Utilizing A Centrifuge Or Compartmented Rotor Patents (Class 436/45)
  • Patent number: 8596150
    Abstract: An inlet (37a) of a capillary tube channel that feeds a liquid from a mixing cavity (39) to measurement spots is formed near one (4) of the wall surfaces of the upper and lower surfaces of the mixing cavity (39) situated in a direction of oscillation for mixing. On the other wall surface (3), a level difference (39a) is formed such that an inner gap is larger than an outer gap in the mixing cavity (39), so that a solution is reliably fed from the mixing cavity to the measurement cells.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: December 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Saiki, Tomohiro Kijima, Kenji Ishibashi, Kouzou Tagashira
  • Publication number: 20130316388
    Abstract: This invention relates to an apparatus and a process for rapid, high-throughput analysis of fatty acids in a plurality of samples. The apparatus comprises at least one multi-vessel plate, wherein each vessel is a unit for holding a sample, or mixing and/or reacting a sample with one or more solvents or reagents; at least one matching multi-cap mat capable of sealing the vessels of the multi-vessel plate during the holding, mixing and/or reacting the sample; at least one multi-vessel plate holder having sealing units, whereby the multi-vessel plate holder, when the sealing units are engaged, presses the matching multi-cap mat onto the tops of the vessels in the multi-vessel plate sealing the vessels, so as to withstand high pressure and high temperature conditions. The process employs the apparatus that enables automated, high-throughput analysis of twenty-four fatty acid from a plurality of samples by gas chromatography flame ionization detection.
    Type: Application
    Filed: March 14, 2013
    Publication date: November 28, 2013
    Applicant: HEALTH DIAGNOSTIC LABORATORY, INC.
    Inventors: James BOROWSKI, Alexandra SHERMAN, Jennifer WARD, Joseph P. McCONNELL
  • Patent number: 8580567
    Abstract: A method for the automated analysis of liquid samples using at least one microfluidic structure is disclosed as well as microfluidic structures, a device having at least one of the microfluidic structures, a kit and a system including such microfluidic device. In one embodiment, the method may comprise: transferring a sample into a first fluid reservoir which is in fluid communication with a second fluid reservoir by a flow channel; spinning the microfluidic structure so as to transport the sample into one or more dead-end recesses or chambers; transferring a control fluid into the structure which generates a barrier to flow and diffusion of the sample contained in the one or more dead-end recesses or chambers; and analyzing the sample contained in the one or more dead-end recesses or chambers.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: November 12, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Emad Sarofim, Edwin Oosterbroek, Claudio Cherubini, Nenad Milicevic
  • Patent number: 8535541
    Abstract: Disclosed is a method for separating immunomagnetic bead labeled particulates. A carrier board is formed with at least one flow channel structure, which includes an inner reservoir, an outer reservoir, and at least one micro flow channel in communication with the inner reservoir and the outer reservoir. The method includes labeling target particulates with immunomagnetic bead, introducing a sample fluid into the inner reservoir, and applying a magnetic force and a driving force, wherein the driving force drives the particulates not labeled with immunomagnetic bead to flow through the micro flow channel to the outer reservoir, while the magnetic force attracts the particulates labeled with the immunomagnetic bead to retain in the inner reservoir. The driving force may be centrifugal force, pressure, or surface tension.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: September 17, 2013
    Assignee: National Taiwan University
    Inventors: Andrew Man Chung Wo, Yu-Cheng Pan, Ken-Chao Chen, Chen-Lin Chen
  • Patent number: 8535945
    Abstract: A system and method for concentrating samples. The system can include a first container adapted to contain a sample. The first container can include a first portion and a second portion adapted to be removably coupled to the first portion. The system can further include a second container comprising the second portion and a third portion adapted to be removably coupled to the second portion. The method can include centrifuging the first container in a first orientation toward the second portion of the first container; retaining a concentrate of the sample in the second portion of the first container; and centrifuging the second container in a second orientation toward the third portion of the second container, such that the concentrate retained in the second portion is moved into the third portion of the second container, the second orientation being different from the first orientation.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: September 17, 2013
    Assignee: 3M Innovative Properties Company
    Inventor: Kurt J. Halverson
  • Patent number: 8501000
    Abstract: The present invention includes a container and a method of separating one or more components of interest bound to magnetic particles using centrifugal forces.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: August 6, 2013
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Heinz-Michael Hein, Emad Sarofim, Lotar Schenk, Hans-Peter Wahl
  • Patent number: 8492161
    Abstract: Disclosed is a method for quantitatively analyzing a functional group on the surface of a solid material. The functional group is carboxylic group while the solid material is carbon nano-tubes. The carboxylic group reacts with sodium hydrogen carbonate, thus turning the carboxylic groups into sodium carboxylate while consuming the sodium ions in the solution. The carbon nano-tubes are separated from the sodium hydrogen carbonate solution. The number of the sodium ions before and after the reaction is analyzed. Moreover, the sodium carboxylate carried on the reacted carbon nano-tubes with reacts with hydrochloric acid solution, thus dissolving the sodium ions in the hydrochloric acid solution. The carbon nanotubes are separated from from the hydrochloric acid solution. The amount of the sodium ions is analyzed before and after the reaction in the hydrochloric acid solution.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: July 23, 2013
    Assignee: Atomic Energy Council—Institute of Nuclear Energy Research
    Inventors: Meng-Jun Fu, Kuan-Yin Chen, Chia-Chieh Chen
  • Patent number: 8492157
    Abstract: A microfluidic device and a method for measurement of biomaterials using the same. The microfluidic device includes a microfluidic structure including: a sample chamber which receives and accommodates blood; a reagent chamber which contains a luminescent reactant; a first detection chamber which contains a first material that is positively charged; a second detection chamber which is connected to the first detection chamber, and contains a second material having a boronate moiety; and at least one channel which connects the sample chamber, the reagent chamber and the first and second detection chambers.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 23, 2013
    Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jong Myeon Park, Won Yong Lee, Han Nim Choi, Jung Hoon Lee
  • Patent number: 8491501
    Abstract: A fluid handling module that is removably engageable with a bodily fluid analyzer is provided. The module may comprise a fluid handling element, and a fluid component separator that is accessible via the fluid handling element and configured to separate at least one component of a bodily fluid transported to the fluid component separator. The fluid handling element may have at least one control element interface.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: July 23, 2013
    Assignee: Optiscan Biomedical Corporation
    Inventors: Jennifer H. Gable, James R. Braig, Kenneth I. Li, Mark Wechsler, Peng Zheng, Richard Keenan
  • Patent number: 8486335
    Abstract: An automated microscope slide staining system and staining apparatus and method that features a plurality of individually operable miniaturized pressurizable reaction compartments or a pressurizable common chamber for individually and independently processing a plurality of microscope slides. The apparatus preferably features independently movable slide support elements each having an individually operable heating element.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: July 16, 2013
    Inventor: Lee H. Angros
  • Patent number: 8486336
    Abstract: A microchip including a fluid circuit formed by a groove of a first substrate and a surface of a second substrate is provided. The fluid circuit includes a fluid retaining reservoir for containing a fluid. The fluid retaining reservoir includes a fluid outlet or outflow channel for allowing the fluid to flow out, and a partition dividing the fluid retaining reservoir into a first region including a fluid inlet for injecting a fluid into the fluid retaining reservoir and a second region including the fluid outlet or outflow channel. The partition includes at least one communication gate for allowing communication between the first region and the second region.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: July 16, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Yasuhisa Kageyama, Youichi Aoki
  • Patent number: 8481326
    Abstract: A microfluidic device and method for measuring a level of cholesterol therewith are provided. The cholesterol measurement apparatus includes a microfluidic device including a plurality of chambers and at least one channel through which the plurality of chambers are interconnected. The plurality of chambers include a reaction chamber which contains a capture binder, a buffer chamber which contains an elution buffer and is connected to the reaction chamber, and at least one detection chamber which contains a cholesterol measurement reagent and is connected to the reaction chamber.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: In Wook Kim
  • Patent number: 8470243
    Abstract: A sample plate for a biochemical analyzer is provided, which includes a main shaft, an inner plate, an outer plate, a refrigeration bin, a tubing portion, a cooling fluid inlet and a cooling fluid outlet.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: June 25, 2013
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Baozhen Nie, Zaixing Gao, Leping Zhang, Ping Tian
  • Patent number: 8470588
    Abstract: A test element and method for detecting an analyte with the aid thereof is provided. The test element is essentially disk-shaped and flat, and can be rotated about a preferably central axis which is perpendicular to the plane of the disk-shaped test element. The test element has a sample application opening for applying a liquid sample, a capillary-active zone, in particular a porous, absorbent matrix, having a first end that is remote from the axis and a second end that is near to the axis, and a sample channel which extends from an area near to the axis to the first end of the capillary-active zone that is remote from the axis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: June 25, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Christoph Boehm, Norbert Oranth, Juergen Spinke
  • Patent number: 8450114
    Abstract: Provided is an automatic analysis apparatus which can obtain stable analysis results by stabilizing a constant-temperature bath and the temperature of a reaction liquid inside reaction containers. For this purpose, the automatic analysis apparatus (1) comprises: a storage tank (10) for storing a temperature controlling liquid (L1) dispensed into reaction containers (5) using dispensing apparatuses (6) and (7); and a dispensation control section for performing a control for dispensing the temperature controlling liquid (L1) using the dispensing apparatuses into an empty reaction container when there is such an empty reaction container, in which neither a specimen nor a reagent is dispensed, on a reaction table (4), where the temperature controlling liquid is cooled down substantially equal to the dispensed reagent by laying a pipe, which is provided between a cooler and a reagent table (2) for passing the coolant, through the temperature controlling liquid in the storage tank.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: May 28, 2013
    Assignee: Beckman Coulter, Inc.
    Inventors: Masao Nichogi, Masao Ushikubo
  • Patent number: 8414848
    Abstract: A substrate including a channel part having a chamber in which a liquid can be fed stepwise from a chamber to another chamber at the channel part formed in the substrate, depending on the rotational speed of the substrate. A first chamber, a second chamber, a third chamber, and a channel interconnecting them are formed at the channel part formed in the substrate. Furthermore, the width and/or the depth of the first chamber is set smaller than the width and/or the depth of the second chamber. Consequently, the volume of solution subjected to centrifugal force in the first chamber is larger than the volume of solution subjected to centrifugal force in the second chamber.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: April 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Nobuhiko Ozaki, Airi Takagi
  • Patent number: 8415169
    Abstract: A tube and float system for use in separation and axial expansion of the buffy coat includes a transparent or semi-transparent, flexible sample tube and a rigid separator float having a specific gravity intermediate that of red blood cells and plasma. The float includes a main body portion of reduced diameter to provide a clearance gap between the inner wall of the sample tube and the float. One or more protrusions on the main body portion serve to support the flexible tube. During centrifugation, the centrifugal force causes the diameter of the flexible tube to expand and permit density-based axial movement of the float in the tube. The float further includes a pressure relief system to alleviate pressure build up in the trapped red blood cell blood fraction below the float, thereby preventing red blood cells from being forced into the annular gap containing the buffy coat layers.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 9, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Thomas Haubert, Vince Contini, Steve Grimes, Randy Jones, Stephen C. Wardlaw
  • Patent number: 8405006
    Abstract: A device for heating a biological sample, the device having a heating source comprising a semiconductor chip. A sample chamber, or other medium to be heated, is positioned adjacent the heating source, wherein the sample chamber is configured to house a biological sample at a predetermined temperature. A microcontroller is electrically coupled to the semiconductor chip and a sensor positioned inside, at, or near the sample chamber. The microcontroller supplies a load current to the heating source to generate heat from the heating source, and the sensor is coupled to the microcontroller to provide feedback for controlling the heat generated by the heating source. The device may also support different heating profiles that are software and/or hardware selectable.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: March 26, 2013
    Assignee: Los Alamos National Security, LLC
    Inventor: Torsten Albert Staab
  • Patent number: 8329100
    Abstract: An automated in situ heat induced antigen recovery and staining method and apparatus for treating a plurality of microscope slides. The process of heat induced antigen recovery and the process of staining the biological sample on the microscope slide are conducted in the same apparatus, wherein the microscope slides do not need to be physically removed from one apparatus to another. Each treatment step occurs within the same reaction compartment. The reaction conditions of each reaction compartment for treating a slide can preferably be controlled independently, including the individualized application of reagents to each slide and the individualized treatment of each slide. The reagents are preferably held in a reagent dispensing strip similar to a “blister pack”.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: December 11, 2012
    Inventor: Lee Angros
  • Patent number: 8327726
    Abstract: A microfluidic device includes a sample chamber accommodating a sample, a first sample distribution unit connected to the sample chamber and receiving the sample, a sample transfer unit connected to the first sample distribution unit and forming a path for transferring the sample, and including a first connection unit connected to the first sample distribution unit and a second connection unit, wherein the distance from the center of rotation to the second connection unit is greater than the distance from the center of rotation to the first connection unit, a second sample distribution unit connected to the second connection unit and receiving the sample transferred via the sample transfer unit after filling the first sample distribution unit, and first and second analysis units respectively connected to the first and second sample distribution units and analyzing ingredients of the sample.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: December 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dogyoon Kim, Yoonkyoung Cho, Hansang Kim, Yangui Lee
  • Patent number: 8313652
    Abstract: The present invention includes a container and a method of separating one or more components of interest bound to magnetic particles using centrifugal forces.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 20, 2012
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Heinz Michael Hein, Emad Sarofim, Lotar Schenk, Hans-Peter Wahl
  • Patent number: 8313694
    Abstract: An automated in situ heat induced antigen recovery and staining method and apparatus for treating a plurality of microscope slides. The process of heat induced antigen recovery and the process of staining the biological sample on the microscope slide are conducted in the same apparatus, wherein the microscope slides do not need to be physically removed from one apparatus to another. Each treatment step occurs within the same reaction compartment. The reaction conditions of each reaction compartment for treating a slide can preferably be controlled independently, including the individualized application of reagents to each slide and the individualized treatment of each slide. The reagents are preferably held in a reagent dispensing strip similar to a “blister pack”.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: November 20, 2012
    Inventor: Lee Angros
  • Patent number: 8307988
    Abstract: An apparatus for separating components and a method of separating components using the apparatus are provided. The apparatus includes: a main chamber which contains a sample that is separated into a plurality of layers by a centrifugal force; a component separating chamber which is connected to the main chamber, and receives a specific layer including specific components among the plurality of layers; a first channel which connects the component separating chamber to the main chamber; and a first channel valve which is disposed in the first channel to control a liquid flowing through the first channel.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: November 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-myeon Park, Byung-chul Kim
  • Patent number: 8283175
    Abstract: A test device for determining the concentration of at least one analyte in a sample using a element is proposed. The test device can be used particularly for glucose measurement, in particular blood glucose measurement, cholesterol measurement and/or coagulation measurement. The test device according to the invention comprises a housing with a closed state and an opened state, and a storage device for receiving at least one test element. The at least one test element is typically designed as a strip-shaped test element, and the storage device typically comprises a magazine. The magazine comprises a plurality of cavities, and the test elements are received substantially parallel to one another in the cavities. A measuring device and a dispensing device are also provided. The dispensing device comprises means for conveying the at least one test element from at least one storage position of the storage device during opening of the housing.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: October 9, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Gregor Bainczyk, Thomas Eisele, Herbert Wieder
  • Patent number: 8226908
    Abstract: The present invention is directed generally to devices and methods for controlling fluid flow in meso-scale fluidic components in a programmable manner. Specifically, the present invention is directed to an apparatus and method for placing two microfluidic components in fluid communication at an arbitrary position and time, both of which are externally defined. The inventive apparatus uses electromagnetic radiation to perforate a material layer having selected adsorptive properties. The perforation of the material layer allows the fluid communication between microfluidic components allowing volumetric quantitation of fluids. Using the perforation of the material functionality such as metering and multiplexing are achieved on a microscale. This functionality is achieved through basic operations, like dosimeters filling, dosimeters purging, dosimeters extraction, dosimeters ventilation and channels routing.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: July 24, 2012
    Assignee: Spinx, Inc.
    Inventors: Piero Zucchelli, Bart Van de Vyver
  • Patent number: 8226826
    Abstract: Disclosed is a disk based system for separating at least two types of particulates contained in a sample fluid. The system includes a disk-like carrier board and a magnetic attraction unit. The disk-like carrier board forms at least one flow channel structure, which includes an inner reservoir, at least one separation chamber, and at least one outer reservoir arranged in sequence from a geometric center of the disk-like carrier board to an outer circumferential rim of the disk-like carrier board. A method of separation carried out with the system includes introducing the sample fluid into the inner reservoir and then rotating the disk-like carrier board to induce a centrifugal force. The sample fluid contains particulates that are labeled with immunomagnetic beads and the labeled particulates are attracted by the magnetic force generated by the magnetic attraction unit to retain in the inner reservoir or the separation chamber.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: July 24, 2012
    Assignee: National Taiwan University
    Inventors: Andrew M. Wo, Chen-Lin Chen, Ken-Chao Chen, Yu-Cheng Pan
  • Patent number: 8221701
    Abstract: Provided is a microfluidic device that can automatically perform various types of biological blood analysis. In the microfluidic device, a specimen is centrifugally separated and the centrifugally separated specimen is diluted into various dilution ratios. Also, at least two reagents that are required for one reaction and that need to be separately stored are stored in separate chambers, and they are mixed when a reaction is needed. Thus, various conventional blood analyzing reagents can be used as they are or after being minimally processed in the microfluidic device.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: July 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-kyoung Cho, Do-gyoon Kim, Jung-nam Lee, Hee-kyun Lim
  • Patent number: 8197754
    Abstract: The invention provides a small-sized automatic analyzer being compact, enabling a large number of analysis items to be carried out, and having a high processing speed. The automatic analyzer is particularly suitably applied to a medical analyzer used for qualitative/quantitative analysis of living body samples, such as urine and blood. A plurality of sample dispensing mechanism s capable of being operated independently of each other are provided to suck a sample from any one of a plurality of sample suction positions and to discharge the sucked sample to any one of a plurality of positions on a reaction disk. The automatic analyzer having a high processing capability can be thus realized without increasing the system size.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: June 12, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hideyuki Yanami, Isao Yamazaki, Masaaki Hanawa, Hitoshi Otake
  • Patent number: 8191715
    Abstract: A centrifugal force-based microfluidic device in which a sample including particles and a fluid is centrifugally separated such that the separated fluid is quantitatively distributed, and a microfluidic system including the centrifugal force-based microfluidic device are provided. The centrifugal force-based microfluidic device includes a microfluidic structure in which, within a rotatable disc-shaped platform, a sample, including particles and a fluid, is quickly centrifugally separated into the particles and the fluid using the rotation of the disc-shaped platform and the fluid having a certain volume of the separated fluid is discharged by rotation of the disc-shaped platform.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: June 5, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-kyoung Cho, Beom-seok Lee
  • Patent number: 8178352
    Abstract: A lab on a valve analytical system includes a rotary sample preparation assembly having a stator and a rotor. The rotor includes a plurality of integral syringe pumps which can be aligned with passages formed within the stator. The stator passages can be connected with fluid inlet connector which connect the sample preparation assembly with fluid sources, and fluid outlet connectors which connect the sample preparation assembly with one or more wet chemical analytical devices. Some embodiments can include a mixer and optical sensor connected with the fluid outlets. One or more drive motors can be used to control simultaneous actuation of one or more of the syringe pumps, thereby providing for simultaneous delivery of metered volumes of fluid.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: May 15, 2012
    Assignee: Ecolab USA Inc.
    Inventors: Eugene Tokhtuev, Christopher Owen, William Christensen
  • Patent number: 8158079
    Abstract: Provided is a panel (3) for analysis having a chamber inside for transferring a sample liquid dispensed as a drop on an injection port (14). The injection port (14) is formed to protrude in a direction away from the chamber, a recessed section (12) is formed around the injection port (14), and the injection port (14) is arranged on the side of a rotating axis center (11) of a holding member (101) for the panel for analysis in an analyzer. Thus, even when a sample liquid is adhered around the injection port, contamination and shortage of the sample liquid can be prevented.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: April 17, 2012
    Assignee: Panasonic Corporation
    Inventors: Hirofumi Sugimoto, Masaaki Kito, Masakazu Mori, Shinichi Ninomiya, Noriyuki Shinohara, Hiroshi Takano
  • Patent number: 8142719
    Abstract: A device is disclosed, being an analysis device for the study of biological or chemical samples by means of a reagent liquid supplied via a pipette. The device has an instrument housing with a base plate, a working plate arranged on the base plate horizontally to receive the samples in a sample holder having several wells, a robot manipulator arranged above the working plate, which carries a horizontal support arm with a slide. A needle system is fastened to the slide and can move in the Z direction, carrying 3 needles and being brought into vertical positions by a first vertical drive. The needle tips can be placed in an upper position above and in a lower position below a well. The middle needle can move vertically relative to the other two needles, which can be raised and lowered by a second vertical drive. The horizontal spacing of the three needles is so small that all three needles can be positioned with their tips inside the same wells.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 27, 2012
    Inventors: Torsten Matthias, Hugo Ribeiro, Hans-Peter Schimon, Peter Van Praet
  • Patent number: 8124030
    Abstract: A centrifugal microfluidic device includes a substrate configured for rotation about an axis, the substrate having a start chamber disposed therein, the start chamber configured to hold a liquid. The device includes an output chamber disposed in the substrate and located radially outward of the start chamber. A fluid transfer channel connects the start chamber to the output chamber. A ventilation channel connects the output chamber to the start chamber, the ventilation channel connecting at one end to a radially inward portion of the start chamber and at an opposing end to a junction point on the output chamber. A vent hole is provided in the substrate that is operatively connected to the output chamber. The location of the junction between the ventilation channel and the output chamber is located radially outward with respect to the level of fluid in the start chamber so as to prevent cross-contamination.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: February 28, 2012
    Assignee: The Regents of the University of California
    Inventor: Brian Sa
  • Patent number: 8114680
    Abstract: A tube and float system for use in separation and axial expansion of the buffy coat includes a transparent or semi-transparent, flexible sample tube and a rigid separator float having a specific gravity intermediate that of red blood cells and plasma. The float includes a main body portion of reduced diameter to provide a clearance gap between the inner wall of the sample tube and the float. One or more protrusions on the main body portion serve to support the flexible tube. During centrifugation, the centrifugal force causes the diameter of the flexible tube to expand and permit density-based axial movement of the float in the tube. The float further includes a pressure relief system to alleviate pressure build up in the trapped red blood cell blood fraction below the float, thereby preventing red blood cells from being forced into the annular gap containing the buffy coat layers.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: February 14, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Thomas Haubert, Vince Contini, Steve Grimes, Randy Jones, Stephen C. Wardlaw
  • Patent number: 8048387
    Abstract: Provided are a centrifugal microfluidic device having a sample distribution structure and a centrifugal microfluidic system including the centrifugal microfluidic device. The centrifugal microfluidic device includes: a rotatable platform; a sample chamber which is disposed in the rotatable platform and houses a fluid sample; a distribution channel connected to an outlet of the sample chamber; a valve which is disposed in the outlet of the sample chamber; a plurality of non-vented reaction chambers which are disposed in the rotatable platform outside of the distribution channel in the radial direction; and a plurality of inlet channels connecting the distribution channel with the reaction chambers.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: November 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Beom-seok Lee, Yoon-kyoung Cho, Jong-myeon Park, Jung-nam Lee
  • Publication number: 20110263030
    Abstract: A centrifugal micro-fluidic device detecting analytes in a liquid specimen and a method of detection of analytes from a liquid specimen using the micro-fluidic device are provided. Reaction efficiency is increased using a repetitive flow of the liquid specimen induced by an alternating combination of capillary force and centrifugal force, thereby enhancing detection sensitivity.
    Type: Application
    Filed: July 5, 2011
    Publication date: October 27, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: In Wook KIM
  • Patent number: 8043562
    Abstract: An analyzer, preferably a desktop analyzer, includes: a component transport system; a liquid dispense or aspirating station; a member removably located on the transport system. The removable holder includes: a probe tip dispenser; a fluid supply section for holding a sample; a test element recess for holding one or more test elements or test element holders, wherein the removable holder is configured to contain the test element recess such that a test element can be acted upon by the liquid dispense or aspirating station, while the test element is in the recess; and a measurement device to analyze a sample. Another aspect provides a removable centrifuge model on the transport system, which separates samples, such as whole blood before analysis.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: October 25, 2011
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: David Angelo Tomasso, Raymond Francis Jakubowicz, James Vanselow Barry
  • Publication number: 20110256629
    Abstract: A fully automatic biochemical analyzer and an analyzing method thereof are provided, in which the fully automatic biochemical analyzer includes two concentric reagent trays and two driving systems. The two driving systems respectively drive the two reagent trays to rotate, so the two reagent trays are capable of independent rotation, thereby avoiding various drawbacks resulting from required simultaneous rotation and stopping of the two reagent trays. The two reagent trays are concentrically disposed. Under a particular limitation of the table size, more reagent positions can be disposed, thereby increasing the number of items that can be analyzed at the same time by the analyzer.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 20, 2011
    Applicant: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD.
    Inventors: Zhihong Wang, Chuanfen Xie
  • Publication number: 20110250695
    Abstract: A method for the automated analysis of liquid samples using at least one microfluidic structure is disclosed as well as microfluidic structures, a device having at least one of the microfluidic structures, a kit and a system including such microfluidic device. In one embodiment, the method may comprise: transferring said sample into a first fluid reservoir which is in fluid communication with a second fluid reservoir by a flow channel; spinning said microfluidic structure so as to transport said sample into one or more dead-end recesses or chambers; transferring a control fluid into the structure which generates a barrier to flow and diffusion of said sample contained in said one or more dead-end recesses or chambers; and analyzing said sample contained in said one or more dead-end recesses or chambers.
    Type: Application
    Filed: October 13, 2010
    Publication date: October 13, 2011
    Applicant: ROCHE DIAGNOSTICS OPERATIONS, INC.
    Inventors: Emad Sarofim, Edwin Oosterbroek, Claudio Cherubini, Nenad Milicevic
  • Patent number: 8007720
    Abstract: An automated in situ heat induced antigen recovery and staining method and apparatus for treating a plurality of microscope slides. The process of heat induced antigen recovery and the process of staining the biological sample on the microscope slide are conducted in the same apparatus, wherein the microscope slides do not need to be physically removed from one apparatus to another. Each treatment step occurs within the same reaction compartment. The reaction conditions of each reaction compartment for treating a slide can preferably be controlled independently, including the individualized application of reagents to each slide and the individualized treatment of each slide. The reagents are preferably held in a reagent dispensing strip similar to a “blister pack”.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: August 30, 2011
    Inventor: Lee Angros
  • Patent number: 8007721
    Abstract: An automated in situ heat induced antigen recovery and staining method and apparatus for treating a plurality of microscope slides. The process of heat induced antigen recovery and the process of staining the biological sample on the microscope slide are conducted in the same apparatus, wherein the microscope slides do not need to be physically removed from one apparatus to another. The reaction conditions for treating a slide can preferably be controlled independently, including the individualized application of reagents to each slide and the individualized treatment of each slide.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: August 30, 2011
    Inventor: Lee Angros
  • Patent number: 8008080
    Abstract: A lab on a valve analytical system includes a rotary sample preparation assembly having a stator and a rotor. The rotor includes a plurality of integral syringe pumps which can be aligned with passages formed within the stator. The stator passages can be connected with fluid inlet connector which connect the sample preparation assembly with fluid sources, and fluid outlet connectors which connect the sample preparation assembly with one or more wet chemical analytical devices. Some embodiments can include a mixer and optical sensor connected with the fluid outlets. One or more drive motors can be used to control simultaneous actuation of one or more of the syringe pumps, thereby providing for simultaneous delivery of metered volumes of fluid.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 30, 2011
    Assignee: Ecolab USA Inc.
    Inventors: Eugene Tokhtuev, Christopher Owen, William Christensen
  • Patent number: 8003051
    Abstract: Sample processing systems for processing sample materials located in sample processing devices that are separate from the system are disclosed. The sample processing systems include a rotating base plate with raised and/or non-planar thermal structures on which the sample processing devices are located during operation of the systems. The systems may also include structure to urge the sample processing devices against the base plate and thermal structures.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: August 23, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: William Bedingham, James E. Aysta, Barry W. Robole
  • Patent number: 8003049
    Abstract: In an analyzer for analyzing a sample that reacts with a reagent 25, an analyzing tool 10, an infrared sensor 1 and a temperature controlling part 5 are provided. Inside the analyzing tool 10, a reaction cell 24 in which the sample and the reagent 25 react with each other and a heating element 33 that is heated by electrification are provided. The infrared sensor 1 is disposed outside the analyzing tool 10 so as to photoreceive an infrared ray 9 that is emitted from the reaction cell 24, and outputs a signal that is in accordance with an amount of the photoreceived infrared ray 9 to the temperature controlling part 5. The temperature controlling part 5 adjusts a heat value of the heating element 33 based on the signal from the infrared sensor 1.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: August 23, 2011
    Assignee: Arkray, Inc.
    Inventor: Koji Fujimoto
  • Patent number: 7998411
    Abstract: The present invention provides centrifugal rotors for delivering a premeasured volume of liquid to a chamber in the rotor. In particular the rotors comprise siphons for delivering a premeasured volume of liquid between a first and a second chamber in the rotor. The siphons of the invention are designed such that the inlet of the siphon on the first chamber is radially outward of the siphon outlet on the second chamber. The first chamber is emptied to a level equivalent to the radial position of the siphon outlet.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: August 16, 2011
    Assignee: ABAXIS, Inc.
    Inventors: Anne R. Kopf-Sill, Carol T. Schembri
  • Patent number: 7988844
    Abstract: A method for measuring an iodine adsorption number of carbon black includes: (a) electrochemically reducing an unknown amount of iodine adsorbed by a predetermined amount of a carbon black sample; (b) measuring the electrical charge used for reducing the unknown amount of the iodine adsorbed by the carbon black sample; and (c) obtaining the iodine adsorption number from the measured electrical charge. An electrolytic cell and a kit for measuring an iodine adsorption number of carbon black are also disclosed.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: August 2, 2011
    Assignee: National Kaohsiung University of Applied Sciences
    Inventors: Jiin-Jiang Jow, Ho-Ruei Chen, Ping-Feng Lo, Zong-Sin Guo, Tzong-Rong Ling
  • Patent number: 7971368
    Abstract: In a hand drying apparatus, an infrared light absorber absorbs infrared light, when a hand is not present, emitted from an infrared light emitter provided on an inner surface of a drying space.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: July 5, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiro Fukaya, Syunichi Mori, Yasuyuki Itoigawa
  • Patent number: 7968051
    Abstract: A clinical laboratory apparatus includes a plurality of reaction cuvettes, a first dispenser, a second dispenser, a controller, and an analyzer. A subject sample and a reagent are mixed in each of the plurality of reaction cuvettes. The first dispenser is configured to dispense the subject sample into each of the plurality of reaction cuvettes. The second dispenser is configured to dispense the reagent into each of the plurality of reaction cuvettes so that the subject sample and the reagent are mixed. The controller is configured to categorize the plurality of reaction cuvettes into at least first and second groups, to designate at least first and second analysis items among two or more analysis items with respect to the subject sample, to control the second dispenser to avoid dispensing the reagent relevant to the first analysis item into the second group of the reaction cuvettes. The analyzer is configured to analyze a mixed result.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: June 28, 2011
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Takehiko Oonuma
  • Patent number: 7963900
    Abstract: A scheduling process for loading samples into two or more centrifuges in a loading scheme that reduces the time required for high priority sample to be centrifuged. One centrifuge is initially loaded to about one-half of capacity and samples processed while the remaining centrifuge is loaded to full capacity before being operated. This creates a time-shift in the operational status of the two centrifuges so that a high-priority sample may advantageously be shuttled to whichever of the two centrifuges will be first-fully loaded and thus next-operated.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: June 21, 2011
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Kerry Lynn Miller
  • Patent number: 7943386
    Abstract: An apparatus for determining the volume fractions of the phases in a suspension includes a body, a channel structure, which is formed in the body, and an inlet area and a blind channel, which is fluidically connected to and capable of being filled via the same. Furthermore, a drive for imparting the body with rotation, so that phase separation of the suspension in the blind channel takes place, is provided. The blind channel includes such a channel cross-section and/or such wetting properties that, when filling same via the inlet area, higher capillary forces act in a first cross-sectional area than in a second cross-sectional area, so that at first the first cross-sectional area fills in the direction from the inlet area toward the blind end of the blind channel and then the second cross-sectional area fills in the direction from the blind end toward the inlet area.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: May 17, 2011
    Assignee: Albert-Ludwigs-Universitaet Freiburg
    Inventors: Markus Grumann, Jens Ducrée, Roland Zengerle, Lutz Riegger