With A Continuously Flowing Sample Or Carrier Stream Patents (Class 436/52)
  • Patent number: 8486703
    Abstract: A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 16, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Gary J. Van Berkel, Mariam S. Elnaggar
  • Patent number: 8486645
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant polypeptides, probes for detecting it, isolated mutant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: July 16, 2013
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Patent number: 8486349
    Abstract: A microfluidic-based flow assay and methods of manufacturing the same are provided. Specifically, the microfluidic flow assay includes a micropatterned surface that induces clot formation and an array of microfluidic channels though which blood flows. The micropatterned surface contains two clotting stimuli, one for inducing platelet adhesion and another for inducing the coagulation cascade.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: July 16, 2013
    Assignee: Colorado School of Mines
    Inventors: Keith Benjamin Neeves, Ryan R. Hansen
  • Patent number: 8470246
    Abstract: The fluidic system including a sheath pump that pumps sheath fluid from a sheath container into an interrogation zone, a waste pump that pumps waste fluid from the interrogation zone to a waste container, in which the flow rate of the sheath fluid is different from the flow rate of the waste fluid thereby drawing a sample fluid from a sample container into the interrogation zone, a detection system that provides a data set of input signals from the sample fluid, an analysis engine that recognizes aggregate particle events in the data set, and a controller that automatically adjusts the flow rate of the sample fluid into the interrogation zone based on the recognition of aggregate particle events, by controlling at least one of the flow rates of the sheath fluid and the waste fluid.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: June 25, 2013
    Assignee: Accuri Cytometers, Inc.
    Inventor: Collin A. Rich
  • Patent number: 8465697
    Abstract: Disclosed are a system and method for regulating flow in an exemplary fluidic device comprising a fluidic stream carrying a transport medium, sample and one or more reagents for analysis and synthesis of reaction products. The flow rate of the fluidic stream is maintained constant by adjusting the flow rate of transport medium to compensate for the introduction of sample and reagents. An embodiment controls the flow rate of transport medium using a pump, a back pressure regulator, and a variable-sized orifice. Single and multiple channel embodiments are disclosed.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: June 18, 2013
    Assignee: O.I. Corporation
    Inventors: Gary L. Erickson, Craig Ranger
  • Patent number: 8455262
    Abstract: A method to avert an unlawfully intoxicated driver from operating a vehicle is provided. The method utilizes a passive ethanol vapor sensor to measure ethanol vapor concentration in air from a vehicle cabin and imposes a safety response when the passive ethanol vapor sensor detects that a sample of vehicle cabin air indicates that a vehicle occupant exceeds the legal blood alcohol concentration (BAC) for a motor vehicle driver. The ethanol vapor sensor may have a passive measurement mode and an active breathalyzer mode. Ethanol vapor in a vehicle cabin may be passively measured and if a predetermined ethanol level is measured, a countermeasure is invoked to improve safety. An active breathalyzer may be used as a countermeasure. The active breathalyzer can be imposed for a number of vehicle trips or for a predetermined time period.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: June 4, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Michel F. Sultan, David K. Lambert
  • Patent number: 8445286
    Abstract: The flow cytometer system of the preferred embodiment includes a flow cell body that functions to contain, protect, and align the components of the flow cytometer system; a flow channel, coupled to the flow cell body, that functions to conduct and focus sample fluid through an interrogation zone; and a sample injection probe, removably coupled to the flow cell body, that functions to provide a uniform flow of sample fluid to the flow channel. The flow cytometer system is preferably designed for the flow cytometer field. The flow cytometer system, however, may be alternatively used in any suitable environment and for any suitable reason.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: May 21, 2013
    Assignee: Accuri Cytometers, Inc.
    Inventors: Nathaniel C. Bair, Collin A. Rich, Mark Robert Eadie, Rebecca Ann Lehrmann
  • Patent number: 8420397
    Abstract: Fluid flow devices include a small plate (2), at least one flow channel (20) formed into this small plate, at least one storage channel (221-226) extending from this connection channel, and a set of valves (V1-V6), each of which is suitable for allowing or stopping the flow of fluid in a corresponding storage channel.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 16, 2013
    Assignees: Rhodia Operations, Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Mathieu Joanicot, Philippe Laval, Jean-Baptiste Salmon
  • Patent number: 8362919
    Abstract: A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: January 29, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: John F. Cooper, Alan K. Burnham
  • Patent number: 8343778
    Abstract: The invention encompasses microfluidic microarray assemblies (MMA) and subassemblies and methods for their manufacture and use. In one embodiment, first and second channel plates are provided and are sealingly connected to a test chip in consecutive steps. Each plate includes microfluidic channels configured in a predetermined reagent distribution pattern. The test chip comprises a plurality of discrete test positions, each test position being located at the intersection between a first predetermined reagent pattern and a second predetermined reagent pattern, wherein at least one of said patterns is non-linear. The first channel plate allows the distribution of a first reagent on said test chip, wherein said first reagent is immobilized at said test positions. The second channel plate allows the distribution of a second reagent on said test chip, wherein said second reagent comprises a plurality of different test samples.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: January 1, 2013
    Assignee: Simon Fraser University
    Inventors: Hua Zhong Yu, Meenakshinathan Parameswaren, Paul Chi Hang Li, Xing Yue Peng, Hong Chen, Wa Lok Chou
  • Patent number: 8343526
    Abstract: Disclosed are methods for conducting assays of samples, such as whole blood, that may contain cells or other particulate matter. Also disclosed are systems, devices, equipment, kits and reagents for use in such methods. One advantage of certain disclosed methods and systems is the ability to rapidly measure the concentration of an analyte of interest in blood plasma from a whole blood sample without blood separation and hematocrit correction.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: January 1, 2013
    Assignee: Meso Scale Technologies, LLC
    Inventors: Mark A. Billadeau, Jeff D. Debad, Eli N. Glezer, Jonathan K. Leland, Charles A. Wijayawardhana
  • Patent number: 8318506
    Abstract: A dialysis adapter cell includes a housing comprising a plurality of pillars extending between and attached to a top plate and a bottom plate to form a hollow receptacle, wherein the top plate comprises an aperture configured to provide access to the hollow receptacle; a dialysis membrane disposed about the housing and sealingly engaged to the top plate and the bottom plate; and a platform in physical communication with the bottom plate and configured to position the dialysis adapter cell in a sample holder of a United States Pharmacopoeia dissolution apparatus 4 flow-through cell.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: November 27, 2012
    Assignee: The University of Connecticut
    Inventors: Diane J. Burgess, Upkar Bhardwaj
  • Patent number: 8318416
    Abstract: The present invention pertains to methods of increasing the efficiency of producing a bioproduct. In some embodiments, the method increases the quantity of a bioproduct produced, or decreases bioproduct production time, in a bioreactor cell culture producing the bioproduct, the method comprising, (a) intermittently or continuously analyzing the concentration of one or more nutrients in the bioreactor cell culture; and (b) adding to the bioreactor cell culture additional nutrient media when the concentration of the one or more nutrients is lower than a target value.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: November 27, 2012
    Assignee: Biogen Idec MA Inc.
    Inventors: Valerie Liu Tsang, Angela Xiaoying Wang, Helena Yusuf-Makagiansar
  • Patent number: 8318871
    Abstract: The present invention relates to a process which comprises preparing polymers. The process uses an appropriate installation, and may comprise determining at least one parameter of a physical and/or chemical conversion. The invention also relates to a corresponding screening process. According to this process, a polymerization reaction medium is made to flow in a tubular flow member.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: November 27, 2012
    Assignee: Rhodia Operations
    Inventors: Bertrand Pavageau, Galder Cristobal, Rabih Rached, Chi-Thanh Vuong
  • Patent number: 8313948
    Abstract: Disclosed herein is a sample supply device that alternates between the supply of samples from one sample line while cleaning a second sample line and then supplying a second sample from the second sample line while cleaning the first sample line. This is repeated in rapid succession to allow greater speed in analyzing a plurality of samples in a shorter amount of time.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: November 20, 2012
    Assignee: Vivia Biotech S.L.
    Inventor: Alex Okun
  • Patent number: 8303894
    Abstract: The fluidic system including a sheath pump that pumps sheath fluid from a sheath container into an interrogation zone, a waste pump that pumps waste fluid from the interrogation zone to a waste container, in which the flow rate of the sheath fluid is different from the flow rate of the waste fluid thereby drawing a sample fluid from a sample container into the interrogation zone, a detection system that provides a data set of input signals from the sample fluid, an analysis engine that recognizes aggregate particle events in the data set, and a controller that automatically adjusts the flow rate of the sample fluid into the interrogation zone based on the recognition of aggregate particle events, by controlling at least one of the flow rates of the sheath fluid and the waste fluid.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: November 6, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventor: Collin A. Rich
  • Patent number: 8298833
    Abstract: A bridge (30) comprises a first inlet port (31) at the end of a capillary, a narrower second inlet port (32) which is an end of a capillary, an outlet port (33) which is an end of a capillary, and a chamber (34) for silicone oil. The oil is density-matched with the reactor droplets such that a neutrally buoyant environment is created within the chamber (34). The oil within the chamber is continuously replenished by the oil separating the reactor droplets. This causes the droplets to assume a stable capillary-suspended spherical form upon entering the chamber (34). The spherical shape grows until large enough to span the gap between the ports, forming an axisymmetric liquid bridge. The introduction of a second droplet from the second inlet port (32) causes the formation of an unstable funicular bridge that quickly ruptures from the, finer, second inlet port (32), and the droplets combine at the liquid bridge (30).
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: October 30, 2012
    Assignee: Stokes Bio Limited
    Inventors: Mark Davies, Tara Dalton, Kieran Curran
  • Patent number: 8290625
    Abstract: Disclosed are computer-implemented methods of sorting particles from a particle stream in a flow cytometer. The methods include: calculating sort decision making parameters using the raw event data values from a flow cytometer and a sort logic; performing sort logic computations using the sort logic definition and the sort decision making parameters to generate sort decisions; converting the sort decisions into sort commands; and sending the one or more sort commands to the flow cytometer. Sort logic computations may include algorithmically using conditional branching logic, and may include sort logic equations having mathematical functions characterizing one or more regions of interest in multidimensional data space. Such mathematical functions may be determined based on one or more parameters provided by a user. Also disclosed are corresponding systems having a flow cytometer and a computer.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: October 16, 2012
    Assignee: Beckman Coulter, Inc.
    Inventors: Jeffrey W. Degeal, Charles S. Bay, Edward A. Stanton, Paul Barclay Purcell, George C. Malachowski
  • Patent number: 8273573
    Abstract: The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: September 25, 2012
    Assignee: The University of Chicago
    Inventors: Rustem F Ismagilov, Joshua David Tice, Cory John Gerdts, Bo Zheng
  • Patent number: 8273566
    Abstract: Disclosed are methods for conducting assays of samples, such as whole blood, that may contain cells or other particulate matter. Also disclosed are systems, devices, equipment, kits and reagents for use in such methods. One advantage of certain disclosed methods and systems is the ability to rapidly measure the concentration of an analyte of interest in blood plasma from a whole blood sample without blood separation and hematocrit correction.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 25, 2012
    Assignee: Meso Scale Technologies, LLC
    Inventors: Mark A. Billadeau, Jeff D. Debad, Eli N. Glezer, Jonathan K. Leland, Charles A. Wijayawardhana
  • Patent number: 8273294
    Abstract: A microfluidic circuit cartridge having 3-D hydrodynamic focusing. The cartridge may be fabricated with injection-molded or other molded layers providing a 3-D structure. A flow channel on the card may have a sample core flowing in a fluid of a flow channel for analysis. The sample core may be adjustable in position within the channel with one or more jets or channels of fluid being injected into the flow channel. The jets may also adjust the size of the sample core. There may be a hemoglobin measurement mechanism or card with a cuvette.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: September 25, 2012
    Assignee: Honeywell International Inc.
    Inventors: Aravind Padmanabhan, Ron L. Bardell
  • Patent number: 8273308
    Abstract: This disclosure provides systems, methods, and devices for processing samples on a microfluidic device. One system includes a microfluidic device having an upstream channel, a DNA manipulation zone located downstream from the upstream channel and configured to perform PCR amplification of a sample, a first valve disposed upstream of the DNA manipulation zone, and a second valve disposed downstream of the DNA manipulation zone. The system also includes a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the DNA manipulation zone, and a computer-controlled heat source in thermal contact with the DNA manipulation zone.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: September 25, 2012
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Gene Parunak
  • Patent number: 8268633
    Abstract: A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: September 18, 2012
    Assignee: UT-Battelle, LLC
    Inventors: J. Michael Ramsey, Stephen C. Jacobson
  • Patent number: 8268571
    Abstract: The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: September 18, 2012
    Assignee: STC.UNM
    Inventors: Larry A Sklar, Bruce Edwards, Frederick Kuckuck
  • Patent number: 8263023
    Abstract: A microfluidic system and method for sorting cell clusters, and for the continuous and automated encapsulation of the clusters, once sorted, in capsules of sizes suitable for those of these sorted clusters is provided. The microfluidic system comprises a substrate in which a microchannel array comprising a cell sorting unit is etched and around which a protective cover is bonded, and the sorting unit comprises deflection means capable of separating, during the flow thereof, relatively noncohesive cell clusters, each of size ranging from 20 ?m to 500 ?m and of 20 to 10 000 cells approximately, such as islets of Langerhans, at least two sorting microchannels arranged in parallel at the outlet of said unit being respectively designed so as to transport as many categories of sorted clusters continuously to a unit for encapsulation of the latter, also formed in said array.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: September 11, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Sophie Le Vot, Jean Berthier, Florence Rivera
  • Patent number: 8262990
    Abstract: The fluidic system with an unclogging feature of the preferred embodiment includes a flow channel, a sheath pump to pump sheath fluid from a sheath container into an interrogation zone, and a waste pump to pump waste fluid from the interrogation zone into a waste container. The sheath pump and/or the waste pump draw sample fluid from a sample container into the interrogation zone. The fluidic system also includes a controller to adjust the flow rate of the sample fluid from the sample container into the interrogation zone. The pump and controller cooperate to propagate a pulsation through the flow channel from the pump if the flow channel is clogged. The fluidic system is preferably incorporated into a flow cytometer with a flow cell that includes the interrogation zone.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: September 11, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: Nathaniel C. Bair, Collin A. Rich
  • Patent number: 8247239
    Abstract: A method for introducing standard gas into a sample vessel is generally disclosed comprising providing a vessel containing a sample gas and a receptacle with a vessel port, such as sampling needle, pressurizing the vessel with a carrier gas, and introducing a volume of standard gas into the flow path of the carrier gas being used to pressurize the vessel when the vessel port of the receptacle is located within the vessel. In some embodiments, a rotary valve is loaded with the standard gas, and the valve is brought into fluid communication with the flow path of the carrier gas when the vessel port is within the vessel.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: August 21, 2012
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Andrew Tipler, Christopher Mazza, David J. Scott
  • Patent number: 8186913
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: May 29, 2012
    Assignee: The General Hospital Corporation
    Inventors: Mehmet Toner, Dino DiCarlo, Jon Edd, Daniel Irimia
  • Patent number: 8183034
    Abstract: An apparatus for carbon dioxide-capture system has a cultivating vessel and at least one basking mechanism. The cultivating vessel has a reservoir for accommodating alga culture. The basking mechanism is mounted in the reservoir of the cultivating vessel and has multiple trays and a circulating mechanism. The trays are imbricately mounted on the basking mechanism with predetermined intervals and each has at least one spout formed at an overlap with an adjacent tray. The circulating mechanism is mounted between the trays and the reservoir. The alga culture is pumped into one tray by the circulating mechanism, flows through the spout into another tray, enhancing a rate of carbon fixation by alga.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: May 22, 2012
    Inventor: Mei-Hua Huang
  • Patent number: 8155791
    Abstract: Methods and systems for creating dynamic performance measures (DPMs) for an IBA manufacturing process. Included is a method for monitoring an Isobutyl Alcohol (IBA) recovery system that includes computing at least one of an amount of IBA recovered from the IBA recovery system and an amount of waste material produced from the IBA recovery system, and displaying at least one of the recovered IBA and the waste material produced based on time. The method also includes computing a cost saved based on a cost of virgin IBA and the amount of IBA recovered. Computing an amount of waste material includes measuring waste material flow, and computing a cost of waste material management based on the measured waste material flow and a cost per unit volume to dispose of waste material. The IBA recovery system can include an evaporation IBA recovery system and/or a distillation IBA recovery system.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: April 10, 2012
    Assignee: Invensys Systems, Inc.
    Inventor: Russell Barr
  • Patent number: 8137623
    Abstract: The present invention provides an apparatus for analyzing easily not only the overall taste of a sample but also what kind of components, synergetic effects and diminishing effects contribute to the taste. A sample to be analyzed is injected into a mobile phase by a liquid sending pump, and the sample is sent to a taste detector by way of a blending means and valves. Then, detection signals are obtained by taste sensors on the taste detector. The sample sent through the taste detector is introduced into a column by way of a 6-port-2-position valve, temporally separated into components and eluted from the column. After each component is detected by a UV detector, the eluted liquid is sent to the taste detector once more, and detection signals which reflect the tastes of each sample component. When analyzing how the taste changes by an additive, send the additive to the blending means and blend it with the sample.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: March 20, 2012
    Assignees: Shimadzu Corporation, Takasago International Corporation
    Inventors: Yosuke Iwata, Tsuyoshi Kobayashi
  • Patent number: 8119068
    Abstract: A fluid content monitor including a cuvette, a colorimeter adapted to generate a signal indicative of contents of a fluid sample contained in the cuvette, a container for holding a reagent, and a pump assembly for delivering reagent from the container to the cuvette. The pump assembly includes a tube extending from the container to the cuvette, check valves preventing reverse flow in the tube, and a hammer driven by a solenoid for repetitively compressing the tube to pump reagent to the cuvette. The cuvette can be removed for cleaning and replacement.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: February 21, 2012
    Assignee: HF Scientific, Inc.
    Inventors: Rowan Connelly, Joel Leal
  • Patent number: 8105837
    Abstract: A method for assaying anionic detergents in seawater comprises: (1) flow a sample through a sample system and an analysis-detection system; flow a reference solution through a reference system, a valve, and the analysis-detection system; where the sample and reference are mixed; and flow the mixture into an optical cell to produce a baseline, (2) flow a sample through the sample system and analysis-detection system; flow a buffer through a buffer system and a color developing system; where the buffer and a color developer are mixed; and flow the resulting mixture through the valve and analysis-detection system; where the sample is mixed with the buffer and developer mixture; and flow the resulting mixture into the cell to produce the sample spectrogram, (3) repeat (1) and (2) with standards of known detergent concentrations for corresponding spectrograms, and (4) compare the sample spectrogram with the standard spectrograms to determine the sample detergent content.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: January 31, 2012
    Assignee: Sichuan University
    Inventors: Xinshen Zhang, Xiaoping Jiang
  • Patent number: 8100293
    Abstract: A microfluidic dispensing system may include diaphragm pumps that may be used for aspirating in corresponding ingredients via a nozzle or a tip from supply sources. Tips may be placed in contact with ingredient supply sources, and through repeated actuation of the diaphragm pumps, desired volumes of ingredients are aspirated into the tips. In some cases, an air plug is aspirated into the tips before an ingredient. Once the desired volume of each ingredient is reached within each tip, the ingredients are dispensed from the tips through repeated actuation of corresponding diaphragm pumps.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: January 24, 2012
    Assignee: Formulatrix, Inc.
    Inventors: Kabir James Mukaddam, Jeremy Stevenson
  • Patent number: 8080422
    Abstract: A method of continuously regulating external gas pressure on a variable volume container for the delivery of fluids to a microfluidic device and analysis of particles based upon relative presence or absence of at least one particle characteristic.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: December 20, 2011
    Assignee: XY, LLC
    Inventors: Edwin Dean Neas, Jerald Edward Kuiken, John Louis Schenk, Thomas Boyd Gilligan
  • Patent number: 8067242
    Abstract: The present invention relates to the determination of the presence of methylmalonic acid in biologic samples including the steps of methylmalonic extraction from the sample; derivatization of methylmalonic acid and use of mass spectrometry with negative mode atmospheric pressure chemical ionization to determine the presence of methymalonic acid throughthe formation of an ion of mass to charge ratio (m/z) 477. An additional objective of the present invention concerns diagnosis kits for determination of presence and quantification of methylmalonic acid based on the method mentioned before.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: November 29, 2011
    Inventors: Valdemir Melechco Carvalho, Fernando Kok
  • Publication number: 20110275160
    Abstract: The systems and methods disclosed herein include a microfluidic system, comprising a pneumatic manifold having a plurality of apertures, and a chip manifold having channels disposed therein for routing pneumatic signals from respective ones of the apertures to a plurality of valves in a microfluidic chip, wherein the channels route the pneumatic signals in accordance with a configuration of the plurality of valves in the microfluidic chip.
    Type: Application
    Filed: June 3, 2011
    Publication date: November 10, 2011
    Applicant: Rheonix, Inc.
    Inventors: Peng Zhou, Lincoln C. Young
  • Patent number: 8053249
    Abstract: A method is provided for pumping fluid through a channel of a microfluidic device. The channel has an input port and an output port. The channel is filled with fluid and a pressure gradient is generated between the fluid at the input port and the fluid at the output port. As a result, fluid flows through the channel towards the output port.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 8, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David J. Beebe, Jay W. Warrick, Michael W. Toepke, Ivar Meyvantsson, Glenn M. Walker
  • Patent number: 8034629
    Abstract: Techniques are provided for high precision scanning of hydrogel microparticles. The high precision is achieved by one or more modifications to the microparticle composition, or microfluidics apparatus that align the microparticles in a detection channel, or method of preparing a sample for introduction into the apparatus, or some combination. An apparatus comprises a body structure having formed therein a central channel and multiple focusing channels in fluid communication with the central channel through multiple junctions. A width of the central channel is smaller in a portion downstream of each junction. A particle comprises a hydrogel matrix and a probe molecule. The particle has an aspect ratio greater than about three. A method includes loading into a sample fluid inlet a mixture, wherein a number of particles lies within a range from about 15 to about 20 particles/?l.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: October 11, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Stephen C. Chapin, Patrick Seamus Doyle, Daniel Colin Pregibon
  • Publication number: 20110236981
    Abstract: A specimen analyzer for continuously measuring a plurality of samples, using a reagent container which comprises a wirelessly writable and readable storage medium is disclosed. A specimen analyzing method is also disclosed. The analyzer comprises a reagent dispenser, a measurement unit, a memory which stores information regarding a remaining amount of the reagent in a reagent container, and a wireless communication unit. The analyzer causes the reagent dispenser to continuously carry out aspiration of the reagent from the reagent container, updates the information in the memory in response to an aspiration of the reagent by the reagent dispenser, and causes the wireless communication unit to write the information in the memory to the storage medium when the continuous aspiration is completed.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 29, 2011
    Applicant: SYSMEX CORPORATION
    Inventors: Yuji WAKAMIYA, Kazutoshi TOKUNAGA
  • Patent number: 8021872
    Abstract: The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 20, 2011
    Assignee: STC.UNM
    Inventors: Larry A Sklar, Bruce S Edwards, Frederick W Kuckuck
  • Patent number: 8021625
    Abstract: A device and method for enhancing rapid confirmatory immunological testing (“RCIT”) in chromatography strip-type rapid IVD devices useful in, for example, clinical, point-of-care, laboratory or over-the-counter settings. The device drives a flow fluid, primarily under the force of gravity alone, through a first chamber having a porous dam structure to enhance and substantially complete the first affinity binding reaction between a source of mobilizable labeled binding members and an analyte in the fluid. Flow through the dam causes a delay, mixing and trapping of the typically chemically disuniform initial fluid front so that fluid exiting the dam exhibits a more uniformly high degree of first affinity binding and decreased non-affinity binding.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: September 20, 2011
    Assignee: DNT Scientific Research, LLC
    Inventors: Naishu Wang, David F. Zhou
  • Patent number: 8012758
    Abstract: An apparatus and method for monitoring microbiological activity in a process stream by measuring dissolved oxygen is disclosed. Bulk microbiological activity and surface associated biological activity are measured using this apparatus and method.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: September 6, 2011
    Assignee: Nalco Company
    Inventors: Michael V. Enzien, Laura E. Rice, Stephen B. Ashton
  • Publication number: 20110159596
    Abstract: Apparatus for detecting substances in an air sample, the apparatus including: a source of air pressure differential, a cyclone connected to the source of air pressure differential, an air input port connected to the cyclone, to receive the air sample, a substance output port connected to the cyclone, to receive the substances, an input port configured to disperse a finely separated material so that it mixes with said sample, and a detector located at the substance output port, to detect a chemical change in at least one of the substances and the finely separated material.
    Type: Application
    Filed: December 24, 2009
    Publication date: June 30, 2011
    Applicant: Explodet Technologies Ltd.
    Inventors: Alex Keinan, Yevgeny Miroshnichenko, Mark Paradny
  • Patent number: 7966096
    Abstract: Methods and systems for creating dynamic performance measures (DPMs) for an IBA manufacturing process. Included is a method for monitoring an Isobutyl Alcohol (IBA) recovery system that includes computing at least one of an amount of IBA recovered from the IBA recovery system and an amount of waste material produced from the IBA recovery system, and displaying at least one of the recovered IBA and the waste material produced based on time. The method also includes computing a cost saved based on a cost of virgin IBA and the amount of IBA recovered. Computing an amount of waste material includes measuring waste material flow, and computing a cost of waste material management based on the measured waste material flow and a cost per unit volume to dispose of waste material. The IBA recovery system can include an evaporation IBA recovery system and/or a distillation IBA recovery system.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: June 21, 2011
    Assignee: Invensys Systems, Inc.
    Inventor: Russell Barr
  • Patent number: 7964142
    Abstract: A sample analyzer includes a loading section in which a measuring unit is removably set, the measuring unit being adapted to receive a sample; and a control section which analyzes a signal acquired from the sample received in the measuring unit set in the loading section to provide a result of analysis of the sample; wherein the control section judges whether or not the measuring unit is properly set in the loading section.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: June 21, 2011
    Assignee: Sysmex Corporation
    Inventors: Kazunori Mototsu, Seido Biwa
  • Patent number: 7951610
    Abstract: A reaction method of performing an adsorption reaction in which a subject substance of analysis is specifically adsorbed in a first channel, the method includes: flowing a specimen liquid to a second channel connected to the first channel so that the specimen liquid is fed to the first channel, the specimen liquid containing the subject substance and a labeled substance that can be bonded to the subject substance; stopping feeding of the specimen liquid by detecting an event that a rear end of the specimen liquid flows into the first channel; joining a washing liquid to the rear end of the specimen liquid which stops in the first channel by flowing the washing liquid to a third channel that is converged to a connection portion of the second channel; and feeding the washing liquid to the first channel after the washing liquid is joined to the rear end.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: May 31, 2011
    Assignee: Fujifilm Corporation
    Inventors: Yoshihiro Sawayashiki, Hideyuki Karaki
  • Patent number: 7939023
    Abstract: A sensor unit is retained on an assay stage of a surface plasmon resonance (SPR) assay apparatus. The sensor unit includes a prism having a sensing surface, disposed on an upper surface thereof, for detecting reaction of a sample. A flow cell is secured to the upper surface, and has a flow channel for flow of sample fluid containing the sample to the sensing surface. The sensor unit is set removably on the assay apparatus for optically measuring reaction of the sample. In sensor holding, the sensor unit is set on a stage surface of the assay stage by directing down the prism. In a pushing step, a lower surface of the prism is pushed on the stage surface in a first direction upright relative to the stage surface. Two holders push an upper face of the first and second ridges of the prism in the first direction.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: May 10, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Yoshiyuki Kunuki
  • Patent number: 7908937
    Abstract: A method and an apparatus for detecting, locating, and quantifying contamination in a fluid flow system like a pipe or duct. This characterization technique uses a conservative and one or more interactive tracers that are injected into the fluid flow system and then monitored at another location in the system. Detection, location, and quantification are accomplished by analysis of the characteristic features of measured curves of tracer concentration.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 22, 2011
    Assignee: Vista Engineering Technologies LLC
    Inventors: Wesley L. Bratton, Joseph W. Maresca, Jr.
  • Patent number: 7906758
    Abstract: The present invention relates to a charged particle beam apparatus which employs a scanning electron microscope for sample inspection and defect review. The present invent provides solution of improving imaging resolution by utilizing a field emission cathode tip with a large tip radius, applying a large accelerating voltage across ground potential between the cathode and anode, positioning the beam limit aperture before condenser lens, utilizing condenser lens excitation current to optimize image resolution, applying a high tube bias to shorten electron travel time, adopting and modifying SORIL objective lens to ameliorate aberration at large field of view and under electric drifting and reduce the urgency of water cooling objective lens while operating material analysis. The present invent provides solution of improving throughput by utilizing fast scanning ability of SORIL and providing a large voltage difference between sample and detectors.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: March 15, 2011
    Inventors: John T. Stults, Alfred Greenquist, Alexander Sassi