Vertical Channel Patents (Class 438/192)
-
Patent number: 11837657Abstract: A power semiconductor device comprises a semiconductor layer structure having a wide band-gap drift region having a first conductivity type, a gate trench having first and second opposed sidewalls that extend in a first direction in an upper portion of the semiconductor layer structure, first and second well regions having a second conductivity type in the upper portion of the semiconductor layer structure, the first well region comprising part of the first sidewall and the second well region comprising part of the second sidewall. A deep shielding region having the second conductivity type is provided underneath the gate trench, and a plurality of deep shielding connection patterns that have the second conductivity type are provided that electrically connect the deep shielding region to the first and second well regions. The deep shielding connection patterns are spaced apart from each other along the first direction.Type: GrantFiled: February 15, 2023Date of Patent: December 5, 2023Assignee: Wolfspeed, Inc.Inventors: Naeem Islam, Woongsun Kim, Daniel J. Lichtenwalner, Sei-Hyung Ryu
-
Patent number: 11791378Abstract: Semiconductor devices include a silicon carbide drift region having an upper portion and a lower portion. A first contact is on the upper portion of the drift region and a second contact is on the lower portion of the drift region. The drift region includes a superjunction structure that includes a p-n junction that is formed at an angle of between 10° and 30° from a plane that is normal to a top surface of the drift region. The p-n junction extends within +/?1.5° of a crystallographic axis of the silicon carbide material forming the drift region.Type: GrantFiled: July 9, 2021Date of Patent: October 17, 2023Assignee: Wolfspeed, Inc.Inventors: Edward Robert Van Brunt, Alexander V. Suvorov, Vipindas Pala, Daniel J. Lichtenwalner, Qingchun Zhang
-
Patent number: 11776609Abstract: In a dynamic flash memory cell including: a HfO2 layer and a TiN layer surrounding a lower portion of a Si pillar standing on a P-layer substrate; a HfO2 layer surrounding an upper portion of the Si pillar; a TiN layer; and N+ layers connected to a bottom portion and a top portion of the Si pillar, and an SGT transistor including: a SiO2 layer surrounding a lower portion of a Si pillar standing on the same P-layer substrate; a HfO2 layer surrounding an upper portion of the Si pillar; a TiN layer; and N+ layers sandwiching the HfO2 layer in a perpendicular direction and connected to a top portion and a middle portion of the Si pillar, bottom positions of the Si pillar and the Si pillar are at the same position A.Type: GrantFiled: April 11, 2022Date of Patent: October 3, 2023Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.Inventors: Nozomu Harada, Koji Sakui
-
Patent number: 11374014Abstract: The present invention discloses a flash. A channel region comprises a first shallow trench formed in the surface area of a semiconductor substrate. A tunneling dielectric layer and a polysilicon floating gate are formed in the first shallow trench and extended to the outside of the first shallow trench. A control dielectric layer and a polysilicon control gate are sequentially formed on the two side surfaces in the width direction and the top surface of the polysilicon floating gate. A source region and a drain region are formed in a self-aligned manner in active regions on the two sides in the length direction of the polysilicon floating gate. The present invention further discloses a method for manufacturing a flash. The present invention can break through the limitation of the length of the channel on the size of the memory cell, thus reducing the area of the memory cell.Type: GrantFiled: April 21, 2020Date of Patent: June 28, 2022Assignee: Shanghai Huali Microelectronics CorporationInventors: Chengcheng Wang, Rong Zou, Qiwei Wang
-
Patent number: 11245002Abstract: A transistor arrangement includes: a layer stack with first and second semiconductor layers of complementary first and second doping types; a first source region of a first transistor device adjoining the first semiconductor layers; a first drain region of the first transistor device adjoining the second semiconductor layers and spaced apart from the first source region; gate regions of the first transistor device, each gate region adjoining at least one second semiconductor layer, being arranged between the first source region and the first drain region, and being spaced apart from the first source region and the first drain region; a third semiconductor layer adjoining the layer stack and each of the first source region, first drain region, and each gate region; and active regions of a second transistor device integrated in the third semiconductor layer in a second region spaced apart from a first region of the third semiconductor layer.Type: GrantFiled: December 21, 2018Date of Patent: February 8, 2022Assignee: Infineon Technologies Dresden GmbH & Co. KGInventors: Rolf Weis, Henning Feick, Franz Hirler, Andreas Meiser
-
Patent number: 11239321Abstract: A vertical JFET is provided. The JFET is mixed with lateral channel structure and p-GaN gate structure. The JFET has an improved barrier layer for p-GaN block layer and enhanced Ohmic contact with source. In one embodiment, regrowth of lateral channel is provided so that counter doping surface Mg will be buried. In another embodiment, a dielectric layer is provided to protect p-type block layer during the processing, and later make Ohmic source and p-type block layer. Method of a barrier regrown layer for enhanced lateral channel performance is provided where a regrown barrier layer is deposited over the drift layer. The barrier regrown layer is an anti-p-doping layer. Method of a patterned regrowth for enhanced Ohmic contact is provided where a patterned masked is used for the regrowth.Type: GrantFiled: December 6, 2019Date of Patent: February 1, 2022Inventor: Gangfeng Ye
-
Patent number: 10763333Abstract: A nitride semiconductor device may comprise a p-type layer. The nitride semiconductor device may comprise a first n-type voltage-blocking layer in contact with the p-type layer. The nitride semiconductor device may comprise a second n-type voltage-blocking layer in contact with the first n-type voltage-blocking layer and separated from the p-type layer by the first n-type voltage-blocking layer. A donor concentration in the first n-type voltage-blocking layer may be lower than a donor concentration in the second n-type voltage-blocking layer. A carbon concentration in the first n-type voltage-blocking layer may be lower than a carbon concentration in the second n-type voltage-blocking layer.Type: GrantFiled: February 26, 2019Date of Patent: September 1, 2020Assignee: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHOInventors: Kazuyoshi Tomita, Tetsuo Narita
-
Patent number: 10535740Abstract: A vertical JFET is provided. The JFET is mixed with lateral channel structure and p-GaN gate structure. The JFET has an improved barrier layer for p-GaN block layer and enhanced Ohmic contact with source. In one embodiment, regrowth of lateral channel is provided so that counter doping surface Mg will be buried. In another embodiment, a dielectric layer is provided to protect p-type block layer during the processing, and later make Ohmic source and p-type block layer. Method of a barrier regrown layer for enhanced lateral channel performance is provided where a regrown barrier layer is deposited over the drift layer. The barrier regrown layer is an anti-p-doping layer. Method of a patterned regrowth for enhanced Ohmic contact is provided where a patterned masked is used for the regrowth.Type: GrantFiled: January 29, 2018Date of Patent: January 14, 2020Inventor: Gangfeng Ye
-
Patent number: 10483376Abstract: A method for producing a semiconductor device includes depositing a first insulating film and a second insulating film on a planar semiconductor layer formed on a substrate; forming a first hole for forming a gate electrode in the second insulating film; filling the first hole with a first metal to form the gate electrode; forming a side wall formed of a third insulating film on an upper surface of the gate electrode and a side surface of the first hole; performing etching through, as a mask, the side wall formed of the third insulating film, to form a second hole in the gate electrode and the first insulating film; forming a gate insulating film on a side surface of the second hole; and epitaxially growing a semiconductor layer, within the second hole, on the planar semiconductor layer to form a first pillar-shaped semiconductor layer.Type: GrantFiled: July 24, 2019Date of Patent: November 19, 2019Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.Inventors: Fujio Masuoka, Hiroki Nakamura, Nozomu Harada
-
Patent number: 9472403Abstract: A SiC JFET that includes a plurality of trenches formed in a SiC semiconductor body of one conductivity each trench having a region of another conductivity formed in the bottom and sidewalls thereof.Type: GrantFiled: November 15, 2010Date of Patent: October 18, 2016Assignee: SILICONIX TECHNOLOGY C.V.Inventors: Rossano Carta, Laura Bellemo, Giovanni Richieri, Luigi Merlin
-
Patent number: 9040370Abstract: A device includes a substrate, isolation regions at a surface of the substrate, and a semiconductor region over a top surface of the isolation regions. A conductive feature is disposed over the top surface of the isolation regions, wherein the conductive feature is adjacent to the semiconductor region. A dielectric material is disposed between the conductive feature and the semiconductor region. The dielectric material, the conductive feature, and the semiconductor region form an anti-fuse.Type: GrantFiled: February 25, 2014Date of Patent: May 26, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Hsiao-Lan Yang
-
Publication number: 20150137140Abstract: A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.Type: ApplicationFiled: January 27, 2015Publication date: May 21, 2015Inventors: Donald R. Disney, Hui Nie, Isik C. Kizilyalli, Richard J. Brown
-
Publication number: 20150137142Abstract: A semiconductor device includes a junction field effect transistor cell with a top gate region, a lateral channel region and a buried gate region. The lateral channel region is arranged between the top gate region and the buried gate region along a vertical direction with respect to a first surface of a semiconductor body. The lateral channel region comprises at least two first zones of a first conductivity type and at least one second zone of a second conductivity type, wherein the first and second zones alternate along the vertical direction. The embodiments provide well-defined channel widths and facilitate the adjustment of pinch-off voltages as well as the manufacture of normally-off junction field effect transistor cells.Type: ApplicationFiled: November 18, 2013Publication date: May 21, 2015Inventors: Jens Peter Konrath, Hans-Joachim Schulze
-
Publication number: 20150137143Abstract: A junction field effect transistor cell of a semiconductor device includes a top gate region, a lateral channel region and a buried gate region arranged along a vertical direction. The lateral channel region includes first zones of a first conductivity type and second zones of a second conductivity type which alternate along a lateral direction perpendicular to the vertical direction. A pinch-off voltage of the junction field effect transistor cell does not depend, or only to a low degree depends, on a vertical extension of the lateral channel region.Type: ApplicationFiled: November 18, 2013Publication date: May 21, 2015Inventors: Jens Peter Konrath, Hans-Joachim Schulze
-
Publication number: 20150140746Abstract: An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.Type: ApplicationFiled: December 17, 2014Publication date: May 21, 2015Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
-
Publication number: 20150132899Abstract: A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, a gate region at least partially surrounding the channel region, having a first surface coupled to the drift region and a second surface on a side of the gate region opposing the first surface, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region and a source contact electrically coupled to the source.Type: ApplicationFiled: January 23, 2015Publication date: May 14, 2015Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
-
Publication number: 20150132900Abstract: An embodiment of a vertical power device includes a III-nitride substrate, a drift region coupled to the III-nitride substrate and comprising a III-nitride material of a first conductivity type, and a channel region coupled to the drift region and comprising a III-nitride material of the first conductivity type. The vertical power device also includes a source region coupled to the channel region and comprising a III-nitride material of the first conductivity type, and a gate region coupled to the channel region. The gate region includes a III-nitride material of a second conductivity type. The vertical power device further includes a source-coupled region coupled to the drift region and electrically connected with the source region. The source-coupled region includes a III-nitride material of the second conductivity type.Type: ApplicationFiled: January 23, 2015Publication date: May 14, 2015Inventor: Donald R. Disney
-
Patent number: 9029210Abstract: A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.Type: GrantFiled: June 11, 2014Date of Patent: May 12, 2015Assignee: AVOGY, INC.Inventors: Hui Nie, Andrew P. Edwards, Donald R. Disney, Isik C. Kizilyalli
-
Patent number: 9012957Abstract: A MOS transistor including a U-shaped channel-forming semiconductor region and source and drain regions having the same U shape located against the channel-forming region on either side thereof, the internal surface of the channel-forming semiconductor region being coated with a conductive gate, a gate insulator being interposed.Type: GrantFiled: September 3, 2013Date of Patent: April 21, 2015Assignee: STMicroelectronics S.A.Inventor: Vincent Quenette
-
Publication number: 20150104912Abstract: A method for fabricating a vertical GaN power device includes providing a first GaN material having a first conductivity type and forming a second GaN material having a second conductivity type and coupled to the first GaN material to create a junction. The method further includes implanting ions through the second GaN material and into a first portion of the first GaN material to increase a doping concentration of the first conductivity type. The first portion of the junction is characterized by a reduced breakdown voltage relative to a breakdown voltage of a second portion of the junction.Type: ApplicationFiled: October 17, 2014Publication date: April 16, 2015Inventor: Donald R. Disney
-
Patent number: 9006800Abstract: A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drift region, a gate region at least partially surrounding the channel region, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region. The source includes a GaN-layer coupled to an InGaN layer. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction.Type: GrantFiled: December 14, 2011Date of Patent: April 14, 2015Assignee: Avogy, Inc.Inventors: Linda Romano, Andrew Edwards, Dave P. Bour, Isik C. Kizilyalli
-
Patent number: 9006054Abstract: A method to fabricate a diode device includes providing a fin structure formed in a SOI layer. The fin structure has a sacrificial gate structure disposed on the fin structure between a first end of the fin structure and a second end of the fin structure. The method further includes depositing first doped semiconductor material on the first and second ends of the fin structure, where the first doped semiconductor material on the first end of the fin structure has one of the same doping polarity or an opposite doping polarity as the first doped semiconductor material on the second end of the fin structure. The method further includes removing the sacrificial gate structure to form a gap between the deposited first doped semiconductor material; depositing a second doped semiconductor material within the gap and forming first and second electrical contacts conductively connected to the first doped semiconductor material.Type: GrantFiled: June 13, 2013Date of Patent: April 14, 2015Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Alexander Reznicek
-
Publication number: 20150084066Abstract: A SiC MOSFET device having low specific on resistance is described. The device has N+, P-well and JFET regions extended in one direction (Y-direction) and P+ and source contacts extended in an orthogonal direction (X-direction). The polysilicon gate of the device covers the JFET region and is terminated over the P-well region to minimize electric field at the polysilicon gate edge. In use, current flows vertically from the drain contact at the bottom of the structure into the JFET region and then laterally in the X direction through the accumulation region and through the MOSFET channels into the adjacent N+ region. The current flowing out of the channel then flows along the N+ region in the Y-direction and is collected by the source contacts and the final metal. Methods of making the device are also described.Type: ApplicationFiled: August 11, 2014Publication date: March 26, 2015Inventors: Sujit BANERJEE, Kevin MATOCHA, Kiran CHATTY
-
Patent number: 8981384Abstract: There are provided a high-quality semiconductor device having stable characteristics and a method for manufacturing such a semiconductor device. The semiconductor device includes a substrate having a main surface, and a silicon carbide layer. The silicon carbide layer is formed on the main surface of the substrate. The silicon carbide layer includes a side surface as an end surface inclined relative to the main surface. The side surface substantially includes one of a {03-3-8} plane and a {01-1-4} plane in a case where the silicon carbide layer is of hexagonal crystal type, and substantially includes a {100} plane in a case where the silicon carbide layer is of cubic crystal type.Type: GrantFiled: July 14, 2011Date of Patent: March 17, 2015Assignee: Sumitomo Electric Industries, Ltd.Inventor: Takeyoshi Masuda
-
Publication number: 20150072486Abstract: In a method for manufacturing a silicon carbide semiconductor device having a JFET, a trench is formed in a semiconductor substrate, and a channel layer and a second gate region are formed on an inner wall of the trench. The channel layer and the second gate region are planarized to expose a source region. A first recess deeper than a thickness of the source region is formed on both leading ends of the trench, and an activation annealing process of 1300° C. or higher is conducted in an inert gas atmosphere. A first conductivity type layer formed by the annealing process to cover a corner which is a boundary between a bottom and a side of the first recess is removed.Type: ApplicationFiled: April 10, 2013Publication date: March 12, 2015Inventors: Yuichi Takeuchi, Naohiro Sugiyama
-
Publication number: 20150072485Abstract: In a method of manufacturing a silicon carbide semiconductor device having a JFET, after forming a second concave portion configuring a second mesa portion, a thickness of a source region is detected by observing a pn junction between the source region and a first gate region exposed by the second concave portion. Selective etching is conducted on the basis of the detection result to form a first concave portion deeper than the thickness of the source region and configuring a first mesa portion inside of an outer peripheral region in an outer periphery of a cell region, and to make the second concave portion deeper than the second gate region.Type: ApplicationFiled: May 16, 2013Publication date: March 12, 2015Inventors: Yuichi Takeuchi, Naohiro Sugiyama
-
Publication number: 20150060887Abstract: In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.Type: ApplicationFiled: November 9, 2014Publication date: March 5, 2015Inventors: Koichi Arai, Yasuaki Kagotoshi, Nobuo Machida, Natsuki Yokoyama, Haruka Shimizu
-
Publication number: 20150035015Abstract: To provide a semiconductor device having a vertical JFET excellent in off-state performance without reducing a production yield. A gate region quadrangular in the cross-section along a channel width direction is formed below a source region by impurity ion implantation. By first etching, the source region over the upper surface of the gate region is removed to separate therebetween. Then, the upper surface of the gate region is processed by second etching having an etching rate lower at the side surface than at the center of the gate region. The resulting gate region has a lower surface parallel to the substrate surface and an upper surface below a boundary between the source region and the channel formation region and having, in the cross-section along the channel width direction, a downward slope from the side surface to the center. As a result, a channel length with reduced variations can be obtained.Type: ApplicationFiled: July 8, 2014Publication date: February 5, 2015Inventors: Koichi ARAI, Yasuaki KAGOTOSHI, Kenichi HISADA
-
Patent number: 8946788Abstract: A method of growing a III-nitride-based epitaxial structure includes providing a substrate in an epitaxial growth reactor and heating the substrate to a predetermined temperature. The method also includes flowing a gallium-containing gas into the epitaxial growth reactor and flowing a nitrogen-containing gas into the epitaxial growth reactor. The method further includes flowing a gettering gas into the epitaxial growth reactor. The predetermined temperature is greater than 1000° C.Type: GrantFiled: August 4, 2011Date of Patent: February 3, 2015Assignee: Avogy, Inc.Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
-
Patent number: 8933504Abstract: The invention discloses a semiconductor structure comprising: a substrate, a conductor layer, and a dielectric layer surrounding the conductor layer on the substrate; a first insulating layer covering both of the conductor layer and the dielectric layer; a gate conductor layer formed on the first insulating layer, and a dielectric layer surrounding the gate conductor layer; and a second insulating layer covering both of the gate conductor layer and the dielectric layer surrounding the gate conductor layer; wherein a through hole filled with a semiconductor material penetrates through the gate conductor layer perpendicularly, the bottom of the through hole stops on the conductor layer, and a first conductor plug serving as a drain/source electrode is provided on the top of the through hole; and a second conductor plug serving as a source/drain electrode electrically contacts the conductor layer, and a third conductor plug serving as a gate electrode electrically contacts the gate conductor layer.Type: GrantFiled: November 30, 2011Date of Patent: January 13, 2015Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
-
Patent number: 8928087Abstract: A semiconductor device is equipped with an element region, an electrode, a thermal conduction portion, and a protective membrane. The element region is equipped with a plurality of gate electrodes. The electrode is formed on a surface of the element region. The thermal conduction portion is located on a surface side of a central portion of the electrode, and is higher in thermal conductivity than the element region. The protective membrane is formed on a peripheral portion that is located on the surface side of the electrode and surrounds a periphery of the central portion. In the element region, an emitter central region that is formed on a back side of the central portion of the electrode remains on for a longer time than an emitter peripheral region that is formed on a back side of the peripheral portion of the electrode.Type: GrantFiled: November 28, 2012Date of Patent: January 6, 2015Assignee: Toyota Jidosha Kabushiki KaishaInventor: Tadashi Misumi
-
Patent number: 8928074Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs) or diodes such as junction barrier Schottky (JBS) diodes or PiN diodes. The devices have graded p-type semiconductor layers and/or regions formed by epitaxial growth. The methods do not require ion implantation. The devices can be made from a wide-bandgap semiconductor material such as silicon carbide (SiC) and can be used in high temperature and high power applications.Type: GrantFiled: March 30, 2012Date of Patent: January 6, 2015Assignee: Power Integrations, Inc.Inventors: Lin Cheng, Michael Mazzola
-
Publication number: 20140370669Abstract: A semiconductor device includes a III-nitride substrate, a first III-nitride epitaxial layer coupled to the III-nitride substrate and having a mesa, and a second III-nitride epitaxial layer coupled to a top surface of the mesa. The semiconductor device further includes a III-nitride gate structure coupled to a side surface of the mesa, and a spacer configured to provide electrical insulation between the second III-nitride epitaxial layer and the III-nitride gate structure.Type: ApplicationFiled: August 28, 2014Publication date: December 18, 2014Inventors: Don Disney, Isik C. Kizilyalli, Hui Nie, Linda Romano, Richard J. Brown, Madhan Raj
-
Patent number: 8912053Abstract: A method for fabricating a non-volatile memory device includes forming a stacked structure where a plurality of inter-layer dielectric layers and a plurality of second sacrificial layers are alternately stacked over a substrate, forming a channel layer that is coupled with a portion of the substrate by penetrating through the stacked structure, forming a slit that penetrates through the second sacrificial layers by selectively etching the stacked structure, removing the second sacrificial layers that are exposed through the slit, forming an epitaxial layer over the channel layer exposed as a result of the removal of the second sacrificial layers, and forming a gate electrode layer filling a space from which the second sacrificial layers are removed, and a memory layer interposed between the gate electrode layer and the epitaxial layer.Type: GrantFiled: September 7, 2012Date of Patent: December 16, 2014Assignee: SK Hynix Inc.Inventor: Hyun-Seung Yoo
-
Patent number: 8911926Abstract: A method of forming a metal pattern is disclosed. In the method, a metal layer is formed on a base substrate. A photoresist composition is coated on the metal layer to form a coating layer. The photoresist composition includes a binder resin, a photo-sensitizer, a mercaptopropionic acid compound and a solvent. The coating layer is exposed to a light. The coating layer is partially removed to form a photoresist pattern. The metal layer is patterned by using the photoresist pattern as a mask.Type: GrantFiled: April 5, 2013Date of Patent: December 16, 2014Assignee: Samsung Display Co., Ltd.Inventors: Jeong-Won Kim, Min Kang, Bong-Yeon Kim, Jin-Ho Ju, Dong-Min Kim, Tae-Gyun Kim, Joo-Kyoung Park, Chul-Won Park, Jun-Hyuk Woo, Won-Young Lee, Hyun-Joo Lee, Eun Jeagal
-
Publication number: 20140361349Abstract: A shielded junction field effect transistor (JFET) is described having gate trenches and shield trenches, the shield trenches being deeper and narrower than the gate trenches. The gate trenches may be fully aligned, partially aligned, or separated from the shield trenches.Type: ApplicationFiled: June 6, 2014Publication date: December 11, 2014Inventors: Peter Alexandrov, Anup Bhalla
-
Patent number: 8901644Abstract: Disclosed herein is a field effect transistor with a vertical channel and a fabrication method thereof. A channel region of the field effect transistor is a circular ring-shaped Si platform, which is formed over a substrate and perpendicular to the substrate; a source, which is made of polysilicon, is located at an upper end of the Si platform; a drain is disposed at an outside of a lower end of the circular ring-shaped Si platform; a gate is placed on an outer side surface of the circular ring-shaped Si platform; and an inside of the circular ring-shaped Si platform is filled with a dielectric material. In comparison with the conventional vertical structure MOSFET with a Si platform, the circular ring-shaped structure field effect transistor according to the invention can effectively suppress the short channel effect and improve the device performance.Type: GrantFiled: September 9, 2011Date of Patent: December 2, 2014Assignee: Peking UniversityInventors: Ru Huang, Yujie Ai, Zhihua Hao, Shuangshuang Pu, Jiewen Fan, Shuai Sun, Runsheng Wang, Xiaoyan Xu
-
Publication number: 20140346528Abstract: In order to secure the performance of a SiC-based JFET having an impurity diffusion rate lower than silicon-based one, a gate depth is secured while precisely controlling a distance between gate regions, instead of forming gate regions by ion implantation into the side wall of a trench. This means that a channel region defined by a gate distance and a gate depth should have a high aspect ratio. Further, due to limitations of process, a gate region is formed within a source region. Formation of a highly doped PN junction between source and gate regions causes various problems such as inevitable increase in junction current. In addition, a markedly high energy ion implantation becomes necessary for the formation of a termination structure. In the invention, provided is a vertical channel type SiC power JFET having a floating gate region below and separated from a source region and between gate regions.Type: ApplicationFiled: May 6, 2014Publication date: November 27, 2014Applicant: RENESAS ELECTRONICS CORPORATIONInventors: Kenichi HISADA, Koichi ARAI
-
Patent number: 8889495Abstract: Semiconductor alloy fin structures can be formed by recessing a semiconductor material layer including a first semiconductor material to form a trench, and epitaxially depositing a semiconductor alloy material of the first semiconductor material and a second semiconductor material within the trench. The semiconductor alloy material is epitaxially aligned to the first semiconductor material in the semiconductor material layer. First semiconductor fins including the first semiconductor material and second semiconductor fins including the semiconductor alloy material can be simultaneously formed. In one embodiment, the first and second semiconductor fins can be formed on an insulator layer, which prevents diffusion of the second semiconductor material to the first semiconductor fins. In another embodiment, shallow trench isolation structures and reverse biased wells can be employed to provide electrical insulation among neighboring semiconductor fins.Type: GrantFiled: October 4, 2012Date of Patent: November 18, 2014Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Thomas N. Adam, Ali Khakifirooz, Alexander Reznicek
-
Publication number: 20140332857Abstract: A junction gate field-effect transistor (JFET) includes a substrate, a source region formed in the substrate, a drain region formed in the substrate, a channel region formed in the substrate, and at least one gate region formed in the substrate. The channel region connects the source and drain regions. The at least one gate region contacts one of the source and drain regions at an interface, and the at least one gate region is isolated from the other of the source and drain regions. A dielectric layer covers the interface while exposing portions of the gate region and the one of the source and drain regions.Type: ApplicationFiled: July 2, 2014Publication date: November 13, 2014Inventors: Chia-Chung CHEN, Chi-Feng HUANG, Victor Chiang LIANG
-
Patent number: 8883576Abstract: Provided are methods of fabricating a semiconductor device. The method may include forming a mold layer on a substrate, forming a mask layer on the mold layer, etching the mold layer using the mask layer as an etch mask to form a channel hole penetrating the mold layer, shrinking the mask layer to provide a reduced mask layer, forming a spacer layer to cover the reduced mask layer, and forming a vertical channel to fill the channel hole and be electrically connected to the substrate. As a result, the channel hole can have an enlarged entrance.Type: GrantFiled: September 13, 2012Date of Patent: November 11, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Jinkwan Lee, Yoochul Kong, Seongsoo Lee
-
Patent number: 8883587Abstract: A method of manufacturing a semiconductor device includes forming silicon line patterns in a semiconductor substrate, forming an insulating layer over the silicon line patterns, forming a conductive pattern between the silicon line patterns, forming a spacer over the substrate, forming an interlayer insulating layer between the silicon line patterns, removing the spacer on one side of the silicon line patterns to expose the conductive pattern, forming a bit line contact open region by removing the interlayer insulating layer, forming a polysilicon pattern to cover the bit line contact open region, and forming a junction region diffused to the silicon line pattern through the bit line contact open region. Thereby, a stacked structure of a titanium layer and a polysilicon layer are stably formed when forming a buried bit line and a bit line contact is formed using diffusion of the polysilicon layer to prevent leakage current.Type: GrantFiled: July 20, 2011Date of Patent: November 11, 2014Assignee: Hynix Semiconductor Inc.Inventor: Seung Hwan Kim
-
Patent number: 8860098Abstract: The present disclosure describes structures and processes to produce high voltage JFETs in wide-bandgap materials, most particularly in Silicon Carbide. The present disclosure also provides for products produced by the methods of the present disclosure and for apparatuses used to perform the methods of the present disclosure.Type: GrantFiled: March 14, 2014Date of Patent: October 14, 2014Assignee: United Silicon Carbide, Inc.Inventors: Anup Bhalla, Peter Alexandrov
-
Patent number: 8859369Abstract: Provided is a semiconductor device having a vertical MOS transistor and a method of manufacturing the same. The vertical MOS transistor has a trench gate, a distance between a gate electrode and an N-type high concentration buried layer below the gate electrode is formed longer than that in the conventional structure, and a P-type trench bottom surface lower region (5) is formed therebetween. In this manner, when a high voltage is applied to a drain region and 0 V is applied to the gate electrode, the trench bottom surface lower region (5) is depleted, thereby increasing the breakdown voltage in the OFF state.Type: GrantFiled: February 7, 2013Date of Patent: October 14, 2014Assignee: Seiko Instruments Inc.Inventor: Yukimasa Minami
-
Publication number: 20140284625Abstract: A manufacturing method of a junction field effect transistor includes the steps of: (a) forming an n+-type source layer on a surface of an n?-type drift layer formed on an n+-type SiC substrate; (b) forming a plurality of shallow trenches disposed at predetermined intervals by etching the surface of the n?-type drift layer with a silicon oxide film formed on the n?-type drift layer used as a mask; (c) forming an n-type counter dope layer by doping the n?-type drift layer below each of the shallow trenches with nitrogen by using a vertical ion implantation method; (d) forming a sidewall spacer on each sidewall of the silicon oxide film and the shallow trenches; and (e) forming a p-type gate layer by doping the n?-type drift layer below each of shallow trenches with aluminum by using the vertical ion implantation method.Type: ApplicationFiled: March 20, 2014Publication date: September 25, 2014Applicant: RENESAS ELECTRONICS CORPORATIONInventors: Yasuaki KAGOTOSHI, Koichi ARAI, Natsuki YOKOYAMA, Haruka SHIMIZU
-
Publication number: 20140264477Abstract: The present disclosure describes structures and processes to produce high voltage JFETs in wide-bandgap materials, most particularly in Silicon Carbide. The present disclosure also provides for products produced by the methods of the present disclosure and for apparatuses used to perform the methods of the present disclosure.Type: ApplicationFiled: March 14, 2014Publication date: September 18, 2014Applicant: United Silicon Carbide, Inc.Inventors: Anup Bhalla, Peter Alexandrov
-
Patent number: 8829574Abstract: A semiconductor device includes a III-nitride substrate, a first III-nitride epitaxial layer coupled to the III-nitride substrate and having a mesa, and a second III-nitride epitaxial layer coupled to a top surface of the mesa. The semiconductor device further includes a III-nitride gate structure coupled to a side surface of the mesa, and a spacer configured to provide electrical insulation between the second III-nitride epitaxial layer and the III-nitride gate structure.Type: GrantFiled: December 22, 2011Date of Patent: September 9, 2014Assignee: Avogy, Inc.Inventors: Donald R. Disney, Isik C. Kizilyalli, Hui Nie, Linda Romano, Richard J. Brown, Madhan Raj
-
Publication number: 20140231883Abstract: A vertical junction field effect transistor (JFET) includes a drain, a source, a gate, a drift region, and a body diode. The source, gate, drift region, and body diode are all disposed in the same compound semiconductor epitaxial layer. The drain is vertically spaced apart from the source and the gate by the drift region. The body diode is connected between the drain and the source.Type: ApplicationFiled: February 20, 2013Publication date: August 21, 2014Applicant: Infineon Technologies Austria AGInventors: Romain Esteve, Cédric Ouvrard
-
Publication number: 20140227837Abstract: A lateral super junction JFET is formed from stacked alternating P type and N type semiconductor layers over a P-epi layer supported on an N+ substrate. An N+ drain column extends down through the super junction structure and the P-epi to connect to the N+ substrate to make the device a bottom drain device. N+ source column and P+ gate column extend through the super junction but stop at the P-epi layer. A gate-drain avalanche clamp diode is formed from the bottom the P+ gate column through the P-epi to the N+ drain substrate.Type: ApplicationFiled: February 10, 2013Publication date: August 14, 2014Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
-
Patent number: 8796738Abstract: There are disclosed herein various implementations of a semiconductor structure and method. The semiconductor structure comprises a substrate, a transition body over the substrate, and a group III-V intermediate body having a bottom surface over the transition body. The semiconductor structure also includes a group III-V device layer over a top surface of the group III-V intermediate body. The group III-V intermediate body has a continuously reduced impurity concentration wherein a higher impurity concentration at the bottom surface is continuously reduced to a lower impurity concentration at the top surface.Type: GrantFiled: September 5, 2012Date of Patent: August 5, 2014Assignee: International Rectifier CorporationInventor: Michael A. Briere