Lateral Bipolar Transistor Patents (Class 438/236)
  • Patent number: 6638807
    Abstract: An improved structure and method for gated lateral bipolar transistors are provided. Embodiments of the present invention capitalize on opposing sidewalls and adjacent conductive sidewall members to conserve available surface space on the semiconductor chips. Additionally, the gate and body of the transistors are biased to modify the threshold voltage of the transistor (Vt). The conductive sidewall member configuration conserves surface space and achieves a higher density of surface structures per chip. The structures offer performance advantages from both metal-oxide semiconductor (MOS) and bipolar junction transistor (BJT) designs. The devices can be used in a variety of applications, digital and analog, wherever a more compact structure with low power consumption and fast response time is needed.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: October 28, 2003
    Assignee: Mircon Technology, Inc.
    Inventors: Leonard Forbes, Wendell P. Noble
  • Patent number: 6569730
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: May 27, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6551869
    Abstract: A lateral PNP is disclosed in which a substrate of a first conductivity type is used. On top of the substrate a buried region of a second conductivity type is formed. A lightly doped collector region is located above the buried region. The lateral PNP also includes a base region of a second conductivity type formed by a graded channel implant and a well region of a second conductivity type, the well region contacting the base region, the buried region and a base contact. Additionally, there are collector contacts and emitter contacts of a first conductivity type. The lightly doped collector region results in a large Early voltage and the base region provides for a high current gain.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: April 22, 2003
    Assignee: Motorola, Inc.
    Inventors: Francis K. Chai, Vida Ilderem Burger, Carl S. Kyono, Sharanda L. Bigelow, Rainer Thoma
  • Patent number: 6537887
    Abstract: An integrated circuit and a process for making the same are provided. The circuit has a nitrogen implanted emitter window, wherein the nitrogen has been implanted into the emitter window after the emitter window etch, but prior to the emitter conductor deposition. Nitrogen implantation is expected to minimize oxide growth variation.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: March 25, 2003
    Assignee: Agere Systems Inc.
    Inventors: Yih-Feng Chyan, Chung Wai Leung, Yi Ma, Demi Nguyen
  • Patent number: 6448125
    Abstract: An electronic power device is integrated on a substrate of semiconductor material having a first conductivity type, on which an epitaxial layer of the same type of conductivity is grown. The power device comprises a power stage PT and a control stage CT, this latter enclosed in an isolated region having a second type of conductivity type. The power stage PT comprises a first buried area having the second type of conductivity type and a second buried area, partially overlapping the first buried area and having the first conductivity type. The isolation region and the control stage CT comprise respectively a third buried area, having the second conductivity type, and a fourth buried area, partially overlapped to the third buried area and having the first conductivity type. Said first, second, third and fourth buried areas are formed in the epitaxial layers at a depth sufficient to allow the power stage PT and the control stage CT to be entirely formed in the epitaxial layers.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: September 10, 2002
    Assignee: STMicroelectronics S.r.l.
    Inventors: Davide Patti, Francesco Priolo, Vittorio Privitera, Giorgia Franzo
  • Patent number: 6436747
    Abstract: After phosphorus is ion implanted into a portion of a polysilicon film, first RTA is performed. After boron is ion implanted into another portion of the polysilicon film, the polysilicon film is patterned to form a gate electrode and a resistor film. A TEOS film is deposited and patterned to form a silicidation mask having an opening corresponding to a silicidation region. Thereafter, annealing for activating boron is performed in an atmosphere containing oxygen, thereby forming oxide films on a gate electrode and on heavily doped source/drain regions in the silicidation region. The oxide films suppress out-diffusion of the impurities and inhibit the impurity ions from penetrating the gate electrode 8 during ion implantation for promoting silicidation, which is performed subsequently.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: August 20, 2002
    Assignee: Matsushita Electtric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Michikazu Matsumoto, Masahiro Yasumi
  • Patent number: 6384433
    Abstract: A voltage variable resistor formed on heterojunction bipolar transistor epitaxial material includes a current channel made on emitter material. Emitter mesas separated by a recess provide the contacts for the voltage variable resistor. Each mesa is topped with emitter metal forming the resistor contacts. The emitter mesas are layered on top of the current channel that is layered atop of a base layer. The voltage variable resistor's control contact is provided by a base contact located on the base layer and separated from the current channel.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: May 7, 2002
    Assignee: RF Micro Devices, Inc.
    Inventors: Curtis A. Barratt, Arthur E. Geissberger, Larry W. Kapitan, Michael T. Fresina, Ramond Jeffrey Vass
  • Patent number: 6365448
    Abstract: An improved structure and method for gated lateral bipolar transistors is provided. The present invention capitalizes on opposing sidewall structures and adjacent conductive sidewall members to conserve available surface space on the semiconductor chips. The conserved surface space allows a higher density of structures per chip. The conductive sidewall members couple to the gate of the gated lateral bipolar transistor and, additionally, to a retrograded, more highly doped bottom layer. The improved structure provides for both metal-oxide semiconductor (MOS) type conduction and bipolar junction transistor (BJT) type conduction beneath the gate of the gated lateral bipolar transistor.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: April 2, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Wendell P. Noble
  • Patent number: 6352887
    Abstract: A method for fabricating a BiCMOS integrated circuit. The method includes the steps of forming in a single implantation step a base region 211 of a bipolar transistor and a p-well 212 of an n-channel MOS transistor; and forming in a single implantation step a collector contact well 213 of a bipolar transistor and an n-well 208 of a p-channel MOS transistor.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: March 5, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Louis N. Hutter, Peter Ying, Marco Corsi, Imran Khan
  • Patent number: 6316317
    Abstract: In a nonvolatile semiconductor memory device including a plurality of memory cells each formed by one selection transistor and one memory transistor connected in series, the thickness of a first gate insulating layer of the selection transistor is smaller than the thickness of a second gate insulating layer of the memory transistor.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: November 13, 2001
    Assignee: NEC Corporation
    Inventors: Masato Kawata, Tsutomu Tashiro
  • Patent number: 6271069
    Abstract: Disclosed are a method of making GaAs-based enhancement-type MOS-FETs, and articles (e.g., GaAs-based ICs) that comprise such a MOS-FET. The MOS-FETs are planar devices, without etched recess or epitaxial re-growth, with gate oxide that is primarily Ga2O3, and with low midgap interface state density (e.g., at most 1×1011 cm−2 eV−1 at 20° C.). The method involves ion implantation, implant activation in an As-containing atmosphere, surface reconstruction, and in situ deposition of the gate oxide. In preferred embodiments, no processing step subsequent to gate oxide formation is carried out above 300° C. in air, or above about 700° C. in UHV. The method makes possible fabrication of planar enhancement-type MOS-FETs having excellent characteristics, and also makes possible fabrication of complementary MOS-FETs, as well as ICs comprising MOS-FETs and MES-FETs.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: August 7, 2001
    Assignee: Agere Systems Guardian Corp.
    Inventors: Young-Kai Chen, Alfred Yi Cho, William Scott Hobson, Minghwei Hong, Jenn-Ming Kuo, Jueinai Raynien Kwo, Donald Winslow Murphy, Fan Ren
  • Patent number: 6265277
    Abstract: In a method for the making of a lateral bipolar transistor, the formation of a field oxide layer on the surface of the substrate, between the collector and the emitter of the protection transistor, is avoided. The lateral bipolar transistors made by the disclosed method are advantageously used to protect MOS type integrated circuits against electrical discharges.
    Type: Grant
    Filed: December 24, 1998
    Date of Patent: July 24, 2001
    Assignee: SGS-Thomson Microelectronics S.A
    Inventor: François Tailliet
  • Patent number: 6245609
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: June 12, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6235558
    Abstract: There is provided a method for stably fabricating a TFT having a GOLD structure capable of ensuring sufficiently high ON-state current and sufficiently low OFF-state current at the same time and superior in hot carrier resistance. The method includes forming a semiconductor layer of a specified configuration and then forming a gate insulator film on the semiconductor layer, forming a lightly doped region by doping the semiconductor layer with dopants at low concentration by using as a mask a dopant blocking film formed on the gate insulator film. The method further includes forming a gate electrode having a length reaching the lightly doped region after removing the dopant blocking film, forming an anodic oxide layer on each side face of the gate electrode by anodically oxidizing the gate electrode, forming a heavily doped region by doping the semiconductor layer with dopants by using as a mask the gate electrode and the anodic oxide layer, and removing the anodic oxide layer.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: May 22, 2001
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Akihiro Oda, Sumio Kato, Hiroyuki Ogawa
  • Patent number: 6165848
    Abstract: The invention relates to a method for the production of a MOS-controlled power semiconductor component (30), which power semiconductor component (30) comprises, in a common substrate (31), a plurality of component cells which are arranged next to one another and are connected in parallel. A bipolar transistor formed by a collector region (33) of a first conductivity type, a superior base region (32) of a second conductivity type and an emitter region (37) of the first conductivity type, which emitter region is incorporated from above into the base region (32), is present in each component cell (59).
    Type: Grant
    Filed: November 28, 1997
    Date of Patent: December 26, 2000
    Assignee: Asea Brown Boveri AG
    Inventor: Uwe Thiemann
  • Patent number: 6159784
    Abstract: A method of producing a semiconductor device by which the resistivities of the base, collector, and source/drain regions in a Bi-CMOS are decreased and the production step is simplified. A method of producing a semiconductor device comprising the steps of forming a gate electrode (the first semiconductor layer) on a substrate; forming an insulating film; forming a second semiconductor layer; leaving the second semiconductor layer and the insulating film on the bipolar part and removing them on the CMOS part to form sidewalls on the side faces of the gate electrode; forming source/drain regions; forming a Ti layer over the entire surface and forming silicide on the surfaces of the second semiconductor layer, the source/drain regions, and the gate electrode; and forming a base electrode by patterning the second semiconductor layer.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: December 12, 2000
    Assignee: Sony Corporation
    Inventors: Hiroaki Ammo, Hiroyuki Miwa
  • Patent number: 6110523
    Abstract: A semiconductor memory device and method of fabricating same is provided that has a plurality of ferroelectric memory cells and reference cells. The semiconductor memory device includes a capacitor of each memory cell being the same size as that of each reference cell. A voltage applied to each reference cell is higher than a voltage applied to each memory cell to read data out of the semiconductor memory device. A method of fabricating a ferroelectric substance for a semiconductor memory device includes dissolving zirconium n-butoxide and titanium iso-proxide in 2-methoxyethanol; chelating a resultant, obtained by dissolution, with acetylacetone; adding lanthanium (La) iso-proxide to the resultant and refluxing the resultant; adding lead (Pb) acetate trihydrate to the resultant, and stirring the resultant, using a nitric acid as a catalyzer; and carrying out spin-coating and thermal treatment processes on the resultant.
    Type: Grant
    Filed: April 20, 1998
    Date of Patent: August 29, 2000
    Assignee: LG Semicon Co., Ltd.
    Inventor: Doo Young Yang
  • Patent number: 6093613
    Abstract: A method and lateral bipolar transistor structure are achieved, with high current gain, compatible with CMOS processing to form BiCMOS circuits. Making a lateral PNP bipolar involves forming an N.sup.- well in a P.sup.- doped silicon substrate. A patterned Si.sub.3 N.sub.4 layer is used as an oxidation barrier mask to form field oxide isolation around device areas by the LOCOS method. A polysilicon layer over device areas is patterned to leave portions over the intrinsic base areas of the L-PNP bipolar an implant block-out mask. A buried N.sup.- base region is implanted in the substrate under the emitter region. A photoresist mask and the patterned polysilicon layer are used to implant the P.sup.++ doped emitter and collector for the L-PNP. The emitter junction depth x.sub.j intersects the highly doped N.sup.+ buried base region. This N.sup.+ doped base under the emitter reduces the current gain of the unwanted (parasitic) vertical PNP portion of the L-PNP bipolar to reduce the current gain of the V-PNP.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: July 25, 2000
    Assignee: Chartered Semiconductor Manufacturing, Ltd
    Inventors: Purakh Raj Verma, Joe Jin Kuek
  • Patent number: 6071768
    Abstract: A high voltage DENMOS transistor (10) having improved ESD protection. The transistor (10) is optimized to provide maximum substrate current in order to turn on the inherent lateral npn transistor during an ESD event so that the lateral npn can dissipate the ESD event without damage to the transistor (10). This is accomplished by optimizing the overlap (A) of the drain extended region (16) and the gate electrode (28) to control the gate coupling to achieve maximum substrate current.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: June 6, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Charvaka Duvvury, David Douglas Briggs, Fernando David Carvajal
  • Patent number: 6051456
    Abstract: A semiconductor component includes an asymmetric transistor having two lightly doped drain regions (1300, 1701), a channel region (1702), a source region (1916) located within the channel region (1702), a drain region located outside the channel region (1702), a dielectric structure (1404) located over at least one of the two lightly doped drain regions (1300, 1701), two gate electrodes (1902, 1903) located at opposite sides of the dielectric structure (1404), a drain electrode (1901) overlying the drain region (1915), and a source electrode (1904) overlying the source region (1916). The semiconductor component also includes another transistor having an emitter electrode (122) located between a base electrode (121) and a collector electrode (123) where the base electrode (121) is formed over a dielectric structure (1405).
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: April 18, 2000
    Assignee: Motorola, Inc.
    Inventors: Robert B. Davies, Andreas A. Wild
  • Patent number: 6033964
    Abstract: Generally, decreasing the length of the channel in a CMOS transistor increases the speed of the transistor. However, the degree that the channel can be minimized is limited due to Hot Carrier Injection ("HCI"), which is related to the drain to source voltage and channel length. The present invention increases the speed of a circuit by decreasing the channel length of subset of transistors in the circuit. The subset is chosen by identifying instances where more than one transistor in series is used to discharge a capacitance. Those transistors are subject to lower drain to source voltages; therefore, the channel length can be reduced without suffering from the effects of HCI.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: March 7, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Donald A. Draper
  • Patent number: 6030453
    Abstract: A production process for protecting the surface of compound semiconductor wafers includes providing a multi-wafer epitaxial production system with a transfer and load module, a III-V growth chamber and an insulator chamber. The wafer is placed in the transfer and load module and the pressure is reduced to .ltoreq.10.sup.-10 Torr, after which the wafer is moved to the III-V growth chamber and layers of compound semiconductor material are epitaxially grown on the surface of the wafer.
    Type: Grant
    Filed: March 4, 1997
    Date of Patent: February 29, 2000
    Assignee: Motorola, Inc.
    Inventors: Matthias Passlack, Jonathan K. Abrokwah, Ravi Droopad, Corey D. Overgaard
  • Patent number: 6004840
    Abstract: In a semiconductor device, a first conductive film made of, for example, polysilicon is formed on the element region of the semiconductor substrate. An insulation film is formed on the semiconductor substrate, for covering at least the first conductive film. A second conductive film covers at least the end portion of the insulation film. The first conductive film is used as a gate electrode of the MOS transistor, and the second conductive film is used as a protection film for covering and protecting the end portion of the insulation film and a lead-out electrode of the bipolar transistor. The end portion of the insulation film is covered and protected by the second conductive film obtained by patterning the conductive layer made of, for example, polysilicon. Further, the conductive layer is patterned so that stepped portions formed on the insulation film and the end portion of the insulation film are covered, and using this pattern, anisotropic etching is carried out.
    Type: Grant
    Filed: November 6, 1996
    Date of Patent: December 21, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Kimura, Yuichi Nakashima, Hiroshi Kawamoto
  • Patent number: 5949128
    Abstract: A bipolar transistor with MOS-controlled protection for a reverse-biased emitter-base junction is disclosed. A bipolar transistor and a MOS transistor are configured with the drain and the gate electrically coupled to the emitter, and the source and body electrically coupled to the base. A reverse-bias at the emitter-base junction, which is less than a breakdown voltage for the emitter-base junction, activates the MOS transistor which substantially reduces the resistance between the emitter and the base. Preferably, a first semiconductor region provides both the drain and the emitter, and a second semiconductor region provides both the body and the base, for reduced surface area on an integrated circuit chip.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: September 7, 1999
    Assignee: Lucent Technologies Inc.
    Inventor: Muhammed Ayman Shibib
  • Patent number: 5903037
    Abstract: It has been found that a Ga-oxide-containing layer is substantially not etched in HF solution if the layer is a Ga-Gd-oxide with Gd:Ga atomic ratio of more than about 1:7.5, preferably more than 1:4 or even 1:2. This facilitates removal of a protective dielectric (typically SiO.sub.2) layer after an ohmic contact anneal, with the Ga-Gd-oxide gate oxide layer serving as etch stop and not being adversely affected by contact with the HF etchant. Gd-Ge-oxide also exhibits a composition-dependent etch rate in HCl:H.sub.2 O.
    Type: Grant
    Filed: February 24, 1997
    Date of Patent: May 11, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Alfred Yi Cho, Minghwei Hong, James Robert Lothian, Joseph Petrus Mannaerts, Fan Ren
  • Patent number: 5869366
    Abstract: An IC voltage clamp and a process for forming the voltage clamp. The voltage clamp includes an MGFO device having an n-type source region, an n-type drain region, and a p-type field implant diffusion between the source and drain regions. The voltage clamp further employs a parasitic NPN device having a collector region coincident with the MGFO drain region, an emitter region coincident with the MGFO source region, and a base region formed by the substrate. A metal gate electrode overlies and is insulated from the field implant diffusion, but electrically connects the source and emitter regions to ground. An input electrode contacts the drain region so as to electrically connect the drain and collector regions to the input voltage of an integrated circuit. The field implant diffusion and drain/collector regions are formed by overlapping their masks, such that a lower breakdown voltage is achieved between the NPN collector and the substrate and field implant diffusion (the NPN base).
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: February 9, 1999
    Assignee: Delco Electronics Corporation
    Inventors: Edward Herbert Honnigford, Tracy Adam Noll, Jack Duane Parrish
  • Patent number: 5792678
    Abstract: A semiconductor on insulator structure (50) includes a silicon layer (30) formed on an insulating substrate (20). The silicon layer (30) is partitioned into two sections (32, 34) which are electrically isolated from each other. The thickness of the silicon layer (30) in a first section (32) of the silicon layer (30) is adjusted independently from the thickness of the silicon layer (30) in a second section (34) of the silicon layer (30). Independently adjusting the thickness of the silicon layer (30) allows optimizing the performance of semiconductor devices (60, 80) fabricated in the first and second sections (32, 34) of the semiconductor on insulator structure (50).
    Type: Grant
    Filed: May 2, 1996
    Date of Patent: August 11, 1998
    Assignee: Motorola, Inc.
    Inventors: Juergen A. Foerstner, Wen-Ling M. Huang, Marco Racanelli
  • Patent number: 5793083
    Abstract: A technique for providing a design window for scaled technologies in which good electrostatic discharge/electrical over stress damage and optimum transistor operation can be achieved without the use of additional masks or design steps. The M, beta, and R.sub.sub parameters of the NMOS transistor 13 and associated parasitic npn transistor 10 are selected to provide the design window.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: August 11, 1998
    Assignee: Texas Instruments Incorporated
    Inventors: E. Ajith Amerasekera, Vincent M. McNeil, Mark S. Rodder
  • Patent number: 5641692
    Abstract: A method for producing a semiconductor device which decrease the number of processes at the time of producing BiCMOSLSI than the usual. Impurities are introduced into a semiconductor substrate under a second insulating film and a first electric conductive film utilizing a first insulating film and the first conductive film formed on the semiconductor substrate as masks. Therefore, it is able to perform concurrent introduction of impurities into the gate electrode, the source and the drain of the MOSFET, the base electrode of the bipolar transistor, the emitter and the collector contact of the lateral bipolar transistor, the outlet electrode of the capacitor, and the resistor, so that the number of process steps can be reduced.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: June 24, 1997
    Assignee: Sony Corporation
    Inventors: Hiroyuki Miwa, Hiroaki Anmo