Including Bipolar Transistor (i.e., Bimos) Patents (Class 438/234)
-
Patent number: 11923425Abstract: A method for manufacturing a device may include providing an ultra-high voltage (UHV) component that includes a source region and a drain region, and forming an oxide layer on a top surface of the UHV component. The method may include connecting a low voltage terminal to the source region of the UHV component, and connecting a high voltage terminal to the drain region of the UHV component. The method may include forming a shielding structure on a surface of the oxide layer provided above the drain region of the UHV component, forming a high voltage interconnection that connects to the shielding structure and to the high voltage terminal, and forming a metal routing that connects the shielding structure and the low voltage terminal.Type: GrantFiled: February 17, 2023Date of Patent: March 5, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yi-Cheng Chiu, Tian Sheng Lin, Hung-Chou Lin, Yi-Min Chen, Chiu-Hua Chung
-
Patent number: 11843034Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a lateral bipolar transistor and methods of manufacture. The structure includes a lateral bipolar junction transistor including an extrinsic base region and a bilayer dielectric spacer on sidewalls of the extrinsic base region, and a p-n junction positioned under the bilayer dielectric spacer between the extrinsic base region and at least an emitter region.Type: GrantFiled: November 17, 2021Date of Patent: December 12, 2023Assignee: GLOBALFOUNDRIES U.S. INC.Inventors: Man Gu, Haiting Wang, Jagar Singh
-
Patent number: 11791342Abstract: A semiconductor FET (field effect transistor) including a plurality of nanosheet channels disposed between a first source/drain region and a second source/drain region and a common metal contact for the first source/drain region and the second source/drain region. The first source/drain region includes a p-type material; and the second source/drain region includes an n-type material.Type: GrantFiled: November 17, 2021Date of Patent: October 17, 2023Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Julien Frougier, Ruilong Xie, Juntao Li
-
Patent number: 11749672Abstract: A device includes a first region, a second region disposed on the first region, a third region and a fourth region abutting the third region disposed in the second region, a fifth region disposed in the third region and coupled to a collector disposed above, and a sixth region disposed in the fourth region and coupled to an emitter disposed above. A first isolation is disposed between the collector and the emitter. A seventh region is disposed in the fifth region and coupled to the collector is spaced apart from the first isolation. The first region, the third region, the fifth region, the collector and the emitter have a first conductivity type different from a second conductivity type that the second region, the fourth region, the sixth region and the seventh region have.Type: GrantFiled: September 10, 2021Date of Patent: September 5, 2023Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.Inventors: Prantik Mahajan, Aloysius Priartanto Herlambang, Kyong Jin Hwang, Robert John Gauthier, Jr.
-
Patent number: 11715528Abstract: A voltage switching circuit selectively transfers voltages applied to a first input terminal and a second input terminal to a first output terminal and a second output terminal. The voltage switching circuit includes a first transistor and a second transistor. The first transistor is formed on a first well on a substrate, and is coupled between the first input terminal and the first output terminal. The second transistor is formed on a second well different from the first well, and is coupled to the second input terminal. In a first mode in which a first voltage applied to the first input terminal is transferred to the first output terminal and the second output terminal, the first transistor is turned on and the second transistor is turned off.Type: GrantFiled: March 17, 2022Date of Patent: August 1, 2023Assignee: SK hynix Inc.Inventor: Seung Wan Chae
-
Patent number: 11710786Abstract: A semiconductor device includes a semiconductor substrate, a body layer, a source region, a drift layer, a drain region, a gate insulating film, and a gate electrode. The semiconductor substrate has an active layer. An element region is included in the active layer and partitioned by a trench isolation portion. The body layer is disposed at a surface layer portion of the active layer. The source region is disposed at a surface layer portion of the body layer. The drift layer is disposed at the surface layer portion of the active layer. The drain region is disposed at a surface layer portion of the drift layer. The gate insulating film is disposed on a surface of the body layer. The gate electrode is disposed on the gate insulating film. One of the source region and the drain region being a high potential region is surrounded by the other one being a low potential region.Type: GrantFiled: November 19, 2020Date of Patent: July 25, 2023Assignee: DENSO CORPORATIONInventors: Shogo Ikeura, Yusuke Nonaka, Shinichirou Yanagi
-
Patent number: 11126775Abstract: An IC device includes a gate structure including an isolation layer laterally adjacent to a gate electrode, a transistor including a first S/D structure, a second S/D structure, and a channel extending through the gate electrode, a third S/D structure overlying the first S/D structure, a fourth S/D structure overlying the second S/D structure, and a conductive structure overlying the isolation layer and configured to electrically connect the third S/D structure to the fourth S/D structure.Type: GrantFiled: March 31, 2020Date of Patent: September 21, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Wei Peng, Guo-Huei Wu, Wei-Cheng Lin, Hui-Zhong Zhuang, Jiann-Tyng Tzeng
-
Patent number: 11004949Abstract: Provided are transistors including an electride electrode. The transistor includes a substrate, a source region and a drain region doped with ions of different polarity from the substrate in a surface of the substrate, a source electrode and a drain electrode including an electride material on the source region and the drain region, a gate insulating layer surrounding the source electrode and a drain electrode on the substrate, and a gate electrode between the source electrode and the drain electrode on the substrate. The source electrode and the drain electrode have an ohmic contact with the substrate.Type: GrantFiled: January 3, 2019Date of Patent: May 11, 2021Assignee: Samsung Electronics Co., Ltd.Inventors: Youngtek Oh, Jinwook Jung, Seunggeol Nam, Wontaek Seo, Insu Jeon
-
Patent number: 10522388Abstract: An SOI IC includes a polysilicon/silicon plug extending through the buried insulation layer between a P-type handle layer and a P-type device layer. An N-type well region is formed in the device layer over the polysilicon/silicon plug, and then a high-voltage (HV) device is formed in the well region such that part of its drift region is located over the polysilicon/silicon plug. Doping of the well region, the polysilicon/silicon plug and the handle layer is coordinated to form a P-N junction diode that couples the HV device, by way of the polysilicon/silicon plug, to a ground potential applied to the handle layer, thereby increasing the HV device's breakdown voltage by expanding its depletion region to include the handle layer. The polysilicon/silicon plug grows in holes formed through the insulation layer during the epitaxial silicon growth process used to form the device layer.Type: GrantFiled: August 24, 2018Date of Patent: December 31, 2019Assignee: Tower Semiconductor Ltd.Inventors: Einat Ophir Arad, Sharon Levin, Allon Parag, Eran Lipp, Yosef Avrahamov
-
Patent number: 10103287Abstract: A semiconductor arrangement and method of formation are provided herein. A semiconductor arrangement includes an active area on a substrate, where the active area is at least one of a p-type region or an n-type region. The substrate includes a well, where the well is a p-well when the active area is a p-type region, and the well is an n-well when the active area is an n-type region. The well includes a photodiode. The active area is connected to a voltage supply having a voltage level, such as ground. The active area on the substrate increases a distance between the photodiode and the active area, which reduces junction leakage as compared to a semiconductor arrangement where the active area is formed at least partially within the substrate.Type: GrantFiled: January 7, 2014Date of Patent: October 16, 2018Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Kai-Chun Hsu, Shyh-Fann Ting, Jhy-Jyi Sze, Chun-Tsung Kuo, Ching-Chun Wang, Dun-Nian Yaung
-
Patent number: 9917018Abstract: Methods and apparatuses relate to implanting a surface of a semiconductor substrate with dopants, making undoped semiconductor material directly on the surface implanted with the dopants, and making a transistor with a transistor channel in the undoped semiconductor material, such that the transistor channel of the transistor remains undoped throughout manufacture of the integrated circuit.Type: GrantFiled: December 4, 2012Date of Patent: March 13, 2018Assignee: Synopsys, Inc.Inventor: Victor Moroz
-
Patent number: 9761743Abstract: A photoelectric conversion element includes an intrinsic layer that is disposed on a semiconductor of a first conductivity type and contains hydrogenated amorphous silicon; and a first-conductivity-type layer containing hydrogenated amorphous silicon of the first conductivity type, a second-conductivity-type layer containing hydrogenated amorphous silicon of a second conductivity type, and an insulating layer, each of which covers a part of the intrinsic layer. A first electrode is disposed on the first-conductivity-type layer with the second-conductivity-type layer therebetween. At least a part of the first electrode is located above a region where the first-conductivity-type layer contacts the intrinsic layer, and at least a part of the second electrode is located above a region where the second-conductivity-type layer contacts the intrinsic layer.Type: GrantFiled: March 27, 2014Date of Patent: September 12, 2017Assignee: SHARP KABUSHIKI KAISHAInventor: Kenji Kimoto
-
Patent number: 9478534Abstract: A method of forming a semiconductor structure includes depositing a high-k dielectric layer within a first recess located between sidewall spacers of a first CMOS device and within a second recess located between sidewall spacers of a second CMOS device. A dummy titanium nitride layer is deposited on the high-k dielectric layer. Next, the high-k dielectric layer and the dummy titanium nitride layer are removed from the second recess in the second CMOS device. A silicon cap layer is deposited within the first recess and the second recess, the silicon cap layer is located above the high-k dielectric layer and dummy titanium nitride layer in the first CMOS device. Subsequently, dopants are implanted into the silicon cap layer located in the second recess of the second CMOS device.Type: GrantFiled: October 8, 2013Date of Patent: October 25, 2016Assignee: GLOBALFOUNDRIES INC.Inventors: Jin Cai, Effendi Leobandung, Tak H. Ning
-
Patent number: 9285248Abstract: A device is described that includes sensors that are sensitive to displacement damage, and can be configured to display a characteristic damage curve. The sensors, or diodes, can be made of one or more semiconductor materials that are sensitive to displacement damage, and can be operated in dark illumination conditions. The sensors can have multiple shields of a specific or varied thickness. The shields can be formed in different configurations, though the shielding thickness can be designed to change the level of displacement damage absorbed by the sensors. The characteristic damage curve can provide a sensor response variable that displays a functional dependence on displacement damage. For example, the characteristic damage curve can provide a sensor response variable that is one or more currents measured at one or more fixed voltages, or one or more voltages measured at one or more fixed currents.Type: GrantFiled: March 11, 2014Date of Patent: March 15, 2016Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Scott R. Messenger, Cory D. Cress, Michael K. Yakes, Jeffrey H. Warner, Robert J. Walters
-
Patent number: 9136352Abstract: A screen oxide film is formed on an n? drift layer (2) that is disposed on an anterior side of an n-type low-resistance layer (1), and a nitride film is formed on the screen oxide film. The nitride film is photo-etched using a first mask and thereby, a nitride shielding film (61) is formed. N-type impurity ions at a concentration higher than that of the n-drift layer are implanted through the nitride shielding film (61) from an anterior side of a semiconductor substrate and are thermally diffused and thereby, an n counter layer (7) is formed. The screen oxide film is removed. A gate oxide film (3a) is formed. A gate electrode (9) is formed on the gate oxide film (3a). P-type impurity ions are implanted from the anterior side of the semiconductor substrate using the gate electrode (9) and the nitride shielding film (61) as a mask and thereby, p? well regions (10) are formed.Type: GrantFiled: July 29, 2010Date of Patent: September 15, 2015Assignee: FUJI ELECTRIC CO., LTD.Inventors: Yasushi Niimura, Sota Watanabe, Hidenori Takahashi, Takumi Fujimoto, Takeyoshi Nishimura, Takamasa Wakabayashi
-
Patent number: 9087773Abstract: Among other things, one or more systems and techniques for defining one or more implant regions or for doping a semiconductor arrangement are provided. A first implant region is defined based upon a first implant mask overlaying a first active region of a semiconductor arrangement. A second implant region is defined based upon the first implant mask and a second implant mask overlaying a second active region of the semiconductor arrangement. A third implant region is defined based upon the second implant mask overlaying a third active region of the semiconductor arrangement. One or more doping processes are performed through the first implant mask and the second implant mask to dope the semiconductor arrangement. Because the first implant mask and the second implant mask overlap the second active region, doping area coverage is improved thus mitigating undesirable voltage threshold variations otherwise resulting from inadequate doping area coverage.Type: GrantFiled: September 11, 2013Date of Patent: July 21, 2015Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Juing-Yi Wu, Jyh-Kang Ting, Tsung-Chieh Tsai, Liang-Yao Lee
-
Patent number: 9012279Abstract: A SiGe HBT is disclosed, which includes: a silicon substrate; shallow trench field oxides formed in the silicon substrate; a pseudo buried layer formed at bottom of each shallow trench field oxide; a collector region formed beneath the surface of the silicon substrate, the collector region being sandwiched between the shallow trench field oxides and between the pseudo buried layers; a polysilicon gate formed above each shallow trench field oxide having a thickness of greater than 150 nm; a base region on the polysilicon gates and the collector region; emitter region isolation oxides on the base region; and an emitter region on the emitter region isolation oxides and a part of the base region. The polysilicon gate is formed by gate polysilicon process of a MOSFET in a CMOS process. A method of manufacturing the SiGe HBT is also disclosed.Type: GrantFiled: September 13, 2012Date of Patent: April 21, 2015Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.Inventors: Donghua Liu, Wenting Duan, Wensheng Qian, Jun Hu, Jing Shi
-
Patent number: 9006839Abstract: In a semiconductor substrate of a semiconductor device, a drift layer, a body layer, an emitter layer, and a trench gate electrode are formed. When the semiconductor substrate is viewed in a plane manner, the semiconductor substrate is divided into a first region covered with a heat dissipation member, and a second region not covered with the heat dissipation member. A density of trench gate electrodes in the first region is equal to a density of trench gate electrodes in the second region. A value obtained by dividing an effective carrier amount of channel parts formed in the first region by an area of the first region is larger than a value obtained by dividing an effective carrier amount of channel parts formed in the second region by an area of the second region.Type: GrantFiled: April 25, 2014Date of Patent: April 14, 2015Assignee: Toyota Jidosha Kabushiki KaishaInventor: Tadashi Misumi
-
Publication number: 20150084117Abstract: A low voltage transient voltage suppressing (TVS) device supported on a semiconductor substrate supporting an epitaxial layer to form a bottom-source metal oxide semiconductor field effect transistor (BS-MOSFET) that comprises a trench gate surrounded by a drain region encompassed in a body region disposed near a top surface of the semiconductor substrate. The drain region interfaces with the body region constituting a junction diode. The drain region on top of the epitaxial layer constituting a bipolar transistor with a top electrode disposed on the top surface of the semiconductor functioning as a drain/collector terminal and a bottom electrode disposed on a bottom surface of the semiconductor substrate functioning as a source/emitter electrode. The body regions further comprises a surface body contact region electrically connected to a body-to-source short-connection thus connecting the body region to the bottom electrode functioning as the source/emitter terminal.Type: ApplicationFiled: September 25, 2013Publication date: March 26, 2015Inventor: Madhur Bobde
-
Patent number: 8946018Abstract: Some embodiments include methods of forming semiconductor constructions. A heavily-doped region is formed within a first semiconductor material, and a second semiconductor material is epitaxially grown over the first semiconductor material. The second semiconductor material is patterned to form circuit components, and the heavily-doped region is patterned to form spaced-apart buried lines electrically coupling pluralities of the circuit components to one another. At least some of the patterning of the heavily-doped region occurs simultaneously with at least some of the patterning of the second semiconductor material.Type: GrantFiled: August 21, 2012Date of Patent: February 3, 2015Assignee: Micron Technology, Inc.Inventors: Jaydip Guha, Shyam Surthi
-
METHODS OF FORMING BIPOLAR DEVICES AND AN INTEGRATED CIRCUIT PRODUCT CONTAINING SUCH BIPOLAR DEVICES
Publication number: 20150001634Abstract: One method disclosed herein includes performing at least one common process operation to form a plurality of first gate structures for each of a plurality of field effect transistors and a plurality of second gate structures above a region where a bipolar transistor will be formed and performing an ion implantation process and a heating process to form a continuous doped emitter region that extends under all of the second gate structures. A device disclosed herein includes a first plurality of field effect transistors with first gate structures, a bipolar transistor that has an emitter region and a plurality of second gate structures positioned above the emitter region, wherein the bipolar transistor comprises a continuous doped emitter region that extends laterally under all of the plurality of second gate structures.Type: ApplicationFiled: June 28, 2013Publication date: January 1, 2015Inventors: Jerome Ciavatti, Roderick Miller, Marc Tarabbia -
Patent number: 8916440Abstract: Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.Type: GrantFiled: August 3, 2012Date of Patent: December 23, 2014Assignee: International Business Machines CorporationInventors: William F. Clark, Jr., Qizhi Liu, John J. Pekarik, Yun Shi, Yanli Zhang
-
Patent number: 8906755Abstract: A hybrid integrated circuit device includes a semiconductor-on-insulator substrate having a base substrate, a semiconductor layer and a dielectric layer disposed therebetween, the base substrate being reduced in thickness. First devices are formed in the semiconductor layer, the first devices being connected to first metallizations on a first side of the dielectric layer. Second devices are formed in the base substrate, the second devices being connected to second metallizations formed on a second side of the dielectric layer opposite the first side. A through via connection is configured to connect the first metallizations to the second metallizations through the dielectric layer. Pixel circuits and methods are also disclosed.Type: GrantFiled: August 21, 2013Date of Patent: December 9, 2014Assignee: International Business Machines CorporationInventors: Bahman Hekmatshoartabari, Tak H. Ning, Ghavam G. Shahidi, Davood Shahrjerdi
-
Patent number: 8878594Abstract: An embodiment of an IGBT device is integrated in a chip of semiconductor material including a substrate of a first type of conductivity, an active layer of a second type of conductivity formed on an inner surface of the substrate, a body region of the first type of conductivity extending within the active layer from a front surface thereof opposite the inner surface, a source region of the second type of conductivity extending within the body region from the front surface, a channel region being defined within the body region between the source region and the active layer, a gate element insulated from the front surface extending over the channel region, a collector terminal contacting the substrate on a rear surface thereof opposite the inner surface, an emitter terminal contacting the source region and the body region on the front surface, and a gate terminal contacting the gate element.Type: GrantFiled: November 18, 2011Date of Patent: November 4, 2014Assignee: STMicroelectronics S.r.l.Inventor: Davide Giuseppe Patti
-
Patent number: 8846478Abstract: A semiconductor device including a low-concentration impurity region formed on the drain side of an n-type MIS transistor, in a non-self-aligned manner with respect to an end portion of the gate electrode. A high-concentration impurity region is placed with a specific offset from the gate electrode and a sidewall insulating film. The semiconductor device enables the drain breakdown voltage to be sufficient and the on-resistance to decrease. A silicide layer is also formed on the surface of the gate electrode, thereby achieving gate resistance reduction and high frequency characteristics improvement.Type: GrantFiled: September 4, 2013Date of Patent: September 30, 2014Assignee: Fujitsu Semiconductor LimitedInventor: Masashi Shima
-
Publication number: 20140252470Abstract: A device includes a substrate, a body region in the substrate and having a first conductivity type, source and drain regions in the substrate, having a second conductivity type, and spaced from one another to define a conduction path that passes through the body region, a doped isolating region in the substrate, having the second conductivity type, and configured to surround a device area in which the conduction path is disposed, an isolation contact region in the substrate, having the second conductivity type, and electrically coupled to the doped isolating region to define a collector region of a bipolar transistor, and first and second contact regions within the body region, having the first and second conductivity types, respectively, and configured to define a base contact region and an emitter region of the bipolar transistor, respectively.Type: ApplicationFiled: March 11, 2013Publication date: September 11, 2014Applicant: Freescale Semiconductor, Inc.Inventors: Weize Chen, Patrice M. Parris
-
Patent number: 8829609Abstract: An insulated gate semiconductor device, comprising: a semiconductor body having a front side and a back side opposite to one another; a drift region, which extends in the semiconductor body and has a first type of conductivity and a first doping value; a body region having a second type of conductivity, which extends in the drift region facing the front side of the semiconductor body; a source region, which extends in the body region and has the first type of conductivity; and a buried region having the second type of conductivity, which extends in the drift region at a distance from the body region and at least partially aligned to the body region in a direction orthogonal to the front side and to the back side.Type: GrantFiled: July 26, 2012Date of Patent: September 9, 2014Assignee: STMicroelectronics S.r.l.Inventors: Donato Corona, Giovanni Samma Trice, Sebastiano Amara, Salvatore Pisano, Antonio Giuseppe Grimaldi
-
Publication number: 20140213024Abstract: In one general aspect, a method can include implanting a first dopant, simultaneously, in a portion of a laterally diffused metal oxide semiconductor (LDMOS) device and in a portion of a resistor device included in a semiconductor device. The method can also include implanting a second dopant, simultaneously, in a portion of the LDMOS device and in a portion of a bipolar junction transistor (BJT) device in the semiconductor device.Type: ApplicationFiled: January 25, 2013Publication date: July 31, 2014Applicant: FAIRCHILD SEMICONDUCTOR CORPORATIONInventors: CHRISTOPHER NASSAR, SUNGLYONG KIM, STEVEN LEIBIGER, JAMES HALL
-
Patent number: 8772103Abstract: A process of forming an integrated circuit containing an npn BJT and an NMOS transistor by cooling the integrated circuit substrate to 5° C. or colder and concurrently implanting n-type dopants, at a specified minimum dose according to species, into the emitter region of the BJT and the source and drain regions of the NMOS transistor. A process of forming an integrated circuit containing a pnp BJT and a PMOS transistor by cooling the integrated circuit substrate to 5° C. or colder and concurrently implanting p-type dopants, at a specified minimum dose according to species, into the emitter region of the BJT and the source and drain regions of the PMOS transistor. A process of forming an integrated circuit containing an implant region by cooling the integrated circuit substrate to 5° C. or colder and implanting atoms, at a specified minimum dose according to species, into the implant region.Type: GrantFiled: September 27, 2011Date of Patent: July 8, 2014Assignee: Texas Instruments IncorporatedInventor: Ming-Yeh Chuang
-
Patent number: 8754476Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a well of a substrate. The high voltage device includes: a field oxide region; a gate, which is formed on a surface of the substrate, and part of the gate is located above the field oxide region; a source and a drain, which are formed at two sides of the gate respectively; and a first low concentration doped region, which is formed beneath the gate and has an impurity concentration which is lower than that of the well surrounded, wherein from top view, the first low concentration doped region has an area within the gate and not larger than an area of the gate, and the first low concentration doped region has a depth which is deeper than that of the source and drain.Type: GrantFiled: July 19, 2011Date of Patent: June 17, 2014Assignee: Richtek Technology Corporation, R.O.C.Inventor: Tsung-Yi Huang
-
Patent number: 8749017Abstract: Aspects of the invention are related to a semiconductor device including a first conductivity type n-type drift layer, a second conductivity type VLD region which is formed on a chip inner circumferential side of a termination structure region provided on one principal surface of the n-type drift layer and which is higher in concentration than the n-type drift layer, and a second conductivity type first clip layer which is formed on a chip outer circumferential side of the VLD region so as to be separated from the VLD region and which is higher in concentration than the n-type drift layer. The invention can also include a first conductivity type channel stopper layer which is formed on a chip outer circumferential side of the first clip layer so as to be separated from the first clip layer and which is higher in concentration than the n-type drift layer.Type: GrantFiled: March 23, 2011Date of Patent: June 10, 2014Assignee: Fuji Electric Co., LtdInventor: Hong-fei Lu
-
Patent number: 8722487Abstract: A semiconductor device, including a silicon substrate having a first major surface and a second major surface, a front surface device structure formed in a region of the first major surface, and a rear electrode formed in a region of the second major surface. The rear electrode includes, as a first layer thereof, an aluminum silicon film that is formed by evaporating or sputtering aluminum-silicon onto the second major surface, the aluminum silicon film having a silicon concentration of at least 2 percent by weight and a thickness of less than 0.3 ?m.Type: GrantFiled: November 12, 2012Date of Patent: May 13, 2014Assignee: Fuji Electric Co., Ltd.Inventors: Kenichi Kazama, Tsunehiro Nakajima, Koji Sasaki, Akio Shimizu, Takashi Hayashi, Hiroki Wakimoto
-
Patent number: 8692229Abstract: In one aspect, a FET device is provided. The FET device includes a substrate; a semiconductor material on the substrate; at least one gate on the substrate surrounding a portion of the semiconductor material that serves as a channel region of the device, wherein portions of the semiconductor material extending out from the gate serve as source and drain regions of the device, and wherein the source and drain regions of the device are displaced from the substrate; a planarizing dielectric on the device covering the gate and the semiconductor material; and contacts which extend through the planarizing dielectric and surround the source and drain regions of the device.Type: GrantFiled: July 26, 2012Date of Patent: April 8, 2014Assignee: International Business Machines CorporationInventors: Guy M. Cohen, Michael A. Guillorn
-
Publication number: 20140077331Abstract: A method of forming one or more diodes in a fin field-effect transistor (FinFET) device includes forming a hardmask layer having a fin pattern, said fin pattern including an isolated fin area, a fin array area, and a FinFET area. The method further includes etching a plurality of fins into a semiconductor substrate using the fin pattern, and depositing a dielectric material over the semiconductor substrate to fill spaces between the plurality of fins. The method further includes planarizing the semiconductor substrate to expose the hardmask layer. The method further includes implanting a p-type dopant into the fin array area and portions of the FinFET area, and implanting an n-type dopant into the isolated fin area, a portion of the of fin array area surrounding the p-well and portions of the FinFET area. The method further includes annealing the semiconductor substrate.Type: ApplicationFiled: November 25, 2013Publication date: March 20, 2014Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chia-Hsin HU, Sun-Jay CHANG, Jaw-Juinn HORNG, Chung-Hui CHEN
-
Patent number: 8669621Abstract: A semiconductor device includes a first insulated gate field effect transistor, a second insulated gate field effect transistor, a bipolar transistor, a first element isolation structure formed on a main surface above a pn junction formed between an emitter region and a base region, a second element isolation structure formed on the main surface above a pn junction formed between the base region and a collector region, and a third element isolation structure formed on the main surface opposite to the second element isolation structure relative to the collector region, in which the semiconductor device further includes a bipolar dummy electrode formed on at least one of the first element isolation structure, the second element isolation structure and the third element isolation structure and having a floating potential.Type: GrantFiled: June 24, 2010Date of Patent: March 11, 2014Assignee: Renesas Electronics CorporationInventor: Keiichi Yamada
-
Publication number: 20140035064Abstract: Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.Type: ApplicationFiled: August 3, 2012Publication date: February 6, 2014Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William F. CLARK, JR., Qizhi LIU, John J. Pekarik, Yun SHI, Yanli ZHANG
-
Patent number: 8643118Abstract: Bipolar field effect transistor (BiFET) structures and methods of forming the same are provided. In one embodiment, an apparatus includes a substrate and a plurality of epitaxial layers disposed over the substrate. The plurality of epitaxial layers includes a first epitaxial layer, a second epitaxial layer disposed over the first epitaxial layer, and a third epitaxial layer disposed over the second epitaxial layer. The first epitaxial layer includes at least a portion of a channel of a first field effect transistor (FET) and the third epitaxial layer includes at least a portion of a channel of a second FET.Type: GrantFiled: August 22, 2011Date of Patent: February 4, 2014Assignee: Skyworks Solutions, Inc.Inventors: Peter J Zampardi, Jr., Hsiang-Chih Sun
-
Patent number: 8642426Abstract: It is an object to allow an inverter to be made up using a single island-shaped semiconductor, so as to provide a semiconductor device comprising a highly-integrated SGT-based CMOS inverter circuit.Type: GrantFiled: June 27, 2012Date of Patent: February 4, 2014Assignee: Unisantis Electronics Singapore Pte Ltd.Inventors: Fujio Masuoka, Hiroki Nakamura
-
Patent number: 8633096Abstract: A method of forming a transistor device includes implanting a diffusion inhibiting species in a semiconductor-on-insulator substrate comprising a bulk substrate, a buried insulator layer, and a semiconductor-on-insulator layer, the semiconductor-on-insulator substrate having one or more gate structures formed thereon such that the diffusion inhibiting species is disposed in portions of the semiconductor-on-insulator layer corresponding to a channel region, and disposed in portions of the buried insulator layer corresponding to source and drain regions. A transistor dopant species is introduced in the source and drain regions. An anneal is performed so as to diffuse the transistor dopant species in a substantially vertical direction while substantially preventing lateral diffusion of the transistor dopant species into the channel region.Type: GrantFiled: November 11, 2010Date of Patent: January 21, 2014Assignee: International Business Machines CorporationInventors: Brian J. Greene, Jeffrey B. Johnson, Qingqing Liang, Edward P. Maciejewski
-
Patent number: 8609502Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.Type: GrantFiled: June 18, 2013Date of Patent: December 17, 2013Assignee: DENSO CORPORATIONInventors: Masaki Koyama, Yutaka Fukuda
-
Patent number: 8604584Abstract: Some embodiments of the present invention relate to a semiconductor device and a method of manufacturing a semiconductor device capable of preventing the deterioration of electrical characteristics. A p-type collector region is provided on a surface layer of a backside surface of an n-type drift region. A p+-type isolation layer for obtaining reverse blocking capability is provided at the end of an element. In addition, a concave portion is provided so as to extend from the backside surface of the n-type drift region to the p+-type isolation layer. A p-type region is provided and is electrically connected to the p+-type isolation layer. The p+-type isolation layer is provided so as to include a cleavage plane having the boundary between the bottom and the side wall of the concave portion as one side.Type: GrantFiled: March 1, 2011Date of Patent: December 10, 2013Assignee: Fuji Electric Co., Ltd.Inventors: Hiroki Wakimoto, Kenichi Iguchi, Koh Yoshikawa, Tsunehiro Nakajima, Shunsuke Tanaka, Masaaki Ogino
-
Patent number: 8574982Abstract: A method and circuit for implementing an embedded dynamic random access memory (eDRAM), and a design structure on which the subject circuit resides are provided. The embedded dynamic random access memory (eDRAM) circuit includes a stacked field effect transistor (FET) and capacitor. The capacitor is fabricated directly on top of the FET to build the eDRAM.Type: GrantFiled: February 25, 2010Date of Patent: November 5, 2013Assignee: International Business Machines CorporationInventors: Karl Robert Erickson, David Paul Paulsen, John Edward Sheets, II, Kelly L. Williams
-
Publication number: 20130277753Abstract: A BiCMOS device structure, method of manufacturing the same and design structure thereof are provided. The BiCMOS device structure includes a substrate having a layer of semiconductor material upon an insulating layer. The BiCMOS device structure further includes a bipolar junction transistor structure formed in a first region of the substrate having an extrinsic base layer formed at least partially from a portion of the layer of semiconductor material.Type: ApplicationFiled: April 20, 2012Publication date: October 24, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William F. Clark, JR., Qizhi Liu, Robert Mark Rassel, Yun Shi
-
Patent number: 8551835Abstract: Embodiments of the invention relate to an electrostatic discharge (ESD) device and method for forming an ESD device. An embodiment is an ESD protection device comprising a p well disposed in a substrate, an n well disposed in the substrate, a high voltage n well (HVNW) disposed between the p well and the n well in the substrate, a source n+ region disposed in the p well, and a plurality of drain n+ regions disposed in the n well.Type: GrantFiled: February 18, 2013Date of Patent: October 8, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ming-Song Sheu, Jian-Hsing Lee, Yao-Wu Feng
-
Patent number: 8546917Abstract: A semiconductor structure and a manufacturing method and an operating method for the same are provided. The semiconductor structure comprises a first well region, a second well region, a first doped region, a second doped region, an anode, and a cathode. The second well region is adjacent to the first well region. The first doped region is on the second well region. The second doped region is on the first well region. The anode is coupled to the first doped region and the second well region. The cathode is coupled to the first well region and the second doped region. The first well region and the first doped region have a first conductivity type. The second well region and the second doped region have a second conductivity type opposite to the first conductivity type.Type: GrantFiled: March 28, 2011Date of Patent: October 1, 2013Assignee: Macronix International Co., Ltd.Inventors: Hsin-Liang Chen, Wing-Chor Chan, Shyi-Yuan Wu
-
Patent number: 8507339Abstract: In a BiCMOS device, a device isolation film separating the bipolar transistor region from the MOS region is taller than the substrate at least where it contacts the bipolar transistor region, and is preferably taller than the same layer where it contacts the MOS transistor region. This makes it possible to maintain the processing accuracy of a MOS transistor while stabilizing the diode current characteristics of the bipolar transistor.Type: GrantFiled: November 19, 2010Date of Patent: August 13, 2013Assignee: Renesas Electronics CorporationInventors: Shinichi Miyake, Kazuaki Tsunoda
-
Patent number: 8507352Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.Type: GrantFiled: November 30, 2009Date of Patent: August 13, 2013Assignee: DENSO CORPORATIONInventors: Masaki Koyama, Yutaka Fukuda
-
Patent number: 8492220Abstract: Vertically stacked Field Effect Transistors (FETs) are created on a vertical structure formed on a semiconductor substrate where a first FET and a second FET are controllable independently. A bipolar junction transistor is connected between and in series with the first FET and the second FET, the bipolar junction transistor may be controllable independently of the first and second FET.Type: GrantFiled: August 9, 2010Date of Patent: July 23, 2013Assignee: International Business Machines CorporationInventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Kelly L. Williams
-
Patent number: 8481383Abstract: A semiconductor device includes an NMOS transistor and a PMOS transistor. The NMOS transistor includes a channel area formed in a silicon substrate, a gate electrode formed on a gate insulating film in correspondence with the channel area, and a source area and a drain area formed in the silicon substrate having the channel area situated therebetween. The PMOS transistor includes another channel area formed in the silicon substrate, another gate electrode formed on another gate insulating film in correspondence with the other channel area, and another source area and another drain area formed in the silicon substrate having the other channel area situated therebetween. The gate electrode has first sidewall insulating films. The other gate electrode has second sidewall insulating films. The distance between the second sidewall insulating films and the silicon substrate is greater than the distance between the first sidewall insulating films and the silicon substrate.Type: GrantFiled: February 10, 2011Date of Patent: July 9, 2013Assignee: Fujitsu Semiconductor LimitedInventors: Hiroyuki Ohta, Katsuaki Ookoshi
-
Publication number: 20130119465Abstract: A dual channel trench LDMOS transistor includes a semiconductor layer of a first conductivity type formed on a substrate; a first trench formed in the semiconductor layer where a trench gate is formed in an upper portion of the first trench; a body region of the second conductivity type formed in the semiconductor layer adjacent the first trench; a source region of the first conductivity type formed in the body region and adjacent the first trench; a planar gate overlying the body region; a drain drift region of the first conductivity type formed in the semiconductor layer and in electrical contact with a drain electrode. The planar gate forms a lateral channel in the body region, and the trench gate in the first trench forms a vertical channel in the body region of the LDMOS transistor.Type: ApplicationFiled: January 10, 2013Publication date: May 16, 2013Applicant: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATEDInventor: Alpha and Omega Semiconductor Incorporated