Specified Crystallographic Orientation Patents (Class 438/150)
  • Patent number: 12125878
    Abstract: A semiconductor device in an embodiment includes a substrate and a transistor. The transistor includes a source layer, a drain layer, a gate insulation film, a gate electrode, a contact plug and a first epitaxial layer. The source layer and the drain layer are provided in surface regions of the substrate, and contain an impurity. The gate insulation film is provided on the substrate between the source layer and the drain layer. The gate electrode is provided on the gate insulation film. The contact plug is provided so as to protrude to the source layer or the drain layer downward of a surface of the substrate. The first epitaxial layer is provided between the contact plug and the source layer or drain layer, and contains both the impurity and carbon.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 22, 2024
    Assignee: Kioxia Corporation
    Inventors: Tomonari Shioda, Yasunori Oshima, Taichi Iwasaki, Shota Yamagiwa, Hiroto Saito
  • Patent number: 11854816
    Abstract: A method of fabricating a semiconductor device is described. A substrate is provided. A first semiconductor region of a first semiconductor material is formed over the substrate and adjacent a second semiconductor region of a second semiconductor material. The first and second semiconductor regions are crystalline. An etchant is selective to etch the first semiconductor region over the second semiconductor region. The entire first semiconductor region is implanted to form an amorphized semiconductor region. The amorphized semiconductor region is etched with the etchant using the second semiconductor region as a mask to remove the amorphized semiconductor region without removing the second semiconductor region.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Ling Chung, Chun-Chih Cheng, Shun Wu Lin, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11031418
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate having a first region and a second region; a first fin active region of a first semiconductor material disposed within the first region, oriented in a first direction, wherein the first fin active region has a <100> crystalline direction along the first direction; and a second fin active region of a second semiconductor material disposed within the second region and oriented in the first direction, wherein the second fin active region has a <110> crystalline direction along the first direction.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzer-Min Shen, Zhiqiang Wu, Chung-Cheng Wu, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Patent number: 10396212
    Abstract: A thin film transistor array panel according to an exemplary embodiment includes: a substrate; a metal pattern positioned on the substrate; a buffer layer positioned on the metal pattern; and a semiconductor layer positioned on the buffer layer and including a source region, a channel region, and a drain region, wherein the metal pattern overlaps at least one of the source region and the drain region, and the metal pattern does not overlap the channel region.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: August 27, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jun Hee Lee, In Jun Bae
  • Patent number: 10247952
    Abstract: In a laser line projection apparatus, six spaced-apart unpolarized laser-beams are plane-polarized with low loss by a combination of a thin-film polarizer, a reflector, and two polarization rotators. Two beams are polarized in each of three polarization-orientations. Two of the polarization-orientations are orthogonally aligned with each other in P and S orientations. The other polarization-orientation is non-orthogonally aligned in an intermediate orientation. The beams are intensity-homogenized and projected into a line of radiation. Any point on the line of radiation is formed from rays with an angular distribution of polarization-orientation from S to P through the intermediate orientation and back to S through the intermediate orientation.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: April 2, 2019
    Assignee: COHERENT LASERSYSTEMS GMBH & CO. KG
    Inventors: Frank Simon, Thomas Wenzel, Ludwig Schwenger, Paul Van Der Wilt
  • Patent number: 10243062
    Abstract: A method of forming a vertical fin field effect transistor having a consistent channel width, including forming one or more vertical fin(s) on the substrate, wherein the one or more vertical fin(s) have a tapered profile, oxidizing the one or more vertical fin(s) to form an oxide by consuming at least a portion of the vertical fin material, and removing the oxide from the one or more vertical fin(s), wherein the one or more vertical fin(s) include a tapered upper portion, a tapered lower portion and a straight channel portion there between.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Juntao Li
  • Patent number: 9935179
    Abstract: A method for making a semiconductor device may include forming first and second spaced apart semiconductor active regions with an insulating region therebetween, forming at least one sacrificial gate line extending between the first and second spaced apart semiconductor active regions and over the insulating region, and forming sidewall spacers on opposing sides of the at least one sacrificial gate line. The method may further include removing portions of the at least one sacrificial gate line within the sidewall spacers and above the insulating region defining at least one gate line end recess, filling the at least one gate line end recess with a dielectric material, and forming respective replacement gates in place of portions of the at least one sacrificial gate line above the first and second spaced apart semiconductor active regions.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 3, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC., STMICROELECTRONICS, INC.
    Inventors: Xiuyu Cai, Qing Liu, Kejia Wang, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9595479
    Abstract: A method for fabricating a three-dimensional integrated circuit device includes providing a first substrate having a first crystal orientation, forming at least one or more PMOS devices overlying the first substrate, and forming a first dielectric layer overlying the one or more PMOS devices. The method also includes providing a second substrate having a second crystal orientation, forming at least one or more NMOS devices overlying the second substrate, and forming a second dielectric layer overlying the one or more NMOS devices. The method further includes coupling the first dielectric layer to the second dielectric layer to form a hybrid structure including the first substrate overlying the second substrate.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: March 14, 2017
    Assignee: mCube Inc.
    Inventor: Xiao (Charles) Yang
  • Patent number: 9425275
    Abstract: An integrated circuit chip includes a semiconductor substrate, a first back-end-of-line unit circuit that includes a first group of field effect transistors, a second gate-loaded unit circuit that includes a second group of field effect transistors. The first group of field effect transistors includes a first transistor and the second group of field effect transistors includes a second transistor. A bottom surface of a gate electrode of the first transistor extends closer to a bottom surface of the semiconductor substrate than does a bottom surface of a gate electrode of the second transistor.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: August 23, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mark S. Rodder, Dharmendar Reddy Palle, Borna J. Obradovic
  • Patent number: 9401429
    Abstract: A semiconductor structure includes a fin-shaped structure and a gate. The fin-shaped structure is located in a substrate, wherein the fin-shaped structure has a through hole located right below a suspended part. The gate surrounds the suspended part. Moreover, the present invention also provides a semiconductor process including the following steps for forming said semiconductor structure. A substrate is provided. A fin-shaped structure is formed in the substrate, wherein the fin-shaped structure has a bottom part and a top part. A part of the bottom part is removed to form a suspended part in the corresponding top part, thereby forming the suspended part over a through hole. A gate is formed to surround the suspended part.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: July 26, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chin-Fu Lin, Chih-Chien Liu, Chia-Lin Hsu
  • Patent number: 9287409
    Abstract: One object of the present invention is to provide a structure of a transistor including an oxide semiconductor in a channel formation region in which the threshold voltage of electric characteristics of the transistor can be positive, which is a so-called normally-off switching element, and a manufacturing method thereof. A second oxide semiconductor layer which has greater electron affinity and a smaller energy gap than a first oxide semiconductor layer is formed over the first oxide semiconductor layer. Further, a third oxide semiconductor layer is formed to cover side surfaces and a top surface of the second oxide semiconductor layer, that is, the third oxide semiconductor layer covers the second oxide semiconductor layer.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 15, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tatsuya Honda
  • Patent number: 9064733
    Abstract: A device includes first and second spaced-apart active regions positioned in a semiconducting substrate, an isolation region positioned between and separating the first and second spaced-apart active regions, and a layer of gate insulation material positioned on the first active region. A first conductive line feature extends continuously from the first active region and across the isolation region to the second active region, wherein the first conductive line feature includes a first portion that is positioned directly above the layer of gate insulation material positioned on the first active region and a second portion that conductively contacts the second active region.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: June 23, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Frank Jakubowski, Juergen Faul
  • Patent number: 9006735
    Abstract: To provide an oxide semiconductor film including a low-resistance region, which can be applied to a transistor. To provide a transistor including the oxide semiconductor film, which can perform at high speed. To provide a high-performance semiconductor device including the transistor including the oxide semiconductor film, which can perform at high speed, with high yield. A film having a reducing property is formed over the oxide semiconductor film. Next, part of oxygen atoms are transferred from the oxide semiconductor film to the film having a reducing property. Next, an impurity is added to the oxide semiconductor film through the film having a reducing property and then, the film having a reducing property is removed, so that a low-resistance region is formed in the oxide semiconductor film.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: April 14, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Shinji Ohno, Yuichi Sato, Junichi Koezuka, Sachiaki Tezuka
  • Patent number: 8999751
    Abstract: It is an object to provide a semiconductor device having a new productive semiconductor material and a new structure. The semiconductor device includes a first conductive layer over a substrate, a first insulating layer which covers the first conductive layer, an oxide semiconductor layer over the first insulating layer that overlaps with part of the first conductive layer and has a crystal region in a surface part, second and third conductive layers formed in contact with the oxide semiconductor layer, an insulating layer which covers the oxide semiconductor layer and the second and third conductive layers, and a fourth conductive layer over the insulating layer that overlaps with part of the oxide semiconductor layer.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: April 7, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kei Takahashi, Yoshiaki Ito
  • Patent number: 8975124
    Abstract: One or more embodiments of the disclosed technology provide a thin film transistor, an array substrate and a method for preparing the same. The thin film transistor comprises a base substrate, and a gate electrode, a gate insulating layer, an active layer, an ohmic contact layer, a source electrode, a drain electrode and a passivation layer prepared on the base substrate in this order. The active layer is formed of microcrystalline silicon, and the active layer comprises an active layer lower portion and an active layer upper portion, and the active layer lower portion is microcrystalline silicon obtained by using hydrogen plasma to treat at least two layers of amorphous silicon thin film prepared in a layer-by-layer manner.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: March 10, 2015
    Assignees: Boe Technology Group Co., Ltd., Beijing Asahi Glass Electronics Co., Ltd.
    Inventors: Xueyan Tian, Chunping Long, Jiangfeng Yao
  • Publication number: 20150061015
    Abstract: Semiconductor devices having non-merged fin extensions and methods for forming the same. Methods for forming semiconductor devices include forming fins on a substrate; forming a dummy gate over the fins, leaving a source and drain region exposed; etching the fins below a surface level of a surrounding insulator layer; and epitaxially growing fin extensions from the etched fins.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicants: Renesas Electronics Corporation, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hong He, Shogo Mochizuki, Chiahsun Tseng, Chun-Chen Yeh, Yunpeng Yin
  • Patent number: 8969878
    Abstract: A semiconductor device includes a N-type field effect transistor comprising a N-channel region in a substrate. A high dielectric constant (high-k) layer is disposed on the N-channel region. A diffusion layer including a metal oxide is disposed on the high-k layer. A passivation layer is disposed on the diffusion layer, and a first metal gate is disposed on the passivation layer. The first high-k layer and the N-channel region include metal atoms of a metal element of the metal oxide.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ju-Youn Kim
  • Patent number: 8956928
    Abstract: One device includes first and second spaced-apart active regions formed in a semiconducting substrate, a layer of gate insulation material positioned on the first active region, and a conductive line feature that has a first portion positioned above the gate insulation material and a second portion that conductively contacts the second active region. One method includes forming first and second spaced-apart active regions in a semiconducting substrate, forming a layer of gate insulation material on the first and second active regions, performing an etching process to remove a portion of the gate insulation material formed on the second active region to expose a portion of the second active region, and forming a conductive line feature that comprises a first portion positioned above the layer of gate insulation material formed on the first active region and a second portion that conductively contacts the exposed portion of the second active region.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: February 17, 2015
    Assignee: GLOBALFOUNDRIES Inc
    Inventors: Frank Jakubowski, Juergen Faul
  • Patent number: 8927349
    Abstract: A semiconductor device includes an oxide semiconductor layer including a crystalline region over an insulating surface, a source electrode layer and a drain electrode layer in contact with the oxide semiconductor layer, a gate insulating layer covering the oxide semiconductor layer, the source electrode layer, and the drain electrode layer, and a gate electrode layer over the gate insulating layer in a region overlapping with the crystalline region. The crystalline region includes a crystal whose c-axis is aligned in a direction substantially perpendicular to a surface of the oxide semiconductor layer.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: January 6, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8916443
    Abstract: A method of forming a semiconductor structure includes providing an active layer and forming adjacent gate structures on the active layer. The gate structures each have sidewalls such that first spacers are formed on the sidewalls. A raised region is epitaxially grown on the active layer between the adjacent gate structures and at least one trench that extends through the raised region and through the active region is formed, whereby the at least one trench separates the raised region into a first raised region corresponding to a first transistor and a second raised region corresponding to a second transistor. The first raised region and second raised region are electrically isolated by the at least one trench.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 8912094
    Abstract: Provided is a method for manufacturing a stretchable thin film transistor. The method for manufacturing a stretchable thin film transistor includes forming a mold substrate, forming a stretchable insulator on the mold substrate, forming a flat substrate on the stretchable insulator, removing the mold substrate, forming discontinuous and corrugated wires on the stretchable insulator, forming a thin film transistor connected between the wires, and removing the flat substrate.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: December 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jae Bon Koo, Chan Woo Park, Soon-Won Jung, Sang Chul Lim, Ji-Young Oh, Bock Soon Na, Hye Yong Chu
  • Patent number: 8912545
    Abstract: A method is provided for fabricating a nanowire-based semiconductor structure. The method includes forming a first nanowire with a first polygon-shaped cross-section having a first number of sides. The method also includes forming a semiconductor layer on surface of the first nanowire to form a second nanowire with a second polygon-shaped cross-section having a second number of sides, the second number being greater than the first number. Further, the method includes annealing the second nanowire to remove a substantial number of vertexes of the second polygon-shaped cross-section to form the nanowire with a non-polygon-shaped cross-section corresponding to the second polygon-shaped cross-section.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 16, 2014
    Assignee: Semiconductor Manufacturing International Corp.
    Inventors: Deyuan Xiao, James Hong
  • Patent number: 8889569
    Abstract: The disclosed systems and method for non-periodic pulse sequential lateral solidification relate to processing a thin film. The method for processing a thin film, while advancing a thin film in a selected direction, includes irradiating a first region of the thin film with a first laser pulse and a second laser pulse and irradiating a second region of the thin film with a third laser pulse and a fourth laser pulse, wherein the time interval between the first laser pulse and the second laser pulse is less than half the time interval between the first laser pulse and the third laser pulse. In some embodiments, each pulse provides a shaped beam and has a fluence that is sufficient to melt the thin film throughout its thickness to form molten zones that laterally crystallize upon cooling. In some embodiments, the first and second regions are adjacent to each other. In some embodiments, the first and second regions are spaced a distance apart.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: November 18, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Ui-Jin Chung, Alexander B. Limanov, Paul C. Van Der Wilt
  • Patent number: 8877533
    Abstract: A method of manufacturing oxide thin film transistor and display device are provided. In the method of manufacturing an oxide thin film transistor, the method includes: forming an active layer of an oxide semiconductor on a substrate, and performing surface treatment with plasma for the active layer to permeate oxygen into the active layer.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: November 4, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Kyechul Choi, Bong Chul Kim, Chan Ki Ha, Sang Moo Park
  • Patent number: 8865529
    Abstract: A thin-film transistor device manufacturing method and others according to the present disclosure includes: forming a plurality of gate electrodes above a substrate; forming a gate insulating layer on the plurality of gate electrodes; forming an amorphous silicon layer on the gate insulating layer; forming a buffer layer and a light absorbing layer above the amorphous silicon layer; forming a crystalline silicon layer by crystallizing the amorphous silicon layer with heat generated by heating the light absorbing layer using a red or near infrared laser beam; and forming a source electrode and a drain electrode on the crystalline silicon layer in a region that corresponds to each of the plurality of gate electrodes, and film thicknesses of the gate insulating layer, the amorphous silicon layer, the buffer layer, and the light absorbing layer satisfy predetermined expressions.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 21, 2014
    Assignee: Panasonic Corporation
    Inventor: Yuta Sugawara
  • Patent number: 8860037
    Abstract: A thin-film transistor device includes a gate electrode formed above a substrate, a gate insulating film formed on the gate electrode, a crystalline silicon thin film that is formed above the gate insulating film and has a channel region, an amorphous silicon thin film formed on the crystalline silicon thin film, and a source electrode and a drain electrode that are formed above the channel region, and the crystalline silicon thin film has a half-width of a Raman band corresponding to a phonon mode specific to the crystalline silicon thin film of 5.0 or more and less than 6.0 cm?1, and an average crystal grain size of about 50 nm or more and 300 nm or less.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: October 14, 2014
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kawashima, Tomohiko Oda, Hikaru Nishitani
  • Patent number: 8859381
    Abstract: A field-effect transistor (FET) and methods for fabricating such. The FET includes a substrate having a crystalline orientation, a source region in the substrate, and a drain region in the substrate. Gate spacers are positioned over the source region and the drain region. The gate spacers include a gate spacer height. A source contact physically and electrically contacts the source region and extends beyond the gate spacer height. A drain contact physically and electrically contacts the drain region and extends beyond the gate spacer height. The source and drain contacts have the same crystalline orientation as the substrate.
    Type: Grant
    Filed: June 29, 2013
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Wilfried E. Haensch, Effendi Leobandung, Min Yang
  • Patent number: 8841673
    Abstract: A thin-film transistor device includes: a gate electrode above a substrate; a gate insulating film on the gate electrode; a crystalline silicon thin film above the gate insulating film; a first semiconductor film above the crystalline silicon thin film; a pair of second semiconductor films above the first semiconductor film; a source electrode over one of the second semiconductor films; and a drain electrode over an other one of the second semiconductor films. The first semiconductor film is provided on the crystalline silicon thin film. A relationship ECP<EC1 is satisfied where ECP and EC1 denote energy levels at lower ends of conduction bands of the crystalline silicon thin film and the first semiconductor film, respectively.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: September 23, 2014
    Assignees: Panasonic Corporation, Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Arinobu Kanegae, Takahiro Kawashima, Hiroshi Hayashi, Genshirou Kawachi
  • Publication number: 20140264279
    Abstract: Selective epitaxy of a semiconductor material is performed on a semiconductor fin to form a semiconductor nanowire. Surfaces of the semiconductor nanowire include facets that are non-horizontal and non-vertical. A gate electrode can be formed over the semiconductor nanowire such that the faceted surfaces can be employed as channel surfaces. The epitaxially deposited portions of the faceted semiconductor nanowire can apply stress to the channels. Further, an additional semiconductor material may be added to form an outer shell of the faceted semiconductor nanowire prior to forming a gate electrode thereupon. The faceted surfaces of the semiconductor nanowire provide well-defined charge carrier transport properties, which can be advantageously employed to provide a semiconductor device with well-controlled device characteristics.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Juntao Li, Zhen Zhang, Yu Zhu
  • Patent number: 8816430
    Abstract: According to one embodiment, a semiconductor device includes a substrate, a gate electrode, source/drain regions, and a gate insulating film. The substrate is made of monocrystalline silicon, an upper surface of the substrate is a (100) plane, and a trench is made in the upper surface. The gate electrode is provided in at least an interior of the trench. The source/drain regions are formed in regions of the substrate having the trench interposed. The gate insulating film is provided between the substrate and the gate electrode. The trench includes a bottom surface made of a (100) plane, a pair of oblique surfaces made of (111) planes contacting the bottom surface, and a pair of side surfaces made of (110) planes contacting the oblique surfaces. The source/drain regions are in contact with the side and oblique surfaces and are apart from a central portion of the bottom surface.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: August 26, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Yanagisawa
  • Patent number: 8815656
    Abstract: A semiconductor processing method is provided which promotes greater growth on <110> crystallographic planes than on other crystallographic planes. Growth rates with the process can be reversed compared to typical epitaxial growth processes such that the highest rate of growth occurs on <110> crystallographic planes and the least amount of growth occurs on <100> crystallographic planes. The process can be applied to form embedded stressor regions in planar field effect transistors, and the process can be used to grow semiconductor layers on exposed wall surfaces of adjacent fins in source-drain regions of finFETs to fill spaces between the fins.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Kangguo Cheng, Judson R. Holt, Keith H. Tabakman, Alexander Reznicek
  • Patent number: 8809852
    Abstract: One of objects is to provide a semiconductor film having stable characteristics. Further, one of objects is to provide a semiconductor element having stable characteristics. Further, one of objects is to provide a semiconductor device having stable characteristics. Specifically, a structure which includes a seed crystal layer (seed layer) including crystals each having a first crystal structure, one of surfaces of which is in contact with an insulating surface, and an oxide semiconductor film including crystals growing anisotropically, which is on the other surface of the seed crystal layer (seed layer) may be provided. With such a heterostructure, electric characteristics of the semiconductor film can be stabilized.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: August 19, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiro Takahashi, Tetsunori Maruyama
  • Patent number: 8809855
    Abstract: When a semiconductor device including a transistor in which a gate electrode layer, a gate insulating film, and an oxide semiconductor film are stacked and a source and drain electrode layers are provided in contact with the oxide semiconductor film is manufactured, after the formation of the gate electrode layer or the source and drain electrode layers by an etching step, a step of removing a residue remaining by the etching step and existing on a surface of the gate electrode layer or a surface of the oxide semiconductor film and in the vicinity of the surface is performed. The surface density of the residue on the surface of the oxide semiconductor film or the gate electrode layer can be 1×1013 atoms/cm2 or lower.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: August 19, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiko Hayakawa, Tatsuya Honda
  • Patent number: 8796122
    Abstract: A method of fabricating a display device is provided. The method includes providing a substrate having a pixel region and a circuit region located at the periphery of the pixel region. A first semiconductor layer and a second semiconductor layer are formed on the pixel region and on the circuit region, respectively. The first semiconductor layer may be selectively surface treated to increase the density of lattice defects in a surface of the first semiconductor layer.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: August 5, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Eui-Hoon Hwang, Deuk-Jong Kim
  • Patent number: 8772128
    Abstract: A single crystal semiconductor substrate is irradiated with ions that are generated by exciting a hydrogen gas and are accelerated with an ion doping apparatus, thereby forming a damaged region that contains a large amount of hydrogen. After the single crystal semiconductor substrate and a supporting substrate are bonded, the single crystal semiconductor substrate is heated to be separated along the damaged region. While a single crystal semiconductor layer separated from the single crystal semiconductor substrate is heated, this single crystal semiconductor layer is irradiated with a laser beam. The single crystal semiconductor layer undergoes re-single-crystallization by being melted through laser beam irradiation, thereby recovering its crystallinity and planarizing the surface of the single crystal semiconductor layer.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: July 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junpei Momo, Fumito Isaka, Eiji Higa, Masaki Koyama, Akihisa Shimomura
  • Patent number: 8766273
    Abstract: It is possible to manufacture a large-size, high-accuracy organic EL display using a plastic substrate and an organic EL display using a roll-shaped long plastic substrate. The organic EL display includes an organic EL device A having at least a lower electrode 300, an organic layer including at least a light emitting layer, and an upper electrode 305 and a thin film transistor B on a transparent plastic substrate 100, a source electrode or drain electrode of the thin film transistor B is connected to the lower electrode 300, the plastic substrate 100 has a gas barrier layer 101a, the thin film transistor B is formed on the gas barrier layer 101a, the thin film transistor B includes an active layer 203 containing a non-metallic element which a mixture of oxygen (O) and nitrogen (N) and has a ratio of N to O (N number density/O number density) from 0 to 2, and the organic EL device A is formed at least on the gas barrier layer 101a or one the thin film transistor B.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 1, 2014
    Assignees: Sumitomo Chemical Company, Limited, Sumitomo Bakelite Co., Ltd.
    Inventors: Shigeyoshi Otsuki, Toshimasa Eguchi, Shinya Yamaguchi, Mamoru Okamoto
  • Patent number: 8748247
    Abstract: A method for fabricating a semiconductor structure includes providing a semiconductor substrate having a first region and a second region, and doping top of the semiconductor substrate to form a doped layer at top surface of the semiconductor substrate over the first region and the second region. The method also includes etching the doped layer to form a first sub-fin in the first region and a first sub-fin in the second region, and forming an insulating layer over the semiconductor substrate including the first sub-fin in the first region and the first sub-fin in the second region. Further, the method includes removing top portions of the first sub-fin in the first region and the first sub-fin in the second region and forming corresponding second sub-fins.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Semiconductor Manufacturing International Corp
    Inventor: Mieno Fumitake
  • Publication number: 20140151816
    Abstract: One device includes first and second spaced-apart active regions formed in a semiconducting substrate, a layer of gate insulation material positioned on the first active region, and a conductive line feature that has a first portion positioned above the gate insulation material and a second portion that conductively contacts the second active region. One method includes forming first and second spaced-apart active regions in a semiconducting substrate, forming a layer of gate insulation material on the first and second active regions, performing an etching process to remove a portion of the gate insulation material formed on the second active region to expose a portion of the second active region, and forming a conductive line feature that comprises a first portion positioned above the layer of gate insulation material formed on the first active region and a second portion that conductively contacts the exposed portion of the second active region.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Frank Jakubowski, Juergen Faul
  • Patent number: 8741743
    Abstract: A method for making a semiconductor device is provided which comprises (a) creating a first mask for the epitaxial growth of features in a semiconductor device, said first mask defining a set of epitaxial tiles (219); (b) creating a second mask for defining the active region of the semiconductor device, said second mask defining a set of active tiles (229); and (c) using the first and second masks to create a semiconductor device.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: June 3, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Omar Zia, Nigel Cave, Venkat Kolagunta, Ruiqi Tian, Edward O. Travis
  • Patent number: 8722470
    Abstract: An integrated circuit fabrication apparatus is configured to fabricate an integrated circuit with at least one p-FinFET device and at least one n-FinFET device. A bonding control processor is configured to bond a first silicon layer having a first crystalline orientation to a second silicon layer having a second crystalline orientation that is different from the first crystalline orientation. A material growth processor is configured to form a volume of material extending through the first silicon layer from the second layer up to the surface of first layer. The material has a crystalline orientation that substantially matches the crystalline orientation of second layer. An etching processor is configured to selectively etch areas of the surface of the first layer that are outside of the region to create a first plurality of fins and areas inside the region to create a second plurality of fins.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Katherine L. Saenger
  • Patent number: 8716072
    Abstract: A substrate includes a first source region and a first drain region each having a first semiconductor layer disposed on a second semiconductor layer and a surface parallel to {110} crystalline planes and opposing sidewall surfaces parallel to the {110} crystalline planes; nanowire channel members suspended by the first source region and the first drain region, where the nanowire channel members include the first semiconductor layer, and opposing sidewall surfaces parallel to {100} crystalline planes and opposing faces parallel to the {110} crystalline planes. The substrate further includes a second source and drain regions having the characteristics of the first source and drain regions, and a single channel member suspended by the second source region and the second drain region and having the same characteristics as the nanowire channel members. A width of the single channel member is at least several times a width of a single nanowire member.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Josephine B. Chang, Leland Chang, Jeffrey W. Sleight
  • Patent number: 8716073
    Abstract: To provide an oxide semiconductor film including a low-resistance region, which can be applied to a transistor. To provide a transistor including the oxide semiconductor film, which can perform at high speed. To provide a high-performance semiconductor device including the transistor including the oxide semiconductor film, which can perform at high speed, with high yield. A film having a reducing property is formed over the oxide semiconductor film. Next, part of oxygen atoms are transferred from the oxide semiconductor film to the film having a reducing property. Next, an impurity is added to the oxide semiconductor film through the film having a reducing property and then, the film having a reducing property is removed, so that a low-resistance region is formed in the oxide semiconductor film.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: May 6, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Shinji Ohno, Yuichi Sato, Junichi Koezuka, Sachiaki Tezuka
  • Patent number: 8686425
    Abstract: A larger substrate can be used, and a transistor having a desirably high field-effect mobility can be manufactured through formation of an oxide semiconductor layer having a high degree of crystallinity, whereby a large-sized display device, a high-performance semiconductor device, or the like can be put into practical use. A first multi-component oxide semiconductor layer is formed over a substrate and a single-component oxide semiconductor layer is formed thereover; then, crystal growth is carried out from a surface to an inside by performing heat treatment at 500° C. to 1000° C. inclusive, preferably 550° C. to 750° C. inclusive so that a first multi-component oxide semiconductor layer including single crystal regions and a single-component oxide semiconductor layer including single crystal regions are formed; and a second multi-component oxide semiconductor layer including single crystal regions is stacked over the single-component oxide semiconductor layer including single crystal regions.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Takuya Hirohashi, Masahiro Takahashi, Takashi Shimazu
  • Patent number: 8686412
    Abstract: A microelectronic device includes a thin film transistor having an oxide semiconductor channel and an organic polymer passivation layer formed on the oxide semiconductor channel.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 1, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Gregory Herman, Benjamin Clark, Zhizhang Chen
  • Patent number: 8673709
    Abstract: An integrated circuit structure includes a semiconductor substrate, and a FinFET over the semiconductor substrate. The FinFET includes a semiconductor fin; a gate dielectric on a top surface and sidewalls of the semiconductor fin; a gate electrode on the gate dielectric; and a source/drain region at an end of the semiconductor fin. A first pair of shallow trench isolation (STI) regions includes portions directly underlying portions of the source/drain regions, wherein the first pair of STI regions is separated by, and adjoining a semiconductor strip. The first pair of STI regions further has first top surfaces. A second pair of STI regions comprises portions directly underlying the gate electrode, wherein the second pair of STI regions is separated from each other by, and adjoining, the semiconductor strip. The second pair of STI regions has second top surfaces higher than the first top surfaces.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Chang-Yun Chang, Feng Yuan
  • Patent number: 8673674
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same is provided. Semiconductor layers of driving transistors located in two adjacent pixels included in the OLED display device may extend in different lengthwise directions. Thus, striped stains of the OLED display device can be improved.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: March 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hong-Ro Lee, Sang-Jo Lee
  • Patent number: 8642405
    Abstract: A process for producing an adhered SOI substrate without causing cracking and peeling of a single-crystal silicon thin film. The process consists of selectively forming a porous silicon layer in a single-crystal semiconductor substrate, adding hydrogen into the single-crystal semiconductor substrate to form a hydrogen-added layer, adhering the single-crystal semiconductor substrate to a supporting substrate, separating the single-crystal semiconductor substrate at the hydrogen-added layer by thermal annealing, performing thermal annealing again to stabilize the adhering interface, and selectively removing the porous silicon layer to give single-crystal silicon layer divided into islands.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: February 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Takeshi Fukunaga
  • Patent number: 8629438
    Abstract: Disclosed is a semiconductor device including an oxide semiconductor film. A first oxide semiconductor film with a thickness of greater than or equal to 2 nm and less than or equal to 15 nm is formed over a gate insulating layer. First heat treatment is performed so that crystal growth from a surface of the first oxide semiconductor film to the inside thereof is caused, whereby a first crystal layer is formed. A second oxide semiconductor film with a thickness greater than that of the first oxide semiconductor film is formed over the first crystal layer. Second heat treatment is performed so that crystal growth from the first crystal layer to a surface of the second oxide semiconductor film is caused, whereby a second crystal layer is formed. Further, oxygen doping treatment is performed on the second crystal layer.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8624321
    Abstract: A thin film transistor is provided, which includes a gate insulating layer covering a gate electrode, a microcrystalline semiconductor layer provided over the gate insulating layer, an amorphous semiconductor layer overlapping the microcrystalline semiconductor layer and the gate insulating layer, and a pair of impurity semiconductor layers which are provided over the amorphous semiconductor layer and to which an impurity element imparting one conductivity type is added to form a source region and a drain region. The gate insulating layer has a step adjacent to a portion in contact with an end portion of the microcrystalline semiconductor layer. A second thickness of the gate insulating layer in a portion outside the microcrystalline semiconductor layer is smaller than a first thickness thereof in a portion in contact with the microcrystalline semiconductor layer.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 7, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yoshiyuki Kurokawa, Hiromichi Godo, Hidekazu Miyairi
  • Patent number: 8623713
    Abstract: A trench isolation structure and method of forming the trench isolation structure are disclosed. The method includes forming a shallow trench isolation (STI) structure having an overhang and forming a gate stack. The method further includes forming source and drain recesses adjacent to the STI structure and the gate stack. The source and drain recesses are separated from the STI structure by substrate material. The method further includes forming epitaxial source and drain regions associated with the gate stack by filling the source and drain recesses with stressor material.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michael V. Aquilino, Reinaldo A. Vega