Having Underpass Or Crossunder Patents (Class 438/214)
  • Publication number: 20150061026
    Abstract: Systems and methods are provided for fabricating a semiconductor device structure. An example semiconductor device structure includes a first device layer, a second device layer and an inter-level connection structure. The first device layer is formed on a substrate and includes a first semiconductor device, the first semiconductor device including a first electrode structure. The second device layer is formed on the first device layer and includes a second semiconductor device, the second semiconductor device including a second electrode structure. The first inter-level connection structure includes one or more first conductive materials and is configured to electrically connect to the first electrode structure and the second electrode structure.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yi-Tang Lin, Clement Hsingjen Wann
  • Patent number: 8969149
    Abstract: A structure is provided that includes at least one multilayered stacked semiconductor material structure located on a semiconductor substrate and at least one sacrificial gate material structure straddles a portion of the at least one multilayered stacked semiconductor structure. The at least one multilayered stacked semiconductor material structure includes alternating layers of sacrificial semiconductor material and semiconductor nanowire template material. End segments of each layer of sacrificial semiconductor material are then removed and filled with a dielectric spacer. Source/drain regions are formed from exposed sidewalls of each layer of semiconductor nanowire template material, and thereafter the at least one sacrificial gate material structure and remaining portions of the sacrificial semiconductor material are removed suspending each semiconductor material.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventor: Effendi Leobandung
  • Patent number: 8735237
    Abstract: The thickness of drain and source areas may be reduced by a cavity etch used for refilling the cavities with an appropriate semiconductor material, wherein, prior to the epitaxial growth, an implantation process may be performed so as to allow the formation of deep drain and source areas without contributing to unwanted channel doping for a given critical gate height. In other cases, the effective ion blocking length of the gate electrode structure may be enhanced by performing a tilted implantation step for incorporating deep drain and source regions.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: May 27, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Uwe Griebenow, Kai Frohberg, Frank Feustel, Thomas Werner
  • Patent number: 8581411
    Abstract: A semiconductor device comprises a GaAs substrate having a first major surface and a second major surface opposite to each other; a first metal layer composed of at least one of Pd, Ta, and Mo on the first major surface of the GaAs substrate; and a second metal layer composed of a Ni alloy or Ni on the first metal layer.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: November 12, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Koichiro Nishizawa
  • Patent number: 8329521
    Abstract: A method includes providing a substrate having a first surface, forming an isolation structure disposed partly in the substrate and having an second surface higher than the first surface by a step height, removing a portion of the isolation structure to form a recess therein having a bottom surface spaced from the first surface by less than the step height, forming a gate structure, and forming a contact engaging the gate structure over the recess. A different aspect involves an apparatus that includes a substrate having a first surface, an isolation structure disposed partly in the substrate and having a second surface higher than the first surface by a step height, a recess extending downwardly from the second surface, the recess having a bottom surface spaced from the first surface by less than the step height, a gate structure, and a contact engaging the gate structure over the recess.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: December 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company. Ltd.
    Inventors: Harry Hak-Lay Chuang, Bao-Ru Young, Sheng-Chen Chung, Kai-Shyang You, Jin-Aun Ng, Wei Cheng Wu, Ming Zhu
  • Patent number: 8241973
    Abstract: The thickness of drain and source areas may be reduced by a cavity etch used for refilling the cavities with an appropriate semiconductor material, wherein, prior to the epitaxial growth, an implantation process may be performed so as to allow the formation of deep drain and source areas without contributing to unwanted channel doping for a given critical gate height. In other cases, the effective ion blocking length of the gate electrode structure may be enhanced by performing a tilted implantation step for incorporating deep drain and source regions.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 14, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Uwe Griebenow, Kai Frohberg, Frank Feustel, Thomas Werner
  • Patent number: 8207031
    Abstract: Methods of forming, on a substrate, a first lateral high-voltage MOS transistor and a second lateral high-voltage MOS transistor complementary to said first one are disclosed. According to one embodiment, the method includes (1) providing a substrate of a first conductivity type including a first active region for said first lateral high-voltage MOS transistor and a second active region for said second lateral high-voltage MOS transistor and (2) forming at least one first doped region of the first conductivity type in the first active region and forming in the second active region a drain extension region of the second conductivity type extending from a substrate surface to an interior of the substrate, including a concurrent implantation of dopants through openings of one and the same mask into the first and second active regions.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 26, 2012
    Assignee: X-Fab Semiconductor Foundries AG
    Inventors: Christoph Ellmers, Thomas Uhlig, Felix Fuernhammer, Michael Stoisiek, Michael Gross
  • Patent number: 8067291
    Abstract: To provide a manufacturing method of a MOS field-effect transistor in which such a structure is adopted that SiGe having a large lattice constant is embedded immediately below a channel and distortion is effectively introduced in a channel Si layer so that mobility of electrons or holes are drastically improved, thereby realizing high-speed operation and low power consumption. A stressor 2 composed of silicon germanium is formed in a portion in an active region that is separated by an insulating film formed on a silicon substrate, a silicon channel layer 1 composed of silicon is formed above the stressor, and a tensile stress layer 10 is formed so as to surround a gate electrode and a sidewall formed on the gate electrode.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: November 29, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Masashi Shima
  • Patent number: 8066891
    Abstract: The present invention provides a laminate comprising an insulating layer having suppressed dusting properties, an insulating film comprising the insulating layer, and an electronic circuit component comprising a pattern of the insulating layer. The laminate has a layer construction of first inorganic material layer-insulating layer-second inorganic material layer or a layer construction of inorganic material layer-insulating layer. The insulating layer comprises a laminate of two or more wet etchable insulating unit layers. At the interface between the inorganic material layer and the insulating layer, surface irregularities of the inorganic material layer have been transferred onto the surface of the insulating layer. The average height of the surface irregularities transferred onto the insulating layer is less than the thickness of the outermost insulating unit layer in the insulating layer.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: November 29, 2011
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Katsuya Sakayori, Terutoshi Momose, Tomoko Togashi, Shigeki Kawano, Michiaki Uchiyama, Kazuto Okamura, Kazutoshi Taguchi, Kazunori Ohmizo, Makoto Shimose
  • Patent number: 8022501
    Abstract: The present invention relates to a semiconductor device and a method for isolating the same. The semiconductor device includes: a silicon substrate provided with a trench including at least one silicon pillar at a bottom portion of the trench, wherein the silicon pillar become sidewalls of micro trenches; and a device isolation layer selectively and partially filled into the plurality of micro trenches.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: September 20, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung-Ho Pyi
  • Patent number: 7982280
    Abstract: An integrated circuit includes N plane-like metal layers. A first plane-like metal layer includes M contact portions that communicate with the N plane-like metal layers, respectively. The first source region is arranged between first sides of the first and second drain regions and the second and third source regions are arranged adjacent to second sides of the first and second drain regions. A fourth source region is arranged adjacent to third sides of the first and second drain regions and a fifth source region is arranged adjacent to fourth sides of the first and second drain regions. First and second drain contacts are arranged in the first and second drain regions, respectively. At least two of the first, second, third, fourth and fifth source regions and the first and second drain regions communicate with at least two of the N plane-like metal layers.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: July 19, 2011
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 7973360
    Abstract: An integrated circuit device comprising a diode and a method of making an integrated circuit device comprising a diode are provided. The diode can comprise an island of a first conductivity type, a first region of a second conductivity type formed in the island, and a cathode diffusion contact region doped to the second conductivity type disposed in the first region. The diode can also comprise a cathode contact electrically contacting the cathode diffusion contact region, an anode disposed in the island, an anode contact electrically contacting the anode, and a first extension region doped to the first conductivity type disposed at a surface junction between the first region and the island.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: July 5, 2011
    Assignee: Intersil Americas Inc.
    Inventor: James Douglas Beasom
  • Patent number: 7888771
    Abstract: An electronic fuse (“E-fuse”) has a silicide filament link extending along a gap between polysilicon structures formed on a silicon substrate. The silicide filament link extends across diffusions formed in the gap. A P-N junction between terminals of the E-fuse provides high resistivity after programming (fusing) the silicide filament link.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: February 15, 2011
    Assignee: Xilinx, Inc.
    Inventors: Lakhbeer Singh Sidhu, Srikanth Sundararajan, Michael J. Hart
  • Patent number: 7759728
    Abstract: An integrated circuit device comprising a diode and a method of making an integrated circuit device comprising a diode are provided. The diode can comprise an island of a first conductivity type, a first region of a second conductivity type formed in the island, and a cathode diffusion contact region doped to the second conductivity type disposed in the first region. The diode can also comprise a cathode contact electrically contacting the cathode diffusion contact region, an anode disposed in the island, an anode contact electrically contacting the anode, and a first extension region doped to the first conductivity type disposed at a surface junction between the first region and the island.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: July 20, 2010
    Assignee: Intersil Americas Inc.
    Inventor: James Douglas Beasom
  • Patent number: 7659616
    Abstract: Structures and methods for forming the same. A semiconductor chip includes a substrate and a transistor. The chip includes N interconnect layers on the substrate, N being a positive integer. The chip includes a cooling pipes system inside the N interconnect layers. The cooling pipes system does not include any solid or liquid material. Given any first point and any second point in the cooling pipes system, there exists a continuous path which connects the first and second points and which is totally within the cooling pipes system. A first portion of the cooling pipes system overlaps the transistor. A second portion of the cooling pipes system is higher than the substrate and lower than a top interconnect layer. The second portion is in direct physical contact with a surrounding ambient.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kaushik A. Kumar, Andres Fernando Munoz, Michael Ray Sievers, Richard Stephen Wise
  • Patent number: 7629211
    Abstract: A method of forming a field effect transistor comprises providing a semiconductor substrate, a gate electrode being formed over the semiconductor substrate. At least one cavity is formed adjacent the gate electrode. A strain-creating element is formed in the at least one cavity. The strain-creating element comprises a compound material comprising a first chemical element and a second chemical element. A first concentration ratio between a concentration of the first chemical element in a first portion of the strain-creating element and a concentration of the second chemical element in the first portion of the strain-creating element is different from a second concentration ratio between a concentration of the first chemical element in a second portion of the strain-creating element and a concentration of the second chemical element in the second strain-creating element.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: December 8, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sven Beyer, Thorsten Kammler, Rolf Stephan, Manfred Horstmann
  • Patent number: 7422971
    Abstract: The invention relates to a transistor that includes an ultra-thin body epitaxial layer that forms an embedded junction with a channel that has a length dictated by an undercut under the gate stack for the transistor. The invention also relates to a process of forming the transistor and to a system that incorporates the transistor.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: September 9, 2008
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Brian Doyle, Jack Kavalieros, Robert Chau
  • Patent number: 7385246
    Abstract: An integrated circuit device comprising a diode and a method of making an integrated circuit device comprising a diode are provided. The diode can comprise an island of a first conductivity type, a first region of a second conductivity type formed in the island, and a cathode diffusion contact region doped to the second conductivity type disposed in the first region. The diode can also comprise a cathode contact electrically contacting the cathode diffusion contact region, an anode disposed in the island, an anode contact electrically contacting the anode, and a first extension region doped to the first conductivity type disposed at a surface junction between the first region and the island.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: June 10, 2008
    Assignee: Intersil Americas Inc.
    Inventor: James Douglas Beasom
  • Patent number: 7338840
    Abstract: Thermal hot spots in the substrate of a semiconductor die, and the required surface area of the semiconductor die, are substantially reduced by forming thermal or thermal and electrical pipes in the substrate that extend from a bottom surface of the substrate to a point near the top surface of the substrate.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: March 4, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Gobi R. Padmanabhan, Visvamohan Yegnashankaran
  • Patent number: 7319605
    Abstract: A conductive structure for gate lines and local interconnects in microelectronic devices. The conductive structure can be used in memory cells for SRAM devices or other types of products. The memory device cell can comprise a first conductive line, a second conductive line, a first active area, a second active area, a third active area, and a fourth active area. The first conductive line includes a first gate, a second gate, a first contact and a second contact. The second conductive line includes a third gate, a fourth gate, a third contact and a fourth contact. The first active area is electrically coupled to the first gate and the third contact; the second active area is electrically coupled to the second gate and the fourth contact; the third active area is electrically coupled to the third gate and the first contact; and the fourth active area is electrically coupled to the fourth gate and the second contact. The memory cell device, for example, can be a cell for an SRAM device.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: January 15, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Todd R. Abbott
  • Patent number: 7256462
    Abstract: The present invention is to provide a high-quality semiconductor device allowing independent control of threshold voltage values of gate electrodes of transistors which reside in a plurality of one-conductivity-type regions and in a reverse-conductivity-type region. The semiconductor comprises a P-type Si substrate 109, a plurality of P-type wells 103a, 103b connected to each other via the bottom surface side of the P-type Si substrate 109, and an N-type well 101 provided so as to surround side portions of the plurality of P-type wells 103a, 103b. The semiconductor device also has NMOS transistors 107a, 107b provided on the P-type wells 103a, 103b, and PMOS transistors 105a, 105b, 105c provided on the N-type well 101. The semiconductor device still also has an N-type well 133 provided just under the N-type well 101 and connected therewith.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: August 14, 2007
    Assignee: NEC Electronics Corporation
    Inventor: Sadaaki Masuoka
  • Patent number: 7176578
    Abstract: The present invention comprises a processed thin film substrate (10) and a method therefore, in order to produce a flexible printed circuit card, having a plurality of microvias going or passing through the thin film substrate and electrically connected along faced-away surfaces, in order to form an electric circuit. A first a number of real nano-tracks are filled with a first material (M1), having good electric properties, for the formation of a first number of, here denominated, first vias (V10, V30, V 50), that a second number of real nano-tracks are filled with a second material (M2), having good electric properties, for the formation of a second number of, here denominated, second vias (V20, V40, V60). The first material (M1) and the second material (M2) of said first and second vias (V10–V60) are chosen having mutually different thermoelectric properties.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: February 13, 2007
    Assignee: Senseair AB
    Inventors: Hans Evald Goran Martin, Klas Anders Hjort, Mikael Peter Erik Lindberg
  • Patent number: 7091534
    Abstract: The semiconductor device is capable of coping with speedup of operation using a low dielectric constant material film other than silicon. The base (10) formed by the substrate (11) and the low dielectric constant material film (12) whose relative dielectric constant is lower than silicon is provided. The semiconductor element layer including the MOS transistor (30) is adhered onto the surface of the base (10) for stacking. The transistor (30) is formed by using the island-shaped single-crystal Si film (31) and buried in the insulator films (15), (16) and (17). The multilayer wiring structure (18) is formed on the semiconductor element layer and is electrically connected to the transistor (30). The electrode (20) functioning as a return path for the signals is formed on the back surface of the base (10). Instead of forming the electrode (20) on the base (10), the electrodes (20A) may be arranged on the back surface of the base (10A), configuring the base (10A) as an interposer.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: August 15, 2006
    Assignee: ZyCube Co., Ltd.
    Inventor: Mitsumasa Koyanagi
  • Patent number: 7045409
    Abstract: A semiconductor device having active regions connected by an interconnect line, which includes first and second transistors each having active regions and formed spaced apart from each other in a semiconductor substrate, an isolation region for isolating the first and second transistors from each other, a slit formed in the isolation region to allow those paired active regions of the first and second transistors which are opposed to each other with the isolation region interposed therebetween to communicate with each other through it, a conductive film formed on the inner walls of the slit, and an interconnect layer having first and second portions, each of which is electrically connected with a corresponding one of the paired active regions, and a third portion which is formed along the slit on the isolation region to connect the first and second portions with each other.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: May 16, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Hokazono
  • Patent number: 6974740
    Abstract: The present invention relates to integrated circuits having symmetric inducting devices with a ground shield. In one embodiment, a symmetric inducting device for an integrated circuit comprises a substrate, a main metal layer and a shield. The substrate has a working surface. The main metal layer has at least one pair of current path regions. Each of the current path region pairs is formed in generally a regular polygonal shape that is generally symmetric about a plane of symmetry that is perpendicular to the working surface of the substrate. The shield is patterned into segments that are generally symmetric about the plane of symmetry. Medial portions of at least some segments of the shield are formed generally perpendicular to the plane of symmetry as the medial portions cross the plane of symmetry.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: December 13, 2005
    Assignee: Conexant Systems, Inc.
    Inventors: Rex Everett Lowther, William R. Young
  • Patent number: 6900087
    Abstract: The present invention relates to integrated circuits having symmetric inducting devices with a ground shield. In one embodiment, a symmetric inducting device for an integrated circuit comprises a substrate, a main metal layer and a shield. The substrate has a working surface. The main metal layer has at least one pair of current path regions. Each of the current path region pairs is formed in generally a regular polygonal shape that is generally symmetric about a plane of symmetry that is perpendicular to the working surface of the substrate. The shield is patterned into segments that are generally symmetric about the plane of symmetry. Medial portions of at least some segments of the shield are formed generally perpendicular to the plane of symmetry as the medial portions cross the plane of symmetry.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: May 31, 2005
    Assignee: Globespan Virata Incorporated
    Inventors: Rex Everett Lowther, William R. Young
  • Patent number: 6897103
    Abstract: An integrated circuit having a high voltage lateral MOS with reduced ON resistance. In one embodiment, the integrated circuit includes a high voltage lateral MOS with an island formed in a substrate, a source, a gate and a first and second drain extension. The island is doped with a low density first conductivity type. The source and drain contact are both doped with a high density second conductivity type. The first drain extension is of the second conductivity type and extends laterally from under the gate past the drain contact. The second drain extension is of the second conductivity type and extends laterally from under the gate toward the source. A portion of the second drain extension overlaps the first drain extension under the gate to form a region of increased doping of the second conductivity type.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: May 24, 2005
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 6879507
    Abstract: A conductive structure for gate lines and local interconnects in microelectronic devices. The conductive structure can be used in memory cells for SRAM devices or other types of products. The memory device cell can comprise a first conductive line, a second conductive line, a first active area, a second active area, a third active area, and a fourth active area. The first conductive line includes a first gate, a second gate, a first contact and a second contact. The second conductive line includes a third gate, a fourth gate, a third contact and a fourth contact. The first active area is electrically coupled to the first gate and the third contact; the second active area is electrically coupled to the second gate and the fourth contact; the third active area is electrically coupled to the third gate and the first contact; and the fourth active area is electrically coupled to the fourth gate and the second contact. The memory cell device, for example, can be a cell for an SRAM device.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: April 12, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Todd R. Abbott
  • Patent number: 6642149
    Abstract: In a processing chamber of an etching apparatus a lower electrode and an upper electrode grounded through a processing container are disposed oppositely to each other. A first high frequency power supply section composed of a first filter, a first matching device, and a first power source, and a second high frequency power supply section composed of a second filter, a second matching device, and a second power source are connected to the lower electrode. A superimposed power of two frequencies composed of a first high frequency power component of at least 10 MHz produced from the first power source and a second high frequency power component of at least 2 MHz produced from the second power source is applied to the lower electrode. Ions in the plasma do not accelerated by changes of electric field in the processing chamber, but are accelerated by a self-bias voltage and collide only against a wafer on the lower electrode.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: November 4, 2003
    Assignees: Tokyo Electron Limited, Kabushiki Kaisha Toshiba
    Inventors: Tomoki Suemasa, Tsuyoshi Ono, Kouichiro Inazawa, Makoto Sekine, Itsuko Sakai, Yukimasa Yoshida
  • Patent number: 6642133
    Abstract: The invention relates to a transistor that includes a semiconductive layer on an insulator layer. Below the insulator layer is a substrate and a contact is disposed in the insulator layer that originates at the substrate and terminates in the insulator layer. The contact is aligned below the transistor junction. The invention also relates to a process flow that is used to fabricate the transistor. The process flow includes forming the contact by either a spacer etch or a directional, angular etch.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: November 4, 2003
    Assignee: Intel Corporation
    Inventors: Brian Roberds, Doulgas W. Barlage
  • Patent number: 6635518
    Abstract: Methods and apparatus are provided for creating field effect transistor (FET) body connections with high-quality matching characteristics and no area penalty for partially depleted silicon-on-insulator (SOI) circuits. The FET body connections are created for partially depleted silicon-on-insulator (SOI) technologies by forming adjacent FET devices inside a shallow trench shape. The adjacent FET devices share a common diffusion area, such as source or drain. Selectively spacing apart adjacent gate lines form an underpath connecting bodies of the adjacent FET devices. The underpath is defined by forming an undepleted region on top of a buried oxide layer. The adjacent polysilicon gate lines are selectively spaced apart to define a depth of depletion in a shared diffusion region for creating the underpath. Also, adjacent FET devices with connecting bodies can be built by adding an ion implant masking step to the fabrication process. This masking step changes the depletion depth under the shared diffusion area.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: October 21, 2003
    Assignee: International Business Machines Corporation
    Inventors: Anthony Gus Aipperspach, Jente Benedict Kuang, John Edward Sheets, II, Daniel Lawrence Stasiak
  • Publication number: 20030109098
    Abstract: A method for making a semiconductor device includes forming a resist pattern having a multi-layered structure by performing a plurality of development steps, the resist pattern including a first opening corresponding to a fine gate section of a gate electrode and a second opening placed on the first opening, the second opening corresponding to an over-gate section which is wider than the fine gate section and having a cross section protruding like an overhang, wherein every angle of the second opening at the tip of the over-gate section is more than 90 degrees; and forming the gate electrode provided with the fine gate section and the over-gate section by depositing electrode materials on the resist pattern.
    Type: Application
    Filed: April 3, 2002
    Publication date: June 12, 2003
    Applicants: Fujitsu Limited, Fujitsu Quantum Devices Limited
    Inventors: Kozo Makiyama, Katsumi Ogiri
  • Publication number: 20030082872
    Abstract: The present invention includes methods and structures for forming at least a substantially self-aligned MOSFET. According to the present invention, a method of fabricating a semiconductor device includes providing a substrate; providing first materials (such as a first polysilicon) having horizontal surfaces and also having opposed vertical surfaces forming a trench; providing a second material (such as a second polysilicon) in the trench and over the vertical and horizontal surfaces, the second material having a substantially (eg, ±10%) uniform thickness so as to form a notch over the trench; providing a masking material (such as an oxide or a nitride) into the notch, and then removing the second material using the masking material as a mask in a direction toward the first material, so that a vertical surface of one of the first materials is at least substantially aligned with a vertical surface of the second material.
    Type: Application
    Filed: October 25, 2001
    Publication date: May 1, 2003
    Inventor: Effendi Leobandung
  • Patent number: 6555482
    Abstract: A method for making a MOS transistor includes forming a first gate within a silicon-on-insulator substrate, forming a semiconductor channel region transversely surmounting the first gate, and forming semiconductor drain and source regions on each side of the channel region. The semiconductor channel region and drain and source regions may be produced by epitaxy on an upper surface of the first gate. The channel region may be isolated from the upper surface of the first gate by forming a tunnel under the channel region and at least partially filling the tunnel with a first dielectric. The second gate is formed on the channel region and transverse to the channel region. The second gate may be separated from an upper surface of the channel region by a second dielectric.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: April 29, 2003
    Assignee: STMicroelectronics S.A.
    Inventors: Thomas Skotnicki, Malgorzata Jurczak, Michel Haond
  • Patent number: 6518628
    Abstract: An integrated CMOS circuit arrangement and a method of manufacturing same, which includes both a first MOS transistor and a second MOS transistor complementary thereto, wherein one of the MOS transistors is arranged at the floor of a trench and the other is arranged at the principal surface of a semiconductor substrate. The MOS transistors are arranged relative to one another such that a current flow through the MOS transistors respectively occurs substantially parallel to a sidewall of the trench that is arranged between the MOS transistors.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: February 11, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Wolfgang Krautschneider, Franz Hofmann, Lothar Risch
  • Patent number: 6514809
    Abstract: A field effect transistor on an SOI wafer has a non-floating body which is tied to the substrate of the wafer by a bridge of conductive material such as semiconductor material. The bridge is created by selectively etching through a portion of a surface semiconductor layer and the underlying portion of a buried insulator layer, thereby making an opening or trench which exposing some of the semiconductor substrate of the SOI wafer. Then the opening is filled, for example by growth of a replacement semiconductor material by selective epitaxy.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: February 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Qi Xiang
  • Patent number: 6503787
    Abstract: The present invention provides a semiconductor device, formed on a semiconductor wafer, comprising a tub, first and second active areas, and an interconnect. In one aspect of the present invention, the tub is formed in the substrate of the semiconductor wafer and first and second active areas are in contact with the tub. In one advantageous embodiment, the interconnect is formed in the tub and is in electrical contact with the first and second active areas. The interconnect extends from the first active area to the second active area to electrically connect the first and second active areas.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: January 7, 2003
    Assignee: Agere Systems Inc.
    Inventor: Seungmoo Choi
  • Patent number: 6495408
    Abstract: Disclosed is a process of electrically coupling the gate electrodes of an N-type transistor and a P-type transistor without causing substantial cross diffusion of P-type dopants into the N-type gate electrode and N-type dopants into the P-type gate electrode. This is possible because some or all annealing and diffusion steps are performed while the N-type and P-type gate electrodes are physically isolated from one another. Also disclosed is a Silicide as Diffusion Source process in which dopant atoms implanted in silicide regions diffuses out of the silicide regions and into the substrate to form source and drain diffusions. During this diffusion step adjacent N-type and P-type gate electrodes remain unconnected to prevent cross diffusion. Then, these two electrodes are electrically connected by a local interconnect. The local interconnection is a conductive path formed at about the level of the polysilicon (i.e.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: December 17, 2002
    Assignee: LSI Logic Corporation
    Inventors: Shouli Hsia, Jiunn-Yann Tsai
  • Publication number: 20020171118
    Abstract: An isolation region for a memory array in which the isolation region includes at least one trench region having sidewalls that extend to a bottom surface and a slit region formed beneath the final trench region, wherein the slit region is narrower than the overlying trench regions and has a void formed intentionally therein is provided.
    Type: Application
    Filed: May 18, 2001
    Publication date: November 21, 2002
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack A. Mandelman, Ramachandra Divakaruni, Johnathan E. Faltermeier, William R. Tonti
  • Publication number: 20020160563
    Abstract: A method of fabricating an integrated circuit having air-gaps between interconnect levels. In a preferred embodiment, an integrated circuit is partially fabricated. The partially fabricated integrated circuit includes a top layer, interconnect structures having a cladding layer, dielectric layers and an etch stop layer resistant to certain first types of etchants. The top layer of the integrated circuit is etched with a second type of etchant. The dielectric layers are then etched with one of the first types of etchants until the etch stop layer is reached. Thus, portions of the interconnect structures are exposed to create interconnect islands surrounded by air. A cover is mechanically placed over the exposed interconnect islands to protect the integrated circuit from dust particles.
    Type: Application
    Filed: September 12, 2001
    Publication date: October 31, 2002
    Applicant: International Business Machines Corporation
    Inventor: Uttam Shyamalindu Ghoshal
  • Patent number: 6465293
    Abstract: A method of manufacturing a flash memory cell is disclosed. The method comprises the steps of forming an oxide film on a semiconductor substrate in which a device separation film is formed and then patterning the oxide film to expose the semiconductor substrate at a portion in which a floating gate will be formed; sequentially forming a tunnel oxide film and a first polysilicon layer on the entire structure, and then flattening the first polysilicon layer until the tunnel oxide film is exposed to form a floating gate; etching the tunnel oxide film and the oxide film in the exposed portion to a given thickness and the forming a dielectric film on the entire structure; sequentially forming a second polysilicon layer, a tungsten silicide layer and a hard mask and then patterning them to form a control gate; and injecting impurity ions into the semiconductor substrate at the both sides of the floating gate to form a junction region.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: October 15, 2002
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Soo Young Park, Jung II Cho
  • Publication number: 20020001898
    Abstract: A method of manufacturing a flash memory cell is disclosed. The method comprises the steps of forming an oxide film on a semiconductor substrate in which a device separation film is formed and then patterning the oxide film to expose the semiconductor substrate at a portion in which a floating gate will be formed; sequentially forming a tunnel oxide film and a first polysilicon layer on the entire structure, and then flattening the first polysilicon layer until the tunnel oxide film is exposed to form a floating gate; etching the tunnel oxide film and the oxide film in the exposed portion to a given thickness and the forming a dielectric film on the entire structure; sequentially forming a second polysilicon layer, a tungsten silicide layer and a hard mask and then patterning them to form a control gate; and injecting impurity ions into the semiconductor substrate at the both sides of the floating gate to form a junction region.
    Type: Application
    Filed: June 15, 2001
    Publication date: January 3, 2002
    Inventors: Soo Young Park, Jung Il Cho
  • Patent number: 6261908
    Abstract: A method of fabricating a buried local interconnect in a substrate and an integrated circuit incorporating the same are provided. The method includes the steps forming a trench in the substrate and forming a first insulating layer in the trench. A conductor layer is formed on the first insulating layer. A portion of the conductor layer is removed to define a local interconnect layer and a second insulating layer is formed in the trench covering the local interconnect layer. The method provides for a local interconnect layer buried beneath a dielectric layer of an integrated circuit, such as a shallow trench isolation layer. Areas of a substrate above the silicon-silicon dioxide interface formerly reserved for local interconnect layers in conventional processing may now be used for additional conductor lines.
    Type: Grant
    Filed: July 27, 1998
    Date of Patent: July 17, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frederick N. Hause, Mark I. Gardner, Charles E. May
  • Patent number: 6171892
    Abstract: Disclosed is a semiconductor integrated circuit device (e.g., an SRAM) having memory cells each of a flip-flop circuit constituted by a pair of drive MISFETs and a pair of load MISFETs, the MISFETs being cross-connected by a pair of local wiring lines, and having transfer MISFETs, wherein gate electrodes of all of the MISFETs are provided in a first level conductive layer, and the pair of local wiring lines are provided respectively in second and third level conductive layers. The local wiring lines can overlap and have a dielectric therebetween so as to form a capacitance element, to increase alpha particle soft error resistance. Moreover, by providing the pair of local wiring lines respectively in different levels, integration of the device can be increased.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: January 9, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Kikushima, Fumio Ootsuka, Kazushige Sato
  • Patent number: 5723123
    Abstract: The invention relates to a process for producing a virus free preparation of thrombin, and the use of said virus free concentrate as a pharmaceutical. For example, the invention relates to a process for the production of a purified and virus free preparation of thrombin which comprises adding a soluble salt in a concentration of from 0.5 mol/l up to the saturation limit thereof, said soluble salt having an anion that forms a sparingly-soluble salt or a soluble complex with calcium, to a solution of a prothrombin complex which has been purified on an anion exchanger and subjected to virus inactivation, said solution having a catalytic amount of thrombin present as a result of the purification, the viral inactivation, or added thereafter at a concentration of greater than zero up to 200 units of thrombin per ml of solution.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: March 3, 1998
    Assignee: Behringwerke Aktiengesellschaft
    Inventors: Hermann Karges, Horst Naumann