Using Structure Alterable To Conductive State (i.e., Antifuse) Patents (Class 438/131)
  • Patent number: 7402888
    Abstract: An input protection circuit comprises a semiconductor chip, an internal circuit disposed on the semiconductor chip, a first input/output terminal which is disposed on the semiconductor chip and connected to the internal circuit, a second input/output terminal which is disposed on the semiconductor chip, connected to the internal circuit and disposed at a position adjacent to the first input/output terminal, and a fusing part which is disposed on the semiconductor chip and connected between the first and second input/output terminals.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: July 22, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shuuji Matsumoto
  • Patent number: 7402463
    Abstract: An anti-fuse structure that included a buried electrically conductive, e.g., metallic layer as an anti-fuse material as well as a method of forming such an anti-fuse structure are provided. According to the present invention, the inventive anti-fuse structure comprises regions of leaky dielectric between interconnects. The resistance between these original interconnects starts decreasing when two adjacent interconnects are biased and causes a time-dependent dielectric breakdown, TDDB, phenomenon to occur. Decreasing of the resistance between adjacent interconnects can also be expedited via increasing the local temperature.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: July 22, 2008
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Lawrence A. Clevenger, Timothy J. Dalton, Nicholas C. Fuller, Louis C. Hsu
  • Patent number: 7393721
    Abstract: A metallization surface (5), which acts as an etching stop layer during the production of openings (4) in a passivation layer (3) applied to its upper face and protects an interconnect structure (6) arranged underneath it, is arranged in an uppermost metallization level (1). A further opening is produced in the metal surface (5), through which a focused ion beam is aimed at the interconnect structure (6) in order to connect interconnects to one another and/or to interrupt at least one interconnect. The wiring of the integrated circuit can thus be varied individually, starting from identically produced semiconductor chips.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: July 1, 2008
    Assignee: Infineon Technologies AG
    Inventors: Andreas Huber, Günter Gerstmeier, Michael Bernhard Sommer
  • Patent number: 7393722
    Abstract: A reprogrammable metal-to-metal antifuse is disposed between two metal interconnect layers in an integrated circuit. A lower barrier layer is formed from Ti. A lower adhesion-promoting layer is disposed over the lower Ti barrier layer. An antifuse material layer selected from a group comprising at least one of amorphous carbon and amorphous carbon doped with at least one of hydrogen and fluorine is disposed over the lower adhesion-promoting layer. An upper adhesion-promoting layer is disposed over the antifuse material layer. An upper Ti barrier layer is disposed over the upper adhesion-promoting layer.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: July 1, 2008
    Assignee: Actel Corporation
    Inventors: A. Farid Issaq, Frank Hawley, John McCollum
  • Publication number: 20080137404
    Abstract: A memory device includes a bit line, a first word line, a bit line contact, an electrode, a second word line and a contact tip. The bit line may extend along a first direction. The first word line is formed over the bit line and extends in a second direction. The bit line contact is formed between adjacent first word lines. The bit line contact may have an upper face substantially higher than the first word lines. The electrode contacting with the bit line contact may include an elastic material bending by an electric field among the electrode, the first word line and the second word line. The second word line is disposed over the electrode and corresponds to at least one of the first word lines. The contact tip formed at a lateral portion of the electrode may protrude toward the first and the second word lines.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 12, 2008
    Applicant: Samsung Electronics Co., Ltd
    Inventor: Jin-Jun PARK
  • Patent number: 7354793
    Abstract: A method of forming a memory device, such as a PCRAM, including selecting a chalcogenide glass backbone material for a resistance variable memory function and devices formed using such a method.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: April 8, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Kristy A. Campbell
  • Patent number: 7351613
    Abstract: A method of trimming down the volume of a semiconductor resistor element using electrical resistance feedback. After forming conductive material disposed between a pair of electrodes, a voltage is applied to the electrodes to produce an electrical current through the conductive material sufficient to heat and melt away a portion of the conductive material. By reducing the volume of the conductive material, its resistance is increased. The application of the voltage is ceased once the desired dimensions (and thus resistivity) of the conductive material is reached. The resulting semiconductor resistor element could have a fixed resistance, or could have a variable resistance (by using phase change memory material).
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: April 1, 2008
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Bomy Chen, Ya-Fen Lin, Zhitang Song, Songlin Feng
  • Patent number: 7348209
    Abstract: Methods and apparatus for providing a resistance variable memory device with agglomeration prevention and thermal stability. According to one embodiment, a resistance variable memory device is provided having at least one tin-chalcogenide layer proximate at least one chalcogenide glass layer. The invention also relates to methods of forming such a memory device.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: March 25, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Kristy A. Campbell
  • Publication number: 20080036033
    Abstract: A one-time programmable memory. The memory has a substrate, a diffused electrode disposed on the substrate, a shallow trench isolation (STI) region formed on the substrate, a insulator formed on the STI region and the substrate, and a second electrode. The insulator separates the second electrode from the diffused electrode. At least a part of the second electrode overlaps at least a part of the STI region.
    Type: Application
    Filed: August 9, 2007
    Publication date: February 14, 2008
    Applicant: Broadcom Corporation
    Inventors: Akira Ito, Henry Chen
  • Patent number: 7329565
    Abstract: An antifuse contains a first silicide layer, a grown silicon oxide antifuse layer on a first surface of the first silicide layer, and a first semiconductor layer having a first surface in contact with the antifuse layer.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: February 12, 2008
    Assignee: Sanddisk 3D LLC
    Inventor: S. Brad Herner
  • Patent number: 7327628
    Abstract: An antifuse circuit and antifuse reading method for determining whether an antifuse is programmed or un-programmed. An antifuse circuit includes a sensing circuit having a sense node coupled to the antifuse that is configured to generate a reference current and compare a sense current at the sense node relative to the reference current. The sensing circuit generates an output signal having a first logic level in response to the sense current being greater than the reference current and generates the output signal having a second logic level in response to the sense current being less than the reference current. The logic level of the output signal indicative of whether the antifuse is programmed or un-programmed.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: February 5, 2008
    Assignee: Micron Technology, Inc
    Inventors: Dong Pan, Abhay Dixit
  • Patent number: 7323761
    Abstract: The present invention provides antifuse structures having an integrated heating element and methods of programming the same, the antifuse structures comprising first and second conductors and a dielectric layer formed between the conductors, where one or both of the conductors functions as both a conventional antifuse conductor and as a heating element for directly heating the antifuse dielectric layer during programming.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: January 29, 2008
    Assignee: International Business Machines Corporation
    Inventors: Byeongju Park, Subramanian S. Iyer, Chandrasekheran Kothandaraman
  • Patent number: 7319053
    Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: January 15, 2008
    Assignee: SanDisk 3D LLC
    Inventors: Vivek Subramanian, James M. Cleeves
  • Patent number: 7312513
    Abstract: An antifuse circuit includes a terminal, an antifuse transistor, and a bias transistor. The antifuse transistor is formed on a substrate. The antifuse transistor is coupled to the terminal and includes a first gate terminal coupled to receive a first select signal. The bias transistor is coupled between the substrate and a bias voltage terminal. The bias transistor has a second gate terminal and is operable to couple the bias voltage terminal to the substrate responsive to an assertion of a bias enable signal at the second gate terminal.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: December 25, 2007
    Inventor: William J. Wilcox
  • Patent number: 7301216
    Abstract: A metal layer structure is disclosed. The metal layer structure includes a substrate, a first dielectric layer on a surface of the substrate, and at least one first conductor and at least one second conductor on the first dielectric layer. The second conductor has at least one thin portion.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: November 27, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Chiu-Te Lee, Te-Yuan Wu
  • Patent number: 7272067
    Abstract: Integrated circuit antifuse circuitry is provided. A metal-oxide-semiconductor (MOS) antifuse transistor serves as an electrically-programmable antifuse. In its unprogrammed state, the antifuse transistor is off and has a relatively high resistance. During programming, the antifuse transistor is turned on which melts the underlying silicon and causes a permanent reduction in the transistor's resistance. A sensing circuit monitors the resistance of the antifuse transistor and supplies a high or low output signal accordingly. The antifuse transistor may be turned on during programming by raising the voltage at its substrate relative to its source. The substrate may be connected to ground through a resistor. The substrate may be biased by causing current to flow through the resistor. Current may be made to flow through the resistor by inducing avalanche breakdown of the drain-substrate junction or by producing Zener breakdown of external Zener diode circuitry connected to the resistor.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: September 18, 2007
    Assignee: Altera Corporation
    Inventors: Cheng H. Huang, Yowjuang Liu, Chih-Ching Shih, Hugh Sung-Ki O
  • Patent number: 7265000
    Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: September 4, 2007
    Assignee: SanDisk 3D LLC
    Inventors: Vivek Subramanian, James M. Cleeves
  • Patent number: 7257884
    Abstract: A semiconductor component includes adjustment circuitry configured to adjust selected physical and electrical characteristics of the component or elements thereof, and an input/output configuration of the component. The component includes a semiconductor die, a substrate attached to the die, and terminal contacts on the substrate. The adjustment circuitry includes conductors and programmable links, such as fuses or anti-fuses, in electrical communication with the die and the terminal contacts. The adjustment circuit can also include capacitors and inductance conductors. The programmable links can be placed in a selected state (e.g., short or open) using a laser or programming signals. A method for fabricating the component includes the steps of forming the adjustment circuitry, and then placing the programmable links in the selected state to achieve the selected adjustment.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: August 21, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Aaron M. Schoenfeld, David J. Corisis, Tyler J. Gomm
  • Patent number: 7226816
    Abstract: An anti-fuse structure that can be programmed at low voltage and current and which potentially consumes very little chip spaces and can be formed interstitially between elements spaced by a minimum lithographic feature size is formed on a composite substrate such as a silicon-on-insulator wafer by etching a contact through an insulator to a support semiconductor layer, preferably in combination with formation of a capacitor-like structure reaching to or into the support layer. The anti-fuse may be programmed either by the selected location of conductor formation and/or damaging a dielectric of the capacitor-like structure. An insulating collar is used to surround a portion of either the conductor or the capacitor-like structure to confine damage to the desired location. Heating effects voltage and noise due to programming currents are effectively isolated to the bulk silicon layer, permitting programming during normal operation of the device.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: June 5, 2007
    Assignee: International Business Machines Corporation
    Inventors: Claude L. Bertin, Ramachandra Divakaruni, Russell J. Houghton, Jack A. Mandelman, William R. Tonti
  • Patent number: 7217986
    Abstract: A method is provided for tuning (i.e. modifying, changing) the impedance of semiconductor components or devices using a focused heating source. The method may be exploited for finely tuning the impedance of semiconductor components or devices, by modifying the dopant profile of a region of low dopant concentration (i.e. increasing the dopant concentration) by diffusion of dopants from adjacent regions of higher dopant concentration through the melting action of a focused heating source, for example a laser. The present invention is in particular directed to the use of lasers in relation to circuits for the creation of conductive links and pathways where none existed before. The present invention more particularly relates to a means wherein impedance modification (i.e. trimming or tuning) may advantageously be carried out as a function of the location of one or more conductive bridge(s) along the length of a gap region.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: May 15, 2007
    Assignee: Technologies Ltrim Inc.
    Inventors: Alain Lacourse, Hugues Langlois, Yvon Savaria, Yves Gagnon
  • Patent number: 7183141
    Abstract: A programmable interconnect structure and method of operating the same provides a programmable interconnection between electrical contacts. The interconnect includes material that has a reversibly programmable resistance. The material includes a molecular matrix with ionic complexes distributed through the molecular matrix. Application of an electrical field or electric current causes the molecular composite material to assume a desired resistivity (or conductivity) state. This state is retained by the molecular composite material to thus form a conductive or a non-conductive path between the electrical contacts.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: February 27, 2007
    Assignee: Spansion LLC
    Inventors: Vladimir Bulovic, Aaron Mandell, Andrew Perlman
  • Patent number: 7176065
    Abstract: An MRAM device having a plurality of MRAM cells formed of a fixed magnetic layer, a second soft magnetic layer and a dielectric layer interposed between the fixed magnetic layer and the soft magnetic layer. The MRAM cells are all formed simultaneously and at least some of the MRAM cells are designed to function as antifuse devices whereby the application of a selected electrical potential can short the antifuse device to thereby affect the functionality of the MRAM device.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: February 13, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Mirmajid Seyyedy, Mark E. Tuttle, Glen E. Hush
  • Patent number: 7176064
    Abstract: A memory cell is formed of a semiconductor junction diode in series with an antifuse. The cell is programmed by rupture of the antifuse. The semiconductor junction diode comprises silicon, the silicon crystallized in contact with a silicide. The suicide apparently provides a template for crystallization, improving crystallinity and conductivity of the diode, and reducing the programming voltage required to program the cell. It is advantageous to reduce a dielectric layer (such as an oxide, nitride, or oxynitride) intervening between the silicon and the silicon-forming metal during the step of forming the silicide.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: February 13, 2007
    Assignee: Sandisk 3D LLC
    Inventor: S. Brad Herner
  • Patent number: 7160761
    Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: January 9, 2007
    Assignee: SanDisk 3D LLC
    Inventors: James M. Cleeves, Vivek Subramanian
  • Patent number: 7157314
    Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: January 2, 2007
    Assignee: SanDisk Corporation
    Inventors: Vivek Subramanian, James M. Cleeves
  • Patent number: 7148088
    Abstract: A memory structure has a plurality of row conductors intersecting a plurality of column conductors at a plurality of intersections. Each intersection includes an electrically linear resistive element in series with a voltage breakdown element.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: December 12, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Andrew L Van Brocklin, Peter Fricke
  • Patent number: 7141995
    Abstract: A semiconductor manufacturing device includes a prober whose needles are at once engaged for contacting pads of two chip forming regions within a wafer. In one chip forming region, trimming is performed, while in the other chip forming region, inspecting posterior to trimming is performed.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: November 28, 2006
    Assignee: Denso Corporation
    Inventors: Michio Yamashita, Katuhiko Mori, Takashi Suzuki, Teruhiko Uchimura
  • Patent number: 7132350
    Abstract: A method for manufacturing an electrically programmable non-volatile memory cell comprises forming a first electrode on a substrate, forming an inter-electrode layer of material on the first electrode having a property which is characterized by progressive change in response to stress, and forming a second electrode over the inter-electrode layer of material. The inter-electrode layer comprises a dielectric layer, such as ultra-thin oxide, between the first and second electrodes. A programmable resistance, or other property, is established by stressing the dielectric layer, representing stored data. Embodiments of the memory cell are adapted to store multiple bits of data per cell and/or adapted for programming more than one time without an erase process.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: November 7, 2006
    Assignee: Macronix International Co., Ltd.
    Inventors: Chih Chieh Yeh, Han Chao Lai, Wen Jer Tsai, Tao Cheng Lu, Chih Yuan Lu
  • Patent number: 7107469
    Abstract: A structure and associated method of processing data on a semi-conductor device comprising an input island, a processing island, and an output island formed on the semiconductor device. The input island is adapted to accept a specified amount of data and enable a means for providing a first specified voltage for powering the processing island after accepting the specified amount of data. The processing island is adapted to receive and process the specified amount of data from the input island upon powering the processing island by the first specified voltage. The output island is adapted to be powered by a second specified voltage. The processing island is further adapted to transmit the processed data to the output island upon said powering by the second specified voltage. The first specified voltage is adapted to be disabled thereby removing power from processing island upon completion of transmission of the processed data to the output island.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: September 12, 2006
    Assignee: International Business Machines Corporation
    Inventors: Rafael Blanco, John M. Cohn, Kenneth J. Goodnow, Douglas W. Stout, Sebastian T. Ventrone
  • Patent number: 7101738
    Abstract: According to embodiments of the present invention, circuits have elements to protect a high-voltage transistor in a gate dielectric antifuse circuit. An antifuse has a layer of gate dielectric between a first terminal coupled to receive an elevated voltage and a second terminal, and a high-voltage transistor is coupled to the antifuse and has a gate terminal. An intermediate voltage between the supply voltage and the elevated voltage is coupled to the gate terminal of the high-voltage transistor to protect the high-voltage transistor.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: September 5, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Kenneth W. Marr, John D. Porter
  • Patent number: 7098083
    Abstract: A programmable element that has a first diode having an electrode and a first insulator disposed between the substrate and said electrode of said first device, said first insulator having a first value of a given characteristic, and an FET having an electrode and a second insulator disposed between the substrate and said electrode of said second device, said second insulator having a second value of said given characteristic that is different from said first value. The electrodes of the diode and the FET are coupled to one another, and a source of programming energy is coupled to the diode to cause it to permanently decrease in resistivity when programmed. The programmed state of the diode is indicated by a current in the FET, which is read by a sense latch. Thus a small resistance change in the diode translates to a large signal gain/change in the latch. This allows the diode to be programmed at lower voltages.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: August 29, 2006
    Assignee: International Business Machines Corporation
    Inventors: John A. Fifield, Russell J. Houghton, William R. Tonti
  • Patent number: 7091067
    Abstract: Method and apparatus are disclosed for regulating an antifuse programming current by lightly doping an electrically connected region so that the resistance of the region responds in a non-linear manner to changes in voltage. In this way a variable resistor or a variably resistive transistor may be created which vary their resistance in response to an applied voltage and which may thereby limit a programming current while not limiting a lesser, reading current to a serially connected antifuse.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: August 15, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Stephen R. Porter, Scott J. Derner
  • Patent number: 7081377
    Abstract: A 3D semiconductor memory is described having rail-stacks which define conductive lines and cells. The memory levels are organized in pairs with each pair showing common lines in adjacent levels.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: July 25, 2006
    Assignee: Sandisk 3D LLC
    Inventor: James M. Cleeves
  • Patent number: 7071534
    Abstract: An antifuse structure and method of use are disclosed. According to one embodiment of the present invention a first programming voltage is coupled to a well of a first conductivity type in a substrate of a second conductivity type in an antifuse. A second programming voltage is coupled to a conductive terminal of the second conductivity type in the antifuse to create a current path through an insulator between the conductive terminal and the well to program the antifuse. The first programming voltage may be coupled to an ohmic contact in the well in the antifuse.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: July 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Kenneth W. Marr, Shubneesh Batra
  • Patent number: 7033867
    Abstract: The antifuse device comprises an insulating layer positioned in the trench, a conductive member positioned above the insulating layer, at least a portion of the conductive member being positioned within the trench, the conductive member adapted to have at least one programming voltage applied thereto, and at least one doped active region formed in the substrate adjacent the trench. The antifuse further comprises at least one conductive contact coupled to the conductive member, and at least one conductive contact coupled to the doped active region.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: April 25, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Stephen R. Porter
  • Patent number: 7030459
    Abstract: A three-dimensional memory structure and manufacturing method thereof is provided. A first stack layer is formed over a substrate. The first stack layer includes, from the substrate upwards, an n-type polysilicon layer, a conductive layer, an anti-fuse and another n-type polysilicon layer. The first stack layer is patterned to form a first stack circuit. Thereafter, a second stack layer is formed over the first stack circuit. The second stack layer includes, from the first stack circuit upwards, a p-type polysilicon layer, a conductive layer, an anti-fuse and another p-type polysilicon. The second stack layer is patterned to form a second stack circuit that crosses over the first stack circuit perpendicularly. The aforementioned steps are repeated to form more stack circuits above the substrate and hence produce a three-dimensional structure.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: April 18, 2006
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Erh-Kun Lai, Ming-Chung Liang
  • Patent number: 7022604
    Abstract: A surface-transformation method of forming regions of a second material in a first solid material to control the properties of the first solid material is disclosed. The regions of the second material are formed in the first solid material by drilling holes to a predefined depth and at a predefined lattice position. The holes in the first solid material are then filled with a second material and then the first and second materials are heated to a temperature close to the melting point of the first solid material to spontaneously form the regions filled with the second material and embedded in the first solid material at the desired location. A liquid-phase immersion method or a deposition method may be employed to fill the holes in the first solid material.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: April 4, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Joseph E. Geusic
  • Patent number: 7015076
    Abstract: A method is provided of forming an integrated circuit with a semiconductor substrate that is doped with a set concentration of an oxidizable dopant of a type that segregates to the top surface of a silicide when the semiconductor substrate is reacted to form such a silicide. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. Source/drain junctions are formed in the semiconductor substrate. A silicide is formed on the source/drain junctions and dopant is segregated to the top surface of the silicide. The dopant on the top surface of the segregated dopant is oxidized to form an insulating layer of oxidized dopant above the silicide. An interlayer dielectric is deposited above the semiconductor substrate. Contacts and connection points are then formed in the interlayer dielectric to the insulating layer of oxidized dopant above the silicide.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: March 21, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Darin A. Chan, Simon Siu-Sing Chan, Paul L. King
  • Patent number: 7007375
    Abstract: A semiconductor component includes adjustment circuitry configured to adjust selected physical and electrical characteristics of the component or elements thereof, and an input/output configuration of the component. The component includes a semiconductor die, a substrate attached to the die, and terminal contacts on the substrate. The adjustment circuitry includes conductors and programmable links, such as fuses or anti-fuses, in electrical communication with the die and the terminal contacts. The adjustment circuit can also include capacitors and inductance conductors. The programmable links can be placed in a selected state (e.g., short or open) using a laser or programming signals. A method for fabricating the component includes the steps of forming the adjustment circuitry, and then placing the programmable links in the selected state to achieve the selected adjustment.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: March 7, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Aaron M. Schoenfeld, David J. Corisis, Tyler J. Gomm
  • Patent number: 7009891
    Abstract: A one-time programming memory element, capable of being manufactured in a 0.13 ?m or below CMOS technology, having a capacitor, or transistor configured as a capacitor, with an oxide layer capable of passing direct gate tunneling current. Also included is a write switch, having first and second switches coupled to the capacitor, and a read switch also coupled to the capacitor. The capacitor/transistor is one-time programmable as an anti-fuse by application of a program voltage across the oxide layer via the write switch to cause direct gate tunneling current to rupture the oxide layer to form a conductive path having resistance of approximately hundreds of ohms or less.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: March 7, 2006
    Assignee: Broadcom Corporation
    Inventors: Vincent Chen, Henry Chen, Liming Tsau, Jay Shiau, Surya Battacharya, Akira Ito
  • Patent number: 6991970
    Abstract: A method used to form a semiconductor device comprises providing first and second circuit portions having first and second pad portions respectively. The second circuit portion is electrically isolated from the first circuit portion. The first and second pad portions are then electrically connected, for example with a ball bond or a wire bond, to electrically couple the first and second circuit portions. In various embodiments the semiconductor device will not function until the pad portions are electrically coupled, and in other embodiments the functionality of the device may be selectively controlled by connecting selected pad portions from a plurality of pad portions. Isolating the first and second circuit portions allows electrical operations such as antifuse programming to be carried out without adversely affecting related circuits. Once electrical operations are completed, the isolated circuit portions are electrically coupled to provide a complete circuit.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: January 31, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Rich Fogal, Tracy Reynolds, Timothy Cowles
  • Patent number: 6984548
    Abstract: A nonvolatile memory cell occupying a minimum chip area is provided with a cell structure that includes two or more base materials being programmable by a heat induced chemical reaction to form a layer or layers of alloy. The formation of alloy results in a change in resistance of the cell structure so that one or more programmed states are determined. A semiconductor memory constructed by a large number of the nonvolatile memory cells can be obtained in a compact manner with simple and as few as possible steps. This process vertically stacked layers, and this semiconductor memory is thus easily to be combined with other integrated circuits on a single chip.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: January 10, 2006
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsiang-Lan Lung, Rui-Chen Liu
  • Patent number: 6985387
    Abstract: A one-time programming memory element, capable of being manufactured in a 0.13 ?m or below CMOS technology, having a capacitor, or transistor configured as a capacitor, with an oxide layer capable of passing direct gate tunneling current. Also included is a write circuit, having first and second switches coupled to the capacitor, and a read circuit also coupled to the capacitor. The capacitor/transistor is one-time programmable as an anti-fuse by application of a program voltage across the oxide layer via the write circuit to cause direct gate tunneling current to rupture the oxide layer to form a conductive path having resistance of approximately hundreds of ohms or less.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: January 10, 2006
    Assignee: Broadcom Corporation
    Inventors: Vincent Chen, Henry Chen, Liming Tsau, Jay Shiau, Surya Battacharya, Akira Ito
  • Patent number: 6979880
    Abstract: Systems and methods are provided for a scalable high-performance antifuse structure and process that has a low RC component, a uniform dielectric breakdown, and a very low, effective dielectric constant (keff) such that a programming pulse voltage is scalable with Vdd. One aspect of the present subject matter is an antifuse device that is positioned or coupled between a first metal level and a second metal level. One embodiment of the antifuse device includes a porous antifuse dielectric layer, and at least one injector Silicon-Rich-Insulator (SRI) layer in contact with the porous antifuse dielectric layer. In one embodiment, the porous antifuse dielectric layer includes SiO2 formed with air-filled voids. In one embodiment, the at least one injector SRI layer includes two injector Silicon-Rich-Nitride layers that sandwich the porous antifuse dielectric layer. Other aspects are provided herein.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: December 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Arup Bhattacharyya, Joseph E. Geusic
  • Patent number: 6972220
    Abstract: An anti-fuse structure that can be programmed at low voltage and current and which potentially consumes very little chip spaces and can be formed interstitially between elements spaced by a minimum lithographic feature size is formed on a composite substrate such as a silicon-on-insulator wafer by etching a contact through an insulator to a support semiconductor layer, preferably in combination with formation of a capacitor-like structure reaching to or into the support layer. The anti-fuse may be programmed either by the selected location of conductor formation and/or damaging a dielectric of the capacitor-like structure. An insulating collar is used to surround a portion of either the conductor or the capacitor-like structure to confine damage to the desired location. Heating effects voltage and noise due to programming currents are effectively isolated to the bulk silicon layer, permitting programming during normal operation of the device.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Claude L. Bertin, Ramachandra Divakaruni, Russell J. Houghton, Jack A. Mandelman, William R. Tonti
  • Patent number: 6965156
    Abstract: A metal-to-metal antifuse having a lower metal electrode, a lower thin adhesion promoting layer disposed over the lower metal electrode, an amorphous carbon antifuse material layer disposed over the thin adhesion promoting layer, an upper thin adhesion promoting layer disposed over said antifuse material layer, and an upper metal electrode. The thin adhesion promoting layers are about 2 angstroms to 20 angstroms in thickness, and are from a material selected from the group comprising SixCy and SixNy. The ratio of x to y in SixCy is in a range of about 1+/?0.4, and the ratio of x to y in SixNy is in a range of about 0.75+/?0.225.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: November 15, 2005
    Assignees: Actel Corporation, Texas Tech University System
    Inventors: Frank W. Hawley, A. Farid Issaq, John L. McCollum, Shubhra M. Gangopadhyay, Jorge A. Lubguban, Jin Miao Shen
  • Patent number: 6964906
    Abstract: A programmable element including a semiconductor material doped with a dopant that alters the resistance of the element when exposed to actinic radiation. Rather than producing a mechanical deformation, the radiation rearranges the bonding configuration of the dopant in the element, allowing it to be placed on a chip in close proximity to other device structures without risking damage to those structures. After formation, the programmable element is subjected to a laser anneal process in which the dopant is electrically activated. The activation process allows the dopant to donate a charge carrier to the crystal structure. Rapid cooling following laser anneal preserves the desired bonding configuration of the dopant produced in the programmable element. Laser anneals have been shown to reduce the resistivity of a programmable element by at least a factor of two.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: November 15, 2005
    Assignee: International Business Machines Corporation
    Inventors: Patricia S. Bunt, John J. Ellis-Monaghan
  • Patent number: 6960495
    Abstract: A method for forming a contact in a three dimensional monolithic memory is disclosed. In a preferred embodiment, the method comprises depositing a conductive layer over and in contact with a plurality of antifuses, wherein said antifuses are part of a story of active devices formed above a substrate; patterning and etching said conductive layer and insulating dielectric to form a contact void; and filling the contact void, wherein the conductive layer does not comprise silicon.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: November 1, 2005
    Assignee: Matrix Semiconductor, Inc
    Inventors: Michael Vyvoda, S. Brad Herner
  • Patent number: 6960819
    Abstract: A one-time programming memory element, capable of being manufactured in a 0.13 ?m or below CMOS technology, having a capacitor, or transistor configured as a capacitor, with an oxide layer capable of passing direct gate tunneling current, and a switch having a voltage tolerance higher than that of the capacitor/transistor, wherein the capacitor/transistor is one-time programmable as an anti-fuse by application of a voltage across the oxide layer via the switch to cause direct gate tunneling current to thereby rupture the oxide layer to form a conductive path having resistance of approximately hundreds of ohms or less.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: November 1, 2005
    Assignee: Broadcom Corporation
    Inventors: Vincent Chen, Henry Chen, Liming Tsau, Jay Shiau, Surya Battacharya, Akira Ito
  • Patent number: 6955926
    Abstract: A magnetic data track used in a magnetic shift register memory system may be fabricated by forming a multilayered stack of alternating dielectric and/or silicon layers. Vias of approximately 10 microns tall with a cross-section on the order of 100 nm×100 nm are etched in this multilayered stack of alternating layers. Vias may be etched form smooth or notched walls. Vias are filled by electroplating layers of alternating types of ferromagnetic or ferrimagnetic metals. The alternating ferromagnetic or ferrimagnetic layers are comprised of magnetic materials with different magnetization or magnetic exchange or magnetic anisotropies. These different magnetic characteristics allow the pinning of magnetic domain walls at the boundaries between these layers. Alternatively, vias are filled with a homogeneous ferromagnetic material. Magnetic domain walls are formed by the discontinuity in the ferromagnetic or ferromagnetic material that occurs at the notches or at the protuberances along the via walls.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: October 18, 2005
    Assignee: International Business Machines Corporation
    Inventors: Tze-chiang Chen, Stuart S. P. Parkin