Liberation Or Purification Of Sample Or Separation Of Material From A Sample (e.g., Filtering, Centrifuging, Etc.) Patents (Class 436/177)
  • Publication number: 20150104826
    Abstract: Methods, devices, and systems for integrating extraction and purification of bio-sample regions and materials with patient analysis, diagnosis, follow up, and treatment. The invention provides a means to insert disclosed substrates, cartridges, and cartridge-processing instrument or instruments into a standard clinic or pathology laboratory workflow. Specifically, we disclose methods, devices, and systems for inserting standard pathology slides into disclosed cartridges and cartridge-processing instruments, either manually, semi-automatically, automatically, or by robotic means.
    Type: Application
    Filed: July 25, 2014
    Publication date: April 16, 2015
    Applicant: XMD, LLC
    Inventors: Stephen Ritterbush, Ting Pau Oei
  • Patent number: 9005990
    Abstract: The present invention concerns a method of purifying colistin using reverse phase chromatography, wherein loading a column with colistin base in acetic acid and high ethanol concentration and eluting with low ethanol concentration is performed.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 14, 2015
    Assignee: Xellia Pharmaceuticals APS
    Inventors: Torben Koch, Carsten Overblle Petersen
  • Patent number: 8998000
    Abstract: A mechanical separator for separating a fluid sample into first and second phases within a collection container is disclosed. The mechanical separator may have a separator body having a through-hole defined therein, with the through-hole adapted for allowing fluid to pass therethrough. The separator body includes a float, having a first density, and a ballast, having a second density greater than the first density. A portion of the float is connected to a portion of the ballast. Optionally, the float may include a first extended tab adjacent a first opening of the through-hole and a second extended tab adjacent the second opening of the through-hole. In certain configurations, the separator body also includes an extended tab band disposed about an outer surface of the float. The separator body may also include an engagement band circumferentially disposed about at least a portion of the separator body.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: April 7, 2015
    Assignee: Becton, Dickinson and Company
    Inventors: Jamieson W. Crawford, Ravi Attri, Christopher A. Battles, Benjamin R. Bartfeld, Gregory R. Hires
  • Patent number: 8999719
    Abstract: The present invention relates to a quality control marker and method of using such marker in qualitative and quantitative authentication of Dendrobium officinale Kimura et Migo, which is known as a Chinese medicine under the name of Tiepi Shihu ().
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: April 7, 2015
    Assignee: Hong Kong Baptist University
    Inventors: Quanbin Han, Hubiao Chen, Jun Xu
  • Publication number: 20150093743
    Abstract: Systems, including apparatus and methods, for the microfluidic manipulation, dispensing, and/or sorting of particles, such as cells and/or beads.
    Type: Application
    Filed: September 5, 2014
    Publication date: April 2, 2015
    Inventors: Amir M. SADRI, Kun GUO, Daniel Y. CHU, Nenad KIRCANSKI, Paul J. PATT, Tal ROSENZWEIG
  • Patent number: 8993342
    Abstract: A magnetic separation unit is provided, including a first member made of non-magnetic materials comprising a trench extending within the first member and a second member made of magnetic materials including a protrusion portion protruding over a surface of the second member, wherein the first member connects the second member such that the trench functions as a fluid channel formed between the first and second members, and the protrusion portion of the second member is contained by the trench of the first member.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: March 31, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Mean-Jue Tung, Yu-Ting Huang, Li-Kou Chen, Yi-Shan Lin, Hsiang-Ming Huang, Shinn-Zong Lin, Woei-Cherng Shyu, Hsiao-Jung Wang
  • Patent number: 8991239
    Abstract: A system and method for preparing samples for analyte testing. The sample preparation system can include a freestanding receptacle. The method can include providing a liquid composition comprising a source and a diluent, and positioning the liquid composition in a reservoir defined by the freestanding receptacle. The method can further include filtering the liquid composition to form a filtrate comprising an analyte of interest, removing at least a portion of the filtrate from the sample preparation system to form a sample, and analyzing the sample for the analyte of interest.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 31, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Kurt J. Halverson, Stephen C. P. Joseph, Matthew T. Scholz
  • Patent number: 8992861
    Abstract: A device for capturing suspended bioparticles in a liquid medium, includes: a tube (101) including first and second ends, the first end of the tube being closed by the surface of a filter membrane (102) rendered stationary by adhesion onto the cross-section of the walls of the tube, a piston (104) including a rod (107) connected to a bearing element (108), the rod sliding along an axis parallel to the wall of the tube (101), and a block (103) of hydrophilic absorbent material placed inside the tube (101), inserted between (i) the inner surface of the filter membrane (102) and (ii) the piston (104) bearing element (108).
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 31, 2015
    Inventor: Bastien Karkouche
  • Patent number: 8986944
    Abstract: The present invention includes methods of enriching rare cells, such as cancer cells, from biological samples, such as blood samples. The methods include performing at least one debulking step on a blood sample and selectively removing at least one type undesirable component from the blood sample to obtain a blood sample that is enriched in a rare cell of interest. In some embodiments magnetic beads coupled to specific binding members are used to selectively removed components.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 24, 2015
    Assignee: Aviva Biosciences Corporation
    Inventors: Douglas T. Yamanishi, Paul G. Hujsak, Sara F. Snyder, George Walker, Junquan Xu, Mingxian Huang, Guoliang Tao, Lei Wu, Xiaobo Wang, Joe Ouyang, Charina Schmitigal, Jing Cheng, Jia Xu
  • Patent number: 8986945
    Abstract: Provided are methods and compositions for isolating and detecting rare cells from a biological sample containing other types of cells, particularly including debulking that uses a microfabricated filter for filtering samples. The enriched rare cells can be used in a downstream process such as identification, characterization or growth in culture, or in other ways. Also included is a method of determining tumor aggressiveness or the number or proportion of cancer cells in the enriched sample by detecting telomerase activity, nucleic acid or expression after enrichment of rare cells. Also provided is an efficient, rapid method to specifically remove red and white blood cells from a biological sample containing at least one of the cell types, leading to enrichment of rare target cells including circulating tumor (CTC), stromal, mesenchymal, endothelial, fetal, stem, or non-hematopoietic cells et cetera from a blood sample.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 24, 2015
    Assignee: Aviva Biosciences Corporation
    Inventors: Ping Lin, Andrea Ghetti, Wenge Shi, Mengjia Tang, Gioulnar I. Harvie, Huimin Tao, Guoliang Tao, Lei Wu, David Cerny, Jia Xu, Douglas T. Yamanishi
  • Patent number: 8980568
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: March 17, 2015
    Assignee: Aviva Biosciences Corporation
    Inventors: Ping Lin, Douglas T. Yamanishi, Paul G. Hujsak, Sara F. Snyder, George Walker, Junquan Xu, Mingxian Huang, Guoliang Tao, Lei Wu, Xiaobo Wang, Joe Ouyang, Charina Schmitigal, Jing Cheng, Elizabeth Kwok, Jia Xu
  • Patent number: 8968677
    Abstract: An improved apparatus and method for dispersion of a labeling conjugate in a diagnostic assay, the result being a one-step assay. By eliminating a conjugate pad as in conventional lateral diagnostic devices, and forming a frazil ice pellicle (FIP), rehydration and flow are improved resulting in better reproducibility, improved sensitivity, and reduced costs of individual assay devices. The formation of a frazil ice film formed on a super cooled surface of a sample receiving means simplifies assay assembly. Lyophilization of the FIP improves the release of a sample/analyte/label matrix into a macro channel as in a direct flow assay, while at the same time allowing reagents to mix and flow, thereby optimizing the assay performance. The reagents of the conjugate and the formation of the FIP stabilize the conjugate proteins and provide extended shelf life to the diagnostic assay device.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 3, 2015
    Assignee: Quantum Design International, Inc.
    Inventors: Ronald T. LaBorde, Nicholas J. Neild
  • Patent number: 8969021
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: March 3, 2015
    Assignee: AVIVA Biosciences Corporation
    Inventors: Ping Lin, Douglas T. Yamanishi, George Walker, Junquan Xu, Mingxian Huang, Guoliang Tao, Lei Wu, Xiaobo Wang, Joe Ouyang, Jing Cheng, Jia Xu
  • Patent number: 8962343
    Abstract: The invention relates to a process and a device for parallel fractionating a multiplicity of individual samples (29) within a 3-dimensional separation medium (6), with the subsequent process steps being carried out: A first space (2) which extends essentially across all three space coordinates contains the separation medium (6). A multiplicity of individual samples (29) is arranged close to an interface of the first space (2), with the individual samples (29) being arranged essentially in a planar fashion, i.e. their particular center-of-gravity positions are described by two coordinates. Under the influence of one or more physical parameters, the individual samples (29) are able to migrate essentially perpendicularly to the area of their application through the separation medium (6), and are fractionated in the process according to one or more of their properties.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: February 24, 2015
    Inventors: Robert Alexander Ventzki, Josef Stegemann
  • Publication number: 20150050746
    Abstract: Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 19, 2015
    Inventors: Michael D. HENRY, Andrew P. HOMYK, Axel SCHERER, Thomas A. TOMBRELLO, Sameer WALAVALKAR
  • Patent number: 8956812
    Abstract: A novel process for the purification of recombinant protein expressed as particle is herewith described. In this purification process, the protein is purified by hydrophobic interaction. The interaction of this protein step resulted in an increase in recovery and purity from 15%-80%. The protein further purified has its application in vaccines and pharmaceuticals.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: February 17, 2015
    Assignee: Bharat Biotech International Limited
    Inventors: Krishna Murthy Ella, Srinivas Kannappa Vellimedu
  • Patent number: 8951417
    Abstract: A method of transporting magnetic particles enables magnetic particles to be transported between a plurality of microfluidic chambers which are connected to one another via a fluidic connection on a radially inner side, and are fluidically separated from one another on a radially outer side. Magnetic forces and centrifugal forces are exploited to transport magnetic particles from one chamber to another across phase boundaries.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: February 10, 2015
    Assignee: Hahn-Schickard-Gesellschaft fuer angewandte Forschung e.V
    Inventors: Oliver Strohmeier, Felix Von Stetten, Daniel Mark
  • Patent number: 8945932
    Abstract: The invention provides methods for detecting and isolating phosphomolecules using phosphoaffinity materials that comprise a hydrated metal oxide. In an embodiment, a method for detecting a phosphomolecule in a sample involves (a) contacting a sample with a phosphoaffinity material comprising a hydrated metal oxide, under conditions wherein a phosphomolecule is capable of binding to the phosphoaffinity material to form a phosphomolecule-phosphoaffinity material complex, and (b) detecting formation of a phosphomolecule-phosphoaffinity material complex, thereby detecting a phosphomolecule in the sample.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: February 3, 2015
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Wayne F. Patton, Alvydas Mikulskis, Eva Golenko
  • Publication number: 20150031040
    Abstract: Method for the treatment of a biological sample comprising at least one cell and a liquid component; according to the method, a force is applied to the sample inserted in an inner chamber of a hollow device towards a filter which has pores with diameters from 2 nm to 1 ?m, so that at least part of the liquid component passes through the filter and the cell remains in the inner chamber, thus obtaining a concentrated sample; the filter has a surface facing the inner chamber of less than 12.6 mm2.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 29, 2015
    Applicant: SILICON BIOSYSTEMS S.P.A.
    Inventors: Alex Calanca, Gianni Medoro, Nicolò Manaresi, Giuseppe Giorgini
  • Patent number: 8940234
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: January 27, 2015
    Assignee: Intel Corporation
    Inventors: Yuegang Zhang, Andrew A. Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Publication number: 20150017737
    Abstract: Devices and methods are disclosed herein for separating a supernate from a suspension. The apparatus consists of a sample zone, a controllable gate, and an analysis zone. The sample zone holds the suspension. The analysis zone passively transports a supernate formed from the suspension by capillary transport. A controllable gate prevents the suspension in the sample zone from flowing into the analysis zone. The controllable gate can be triggered after the supernate has separated from the suspension to allow the supernate to flow into the analysis zone.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventor: Jason O. Fiering
  • Patent number: 8932864
    Abstract: Provided is a method and device for identifying glycated protein in a sample using a matrix including a boronic acid moiety that binds glycated proteins.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: January 13, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-kyu Kim, Sung-ha Park, Kyung-mi Song, Soo-suk Lee, Youn-suk Choi
  • Publication number: 20150011013
    Abstract: This disclosure is directed to an apparatus, system and method for retrieving a target material from a suspension. A system includes a processing vessel, such as an Eppendorf tube, a syringe or a test tube, and a collector. The collector is sized and shaped to fit into a primary vessel, such as a test tube. The collector funnels the target material from the suspension through a cannula and into the processing vessel. The cannula extends into a cavity at a first end of the collector that holds the processing vessel. The collector includes a funnel at a second end in fluid communication with the cannula. In one implementation, the processing vessel includes at least one displacement fluid to be expelled, such that the at least one displacement fluid pushes the target material into the collector.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Applicant: RareCyte, Inc.
    Inventors: Daniel E. Campton, Joshua Nordberg, Steve Quarre, David Stewart, Ronald Seubert, Jonathan Lundt, Lance U'Ren
  • Publication number: 20150011012
    Abstract: A specimen concentration container contains a specimen-containing liquid mixture, and the liquid mixture is concentrated in the specimen concentration container. The specimen concentration container includes: a tubular container main body including an upper surface on which an upper surface opening portion is formed; an upper surface opening portion communicating with an inside of the container main body; a specimen concentration portion formed at a bottom portion side of the container main body and containing the concentrated liquid mixture; and a specimen lid provided in the container main body and configured to cover the upper surface opening portion.
    Type: Application
    Filed: December 27, 2012
    Publication date: January 8, 2015
    Inventors: Takaomi Fukuhara, Toshifumi Nanjo
  • Patent number: 8925734
    Abstract: A filter vial and piston are provided where the vial has a cylindrical wall with a closed bottom and open top and with the hollow, tubular piston therein. The piston has a distal end covered by a cup having a proximal cup seal extending outward to engage the walls of the vial to form a fluid tight seal with the vial during use. The distal end of the piston has a piston flange extending outwardly and located adjacent a recess in the piston so the cup forms a snap fit over the piston flange and extends into the recess. The piston flange causes the cup to bulge sufficiently outward to form a fluid tight seal with the vial during use. A filter is placed in the bottom of the cup and abuts an inwardly extending lip on the cup. The filter is held against the lip by a piston support at the distal end of the piston. A cup support at a distal end of the cup also helps support the filter.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: January 6, 2015
    Assignee: Scientific Plastic Products, Inc.
    Inventors: Samuel A. Ellis, Kishan G. Hingorani
  • Patent number: 8927290
    Abstract: Provided herein are compositions comprising native and denatured human leukocyte antigens (HLA) and methods of making said compositions. Also provided herein are methods and kits for the detection of antibodies to native HLAs.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: January 6, 2015
    Assignee: One Lambda, Inc.
    Inventors: Adam Idica, Chun-Tsan Deng, Paul I. Terasaki
  • Patent number: 8906697
    Abstract: A method and a device for the assessment of at least one parameter of particles in a liquid analyte material are disclosed. The method comprises providing a device having a sample compartment with an exposing domain, an inlet through which a volume of a liquid sample representing the analyte material can been introduced, and a flow system comprising at least a channel allowing at least a portion of the volume of the liquid sample to flow within the device. The volume of the liquid sample passes into the exposing domain of the sample compartment, which can quantitatively detect spatial image data and process the detected image electromagnetic signals from the sample in the exposing domain of the device. A spatial image representation of the exposing domain, and processing the detected image presentation obtaining the assessment of the at least one parameter is generated in the device.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: December 9, 2014
    Assignee: ChemoMetec A/S
    Inventor: Martin Glensbjerg
  • Publication number: 20140356978
    Abstract: A method and composition for extracting an analyte from a test sample such as grain, so as to determine whether the test sample is contaminated with a toxin. The method is particularly useful for detecting the presence in a batch of grain of a mycotoxin, such as for example aflatoxin, ochratoxin, T2, zearalanone, vomitoxin (deoxynivalenol a/k/a DON), patulin and fumonisin. Extraction is performed with use of a composition that includes a proteinaceous material, such as albumin, as an extraction agent.
    Type: Application
    Filed: February 4, 2013
    Publication date: December 4, 2014
    Applicant: Charm Sciences, Inc.
    Inventors: John Jabour, Steven J. Saul, Mark E. Tess
  • Patent number: 8900515
    Abstract: The present invention provides a biosensing device, comprising an input unit, an analysis unit, a process unit, and a set unit for storing resulting data values as the basis for calibrating the biosensing device, to set up the calibration parameters of a strip of the biosensing device.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: December 2, 2014
    Assignee: Health & Life Co., Ltd.
    Inventor: Meng Yi Lin
  • Patent number: 8900875
    Abstract: A method for assessing a corrosion inhibitor in a coolant, comprises providing a test kit comprising a first chamber containing an acid buffer and a solvent immiscible therein and a second chamber containing an indicator, the second chamber being in fluid communication with the first chamber and being configured such that retraction of the second chamber draws fluid into the first chamber and advancement forces fluid into the second chamber; drawing a coolant sample into the first chamber; contacting the coolant sample with the acid buffer and solvent in the first chamber and extracting the corrosion inhibitor into the solvent; allowing the solvent and buffer to separate in the first chamber; forcing a portion of the separated solvent into the second chamber; contacting the separated solvent with the indicator in the second chamber, and obtaining a visual indication of the presence of corrosion inhibitor in the coolant sample.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: December 2, 2014
    Assignee: Shell Oil Company
    Inventors: Abraham Robert De Kraker, Liliana Minevski, Tze Lee Phang
  • Publication number: 20140349410
    Abstract: The present invention relates to improved methods for processing fluids and to a fluid processing device (1) for use in a centrifuge comprising: (a) a first holder (14) form-fit to the shape of a first tube (18) for holding said first tube (18) whereby said first tube (18) has a first cross section (A1); and (b) a second holder (22) form-fit to the shape of a second tube (26) for holding said second tube (26) whereby said second tube (26) has a second cross section (A2) that is different from said first cross section (A1). With the fluid processing devices and the methods according to the invention, it is possible to simplify the centrifugal processing steps for a given fluid processing sequence and to automate them.
    Type: Application
    Filed: June 4, 2014
    Publication date: November 27, 2014
    Inventors: Andreas SCHAEFER, Thomas VOIT, Markus ZBINDEN, Andreas SCHMIEDE
  • Patent number: 8895320
    Abstract: A device and method for filtering blood is disclosed herein. The device can filter blood and attach analytes within the blood to magnetic particles. The analytes can then be strongly bound to an analyzing device by a magnetic force. The analytes can then be counted by the analyzing device and the result can be displayed.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: November 25, 2014
    Assignee: Silicon BioDevices, Inc.
    Inventor: Octavian Florescu
  • Patent number: 8887586
    Abstract: The present invention relates to methods and systems for detecting leaks in a head space sampling device. One exemplary method for detecting leaks in a head space sampling device includes establishing fluid communication between a head space and a pressurization gas conduit. Gas pressure and flow rate are monitored within the pressurization gas conduit during pressurization of the head space. Changes in monitored gas pressure and flow rate are used to evaluate whether a leak exists within the head space sampling device or the vial containing the head space. One exemplary head space sampling device includes a conduit for receiving a pressurization gas, flow and pressure sensors for measuring gas flow and pressure within the conduit, a ventilation valve, a pressure valve for controlling gas flow through the conduit, and a controller for processing and controlling pressure and flow through the conduit.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: November 18, 2014
    Assignee: Agilent Technologies, Inc.
    Inventor: Robert C Henderson
  • Patent number: 8883079
    Abstract: A water-quality monitoring system for an aquatic environment that includes a monitoring unit and a chemical indicator wheel designed and configured to be submerged in the water being monitored. The chemical indicator wheel includes a holder that supports a number of chemical indicators selected for use in measuring levels of constituents of the water. When in use, the wheel is drivingly engaged with a monitoring/measuring unit that includes at least one reader for reading the chemical indicators. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo an optically detectable physical change as levels of one or more constituents of the water change. Also disclosed are a variety of features that can be used to provide the monitoring system with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: November 11, 2014
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Patent number: 8871526
    Abstract: A reservoir is supported by a base in a vertical position. A reciprocating member is positioned in the reservoir forming an internal chamber. The chamber receives growth factor starting material through an inlet in the reciprocating member. After the inlet is sealed, the reciprocating member increases the volume of the chamber to apply negative pressure to the growth factor starting material within the chamber to produce activated growth factors. The activated growth factors are extracted from the chamber through an outlet in the reciprocating member. Optionally, the growth factor starting material is held in the chamber to separate into fractions.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: October 28, 2014
    Assignee: PGFX Patent Holdings, LLC
    Inventors: James B. Gandy, Ryan N Brandt
  • Patent number: 8865475
    Abstract: A method for making a number (N) of samples react under the same reaction conditions that includes heating a number of reaction containers simultaneously and maintaining the reaction containers at a predetermined temperature; placing a sample in each heated reaction chamber and maintaining a two-phase solution at a predetermined temperature; stirring the sample that is heated to the predetermined temperature to create a uniform solution, which is maintained for a predetermined time; and cooling the uniform solution without cooling the reaction container after the predetermined period of time has passed so as to gain a two-phase solution within the reaction container, where the samples have a solution where the phase state of a reaction solvent changes in a reversible manner between a two-phase solution state and a uniform solution state when the temperature fluctuates over or under a certain constant temperature.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: October 21, 2014
    Assignee: Japan Science and Technology Agency
    Inventor: Kazuhiro Chiba
  • Patent number: 8865476
    Abstract: The present invention comprises methods and systems that use acoustic radiation pressure.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: October 21, 2014
    Assignee: Life Technologies Corporation
    Inventors: Michael D. Ward, Carleton C. Stewart, Gregory Kaduchak
  • Patent number: 8865474
    Abstract: An automated laboratory system and method allow high-throughput and fully automated processing of materials, such as liquids including genetic materials. The invention includes a variety of aspects that may be combined into a single system. For example, processing may be performed by a plurality of robotic-equipped modular stations, where each modular station has its own unique environment in which processes are performed. Transport devices, such as conveyor belts, may move objects between modular stations, saving movement for robots in the modular stations. Gels used for gel electrophoresis may be extruded, thus decreasing the time needed to form such gels. Robotically-operated well forming tools allow wells to be formed in gels in a registered and accurate way.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: October 21, 2014
    Assignee: Protedyne Corporation
    Inventors: Michael Paschetto, Peter Massaro, Jeff Boot, David Wilson
  • Patent number: 8858884
    Abstract: A sterilization indicator system and method of using the system to determine efficacy of a sterilization process. The system includes a vial having a first compartment containing spores of one or more species of microorganism; a second compartment containing a growth medium with a disaccharide, an oligosaccharide or a polysaccharide in which the vial is free of monosaccharide; an enzyme, capable of acting upon the monosaccharide to yield reaction products and electron transfer, disposed on two or more electrodes adapted to carry an electrical signal resulting from the electron transfer, the pair of electrodes positioned to contact the combined contents of the first compartment and the second compartment during incubation; and an apparatus linked or linkable to the electrodes and adapted to detect and measure the electrical signal resulting from electron transfer when the enzyme acts upon the monosaccharide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 14, 2014
    Assignee: American Sterilizer Company
    Inventors: Phillip P. Franciskovich, Tricia A. Cregger
  • Patent number: 8852444
    Abstract: The present teachings provide, in part, methods of separating two-dimensional nanomaterials by atomic layer thickness. In certain embodiments, the present teachings provide methods of generating graphene nanomaterials having a controlled number of atomic layer(s).
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: October 7, 2014
    Assignee: Northwestern University
    Inventors: Alexander A. Green, Mark C. Hersam
  • Patent number: 8846409
    Abstract: The invention relates to methods of preparing cannabinoids in substantially pure form starting from plant material. Also described are substantially pure preparations of various cannabinoids and cannabinoid acids, and also extracts enriched in cannabinoids and cannabinoid acids.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: September 30, 2014
    Assignee: GW Pharma Limited
    Inventors: Ian R. Flockhart, Gary William Wheatley, Su Dring, Leslie Archer
  • Patent number: 8841104
    Abstract: The invention generally relates to methods of using compositions that include sets of magnetic particles, members of each set being conjugated to an antibody specific for a pathogen, and magnets to isolate a pathogen from a body fluid sample.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: September 23, 2014
    Assignee: NanoMR, Inc.
    Inventors: Sergey A. Dryga, Victor C. Esch, Lisa-Jo Ann Clarizia, Eddie W. Adams, Thearith H. Ung, Ravil A. Sitdikov
  • Patent number: 8841135
    Abstract: Embodiments in accordance with the present invention relate to the use of effusive filtration to segregate tumor cells from a sample of bodily fluid. In one embodiment, fluid containing a cell is flowed down a channel having a filtration medium present along at least one side wall. The tumor cell is captured when the fluid passes through the filtration medium. Accumulated pressure on the captured tumor cell is reduced by allowing the fluid that has passed through the filtration medium to re-enter the channel. In a particular embodiment, the filtration medium may comprise side wall apertures having a width smaller than that of the cell, with downstream apertures allowing re-entry of the fluid into the channel.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: September 23, 2014
    Assignee: University of Washington
    Inventors: Daniel T. Chiu, Jason S. Kuo, J. Patrick Shelby, David S. W. Lim
  • Publication number: 20140273267
    Abstract: The invention provides a method of depleting anti-MHC antibodies in a sample comprising contacting said sample with one or more recombinant MHC molecules or functionally equivalent variants, derivatives or fragments thereof and removing at least the recombinant MHC molecules to which antibodies to said recombinant MHC molecules contained within the sample have bound. This method allows the depletion of one or more specific MHC particularly HLA allele antibodies from a sample.
    Type: Application
    Filed: October 4, 2013
    Publication date: September 18, 2014
    Applicants: GUY'S &ST THOMAS' HOSPITAL NHS TRUST ('GST'), OXORD RADCLIFFE HOSPITAL NHS ('ORH") TRUST OF THE JOHN RADCLIFFE HOSPITAL, KING'S COLLEGE LONDON
    Inventors: Martin Barnardo, Andrea Harmer, Michael Bunce, Robert Vaughan, Kenneth Welsh
  • Publication number: 20140272941
    Abstract: A sample collection device for a fluid sample includes: a body including a capillary channel having a first end and a second end, wherein the first end is adapted to draw the fluid into the channel by capillary action; an air vent located in the vicinity of the second end and in fluid communication with the capillary channel; a barrier positioned within the capillary channel to prevent flow of the fluid by capillary action thereacross; and features on opposing sides of the body to form an axis of rotation, which is substantially perpendicular to the overall direction of the capillary channel from the first end to the second end. In a preferred embodiment, the sample collection device is adapted to rotate about the axis of rotation within a cartridge having a sample manipulation device to bring the first end into position with the sample manipulation device.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventors: Kory A. Gunnerson, Raymond F. Jakubowicz, Andrew M. Kirsch, James Ellis Robinson, Daniel P. Salotto, David A. Tomasso, Zhong Ding, William Franklin Gottermeier, Aaron Michael Swick
  • Publication number: 20140273056
    Abstract: A device and a method for isolating a target from a sample are provided. The target is bound to solid phase substrate to form a target bound solid phase substrate. The device includes a first plate having a first region for receiving at least a portion of the sample. A second plate is spaced from the first plate by a distance and has a first region for receiving a reagent. A force attracts the target bound solid phase substrate toward the first region of the second plate such that the target bound solid phase substrate in the portion of the sample are drawn through the air gap and into the reagent by the force.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: David J. Beebe, Scott M. Berry
  • Patent number: 8835125
    Abstract: Disclosed are compositions and methods for the labeling of two or more targets with different labels. Specifically, disclosed are compositions for biotin and the protection of biotin within multilabel assays which employ the biotin-biotin binding protein binding relationship for each distinct label in relation to targets such as nucleic acids, polypeptides, antibodies or cells. These multilabel assays are enabled through the use of biotin with desthiobiotin, orthogonal protecting schemes for biotin, or a combination of the approaches.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 16, 2014
    Assignee: Affymetrix, Inc.
    Inventors: Robert G. Kuimelis, Glenn H. McGall, Stephen P. A. Fodor
  • Patent number: 8834722
    Abstract: Methods for in-line purification of surfactant from a first fluid, such as a microemulsion are disclosed. Magnetic particles coated with surfactant molecules may be used to bind surfactants from a fluid. A magnetic field may be used to separate the bound materials from the fluid.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: September 16, 2014
    Assignee: Empire Technology Development LLC
    Inventor: Angele Sjong
  • Publication number: 20140255271
    Abstract: The present invention provides a device for the concentration of one or more target analytes contained in a urine sample. The device comprises a tube comprising an upper portion defining an opening for receiving the urine sample and a lower tapered portion terminating in a collection reservoir. The tube contains a predetermined amount of a particulate binding agent which specifically binds the one or more target analytes and of a predetermined amount of a binding buffer. The device comprises means for sealing the opening of the tube. The present invention further provides methods and kits for concentrating one or more target analytes in a urine sample.
    Type: Application
    Filed: April 30, 2014
    Publication date: September 11, 2014
    Applicant: Norgen Biotek Corp.
    Inventor: Yousef Haj-Ahmad
  • Patent number: RE45194
    Abstract: A cap having a core structure dimensioned to receive a pipette therethrough. The cap includes two axially aligned frangible seals that are affixed to the core structure in a spaced-apart relationship. The frangible seals are constructed so that air passageways are formed between the frangible seals and a pipette tip when the pipette tip penetrates the frangible seals. The cap optionally includes a filter interposed between the first and second frangible seals.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: October 14, 2014
    Assignee: Gen-Probe Incorporated
    Inventors: Daniel L. Kacian, Mark R. Kennedy, Nick M. Carter