothermal titration micro calorimetry (ITC) system comprising a micro calorimeter with a sample cell and a reference cell, the sample cell is accessible via a sample cell stem and the reference cell is accessible via a reference cell stem. The system further comprises an automatic pipette assembly comprising a syringe with a titration needle arranged to be inserted into the sample cell for supplying titrant, the pipette assembly comprises an activator for driving a plunger in the syringe, a pipette translation unit supporting the pipette assembly and being arranged to place pipette in position for titration, washing and filling operations, a wash station for the titrant needle, and a cell preparation unit arranged to perform operations for replacing the sample liquid in the sample cell when the pipette is placed in another position than the position for titration.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: August 11, 2015
    Assignee: Malvern Instruments Incorporated
    Inventors: Martin Broga, Phillip Price, Stephen Smith
  • Publication number: 20150148255
    Abstract: This disclosure is directed to an apparatus, system and method for retrieving a target material from a suspension. A system includes a plurality of processing vessels and a collector. The collector funnels portions of the target material from the suspension through a cannula and into the processing vessels. Sequential density fractionation is the division of a sample into fractions or of a fraction of a sample into sub-fractions by a step-wise or sequential process, such that each step or sequence results in the collection or separation of a different fraction or sub-fraction from the preceding and successive steps or sequences. In other words, sequential density fractionation provides individual sub-populations of a population or individual sub-sub-populations of a sub-population of a population through a series of steps.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 28, 2015
    Applicant: RareCyte, Inc.
    Inventors: Lance U'ren, Daniel Campton, Joshua Nordberg, Steve Quarre, Jonathan Lundt
  • Patent number: 9034651
    Abstract: This invention relates to methods and apparatus for determination of ion concentrations, particularly in downhole water from hydrocarbon wells, aquifers etc. It is useful in a wide range of applications, including predicting the formation of scale and fingerprinting waters from different sources. More particularly, the invention relates to the use of ligands whose electronic configuration is altered by the binding of the scaling ions within a water sample. These alterations are detected electrochemically by applying varying potential to electrodes and measuring current flow as potential is varied, from which is derived the concentration of scaling ions in the fluid.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: May 19, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Li Jiang, Timothy Gareth John Jones, Andrew Meredith, Markus Pagels, Amilra Prasanna De Silva
  • Patent number: 9029162
    Abstract: Disclosed are methods and systems for the analysis of testosterone in a sample using supported liquid extraction and liquid chromatography-mass spectrometry.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: May 12, 2015
    Assignee: Laboratory Corporation of America Holdings
    Inventors: Russell Philip Grant, Matthew Crawford, Donald Walt Chandler, William Curtin
  • Patent number: 9029165
    Abstract: A method for detecting electromagnetic waves derived from bacterial DNA, comprising extracting and purifying nucleic acids from a sample; diluting the extracted purified nucleic acids in an aqueous solvent; measuring a low frequency electromagnetic emission over time from the diluted extracted purified nucleic acids in an aqueous solvent; performing a signal analysis of the low frequency electromagnetic emission over time; and producing an output, based on the signal analysis, in dependence on the DNA in the sample. The DNA may be extracted from at least one of blood, feces, urine, saliva, tears, seminal fluid, sweat, seminal and vaginal fluids of a patient, or water to determine, e.g., potability. The samples may be frozen. The extracting and purifying may comprise diluting the sample with an aqueous buffer and mixing; degrading proteins in the diluted sample; precipitating DNA from the buffer solution; and resuspending the precipitated DNA in an aqueous solution.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: May 12, 2015
    Inventor: Luc Montagnier
  • Publication number: 20150125864
    Abstract: Provided is a method of stabilizing vesicles in a sample by combining a sample comprising a vesicle with a chelating agent and a composition used in the stabilizing the vesicle in the sample.
    Type: Application
    Filed: July 7, 2014
    Publication date: May 7, 2015
    Inventors: Hyun Ju KANG, Ga-hee Kim, Ye-ryoung Yong, Kyung-hee Park, Jong-myeon Park
  • Patent number: 9023281
    Abstract: Chemical indicator apparatuses containing one or more chemical indicators for use in monitoring the quality of water in an aquatic environment. The apparatuses are designed and configured to be submersible in the water that is being monitored. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo a physical change as levels of one or more constituents of the water change. Such indicators can be read by one or more suitable optical readers. These and other embodiments are designed and configured to be movable by a corresponding monitoring/measuring apparatus, for example, via a magnetically coupled drive. Also disclosed are a variety of features that can be used to provide a chemical indicator apparatus with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Patent number: 9017617
    Abstract: Apparatuses for preparing a sample are disclosed herein. The apparatuses include a chamber, a first valve at least partially disposed in the first chamber, a second valve at least partially disposed in the first chamber, and a pump comprising an actuator and nozzle.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: April 28, 2015
    Assignee: Luminex Corporation
    Inventors: Jesus Ching, David Hsiang Hu, Steve Jia Chang Yu, Phillip You Fai Lee
  • Patent number: 9012228
    Abstract: Provided is a method for checking a blood status including: a step of supplying blood to the centrifugal container of a disk; a step of rotating the disk to centrifuge the blood cells and blood plasma in the centrifuge container, and detecting the actual moving distance per hour of the blood cells in the centrifugal container; and a step of establishing a first graph which represents the actual moving distance of the blood cells per hour, and a second graph which represents the theoretical moving distance of the blood cells per hour, and thereafter calculating the hematocrit of the blood cells and the viscosity of the blood plasma by comparing the first graph with the second graph.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Postech Academy-Industry Foundation
    Inventors: Dong Sung Kim, Moonwoo La, Sangmin Park
  • Patent number: 9011797
    Abstract: A microfluidic system includes a bubble valve for regulating fluid flow through a microchannel. The bubble valve includes a fluid meniscus interfacing the microchannel interior and an actuator for deflecting the membrane into the microchannel interior to regulate fluid flow. The actuator generates a gas bubble in a liquid in the microchannel when a sufficient pressure is generated on the membrane.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: April 21, 2015
    Assignee: Cytonome/ST, LLC
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Publication number: 20150104814
    Abstract: Disclosed are sample analysis apparatus and methods. A sample analysis apparatus includes a first unit that rotates a microfluidic apparatus including: a chamber having a space accommodating a sample, a channel that provides a path through which the sample flows; and a valve that selectively opens and closes the channel, a valve driver that supplies energy, used to operate the valve, to the valve in a state of being separated from the microfluidic apparatus, a third unit that rotates the valve driver with respect to a common rotation axis with a rotation axis of the microfluidic apparatus and the third unit, and a control unit that controls the first and third units and the valve driver to supply energy to the valve while the microfluidic apparatus and the valve driver are being rotated at the same rotation speed.
    Type: Application
    Filed: April 25, 2014
    Publication date: April 16, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Minseok S. KIM, Hui-sung Moon, Jong-myeon Park
  • Publication number: 20150104826
    Abstract: Methods, devices, and systems for integrating extraction and purification of bio-sample regions and materials with patient analysis, diagnosis, follow up, and treatment. The invention provides a means to insert disclosed substrates, cartridges, and cartridge-processing instrument or instruments into a standard clinic or pathology laboratory workflow. Specifically, we disclose methods, devices, and systems for inserting standard pathology slides into disclosed cartridges and cartridge-processing instruments, either manually, semi-automatically, automatically, or by robotic means.
    Type: Application
    Filed: July 25, 2014
    Publication date: April 16, 2015
    Applicant: XMD, LLC
    Inventors: Stephen Ritterbush, Ting Pau Oei
  • Patent number: 9005990
    Abstract: The present invention concerns a method of purifying colistin using reverse phase chromatography, wherein loading a column with colistin base in acetic acid and high ethanol concentration and eluting with low ethanol concentration is performed.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 14, 2015
    Assignee: Xellia Pharmaceuticals APS
    Inventors: Torben Koch, Carsten Overblle Petersen
  • Patent number: 8998000
    Abstract: A mechanical separator for separating a fluid sample into first and second phases within a collection container is disclosed. The mechanical separator may have a separator body having a through-hole defined therein, with the through-hole adapted for allowing fluid to pass therethrough. The separator body includes a float, having a first density, and a ballast, having a second density greater than the first density. A portion of the float is connected to a portion of the ballast. Optionally, the float may include a first extended tab adjacent a first opening of the through-hole and a second extended tab adjacent the second opening of the through-hole. In certain configurations, the separator body also includes an extended tab band disposed about an outer surface of the float. The separator body may also include an engagement band circumferentially disposed about at least a portion of the separator body.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: April 7, 2015
    Assignee: Becton, Dickinson and Company
    Inventors: Jamieson W. Crawford, Ravi Attri, Christopher A. Battles, Benjamin R. Bartfeld, Gregory R. Hires
  • Patent number: 8999719
    Abstract: The present invention relates to a quality control marker and method of using such marker in qualitative and quantitative authentication of Dendrobium officinale Kimura et Migo, which is known as a Chinese medicine under the name of Tiepi Shihu ().
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: April 7, 2015
    Assignee: Hong Kong Baptist University
    Inventors: Quanbin Han, Hubiao Chen, Jun Xu
  • Publication number: 20150093743
    Abstract: Systems, including apparatus and methods, for the microfluidic manipulation, dispensing, and/or sorting of particles, such as cells and/or beads.
    Type: Application
    Filed: September 5, 2014
    Publication date: April 2, 2015
    Inventors: Amir M. SADRI, Kun GUO, Daniel Y. CHU, Nenad KIRCANSKI, Paul J. PATT, Tal ROSENZWEIG
  • Patent number: 8991239
    Abstract: A system and method for preparing samples for analyte testing. The sample preparation system can include a freestanding receptacle. The method can include providing a liquid composition comprising a source and a diluent, and positioning the liquid composition in a reservoir defined by the freestanding receptacle. The method can further include filtering the liquid composition to form a filtrate comprising an analyte of interest, removing at least a portion of the filtrate from the sample preparation system to form a sample, and analyzing the sample for the analyte of interest.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 31, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Kurt J. Halverson, Stephen C. P. Joseph, Matthew T. Scholz
  • Patent number: 8993342
    Abstract: A magnetic separation unit is provided, including a first member made of non-magnetic materials comprising a trench extending within the first member and a second member made of magnetic materials including a protrusion portion protruding over a surface of the second member, wherein the first member connects the second member such that the trench functions as a fluid channel formed between the first and second members, and the protrusion portion of the second member is contained by the trench of the first member.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: March 31, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Mean-Jue Tung, Yu-Ting Huang, Li-Kou Chen, Yi-Shan Lin, Hsiang-Ming Huang, Shinn-Zong Lin, Woei-Cherng Shyu, Hsiao-Jung Wang
  • Patent number: 8992861
    Abstract: A device for capturing suspended bioparticles in a liquid medium, includes: a tube (101) including first and second ends, the first end of the tube being closed by the surface of a filter membrane (102) rendered stationary by adhesion onto the cross-section of the walls of the tube, a piston (104) including a rod (107) connected to a bearing element (108), the rod sliding along an axis parallel to the wall of the tube (101), and a block (103) of hydrophilic absorbent material placed inside the tube (101), inserted between (i) the inner surface of the filter membrane (102) and (ii) the piston (104) bearing element (108).
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 31, 2015
    Inventor: Bastien Karkouche
  • Patent number: 8986945
    Abstract: Provided are methods and compositions for isolating and detecting rare cells from a biological sample containing other types of cells, particularly including debulking that uses a microfabricated filter for filtering samples. The enriched rare cells can be used in a downstream process such as identification, characterization or growth in culture, or in other ways. Also included is a method of determining tumor aggressiveness or the number or proportion of cancer cells in the enriched sample by detecting telomerase activity, nucleic acid or expression after enrichment of rare cells. Also provided is an efficient, rapid method to specifically remove red and white blood cells from a biological sample containing at least one of the cell types, leading to enrichment of rare target cells including circulating tumor (CTC), stromal, mesenchymal, endothelial, fetal, stem, or non-hematopoietic cells et cetera from a blood sample.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 24, 2015
    Assignee: Aviva Biosciences Corporation
    Inventors: Ping Lin, Andrea Ghetti, Wenge Shi, Mengjia Tang, Gioulnar I. Harvie, Huimin Tao, Guoliang Tao, Lei Wu, David Cerny, Jia Xu, Douglas T. Yamanishi
  • Patent number: 8986944
    Abstract: The present invention includes methods of enriching rare cells, such as cancer cells, from biological samples, such as blood samples. The methods include performing at least one debulking step on a blood sample and selectively removing at least one type undesirable component from the blood sample to obtain a blood sample that is enriched in a rare cell of interest. In some embodiments magnetic beads coupled to specific binding members are used to selectively removed components.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 24, 2015
    Assignee: Aviva Biosciences Corporation
    Inventors: Douglas T. Yamanishi, Paul G. Hujsak, Sara F. Snyder, George Walker, Junquan Xu, Mingxian Huang, Guoliang Tao, Lei Wu, Xiaobo Wang, Joe Ouyang, Charina Schmitigal, Jing Cheng, Jia Xu