Oxidizing Sidewall Of Gate Electrode Patents (Class 438/265)
  • Patent number: 7824981
    Abstract: A method comprises providing a first conductive region, arranging a second conductive region adjacent to and insulated from the first conductive region by a dielectric region, arranging a third region adjacent to and insulated from the second conductive region, and adjusting mechanical stress to at least one of the first conductive region and the second conductive region.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: November 2, 2010
    Inventor: Chih-Hsin Wang
  • Patent number: 7816207
    Abstract: A manufacturing method of a semiconductor device includes a first electrode formation step of forming a control gate electrode above a surface of a semiconductor substrate with a control gate insulating film interposed between the control gate electrode and the semiconductor substrate, a step of forming a storage node insulating film on the surface of the semiconductor substrate, and a second electrode formation step of forming a memory gate electrode on a surface of the storage node insulating film. The second electrode formation step includes a step of forming a memory gate electrode layer on the surface of the storage node insulating film, a step of forming an auxiliary film, having an etching rate slower than that of the memory gate electrode layer, on a surface of the memory gate electrode layer, and a step of performing anisotropic etching on the memory gate electrode layer and the auxiliary film.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: October 19, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Tsutomu Okazaki, Motoi Ashida, Hiroji Ozaki, Tsuyoshi Koga, Daisuke Okada
  • Patent number: 7811888
    Abstract: A method of fabricating a semiconductor memory device to protect a tunneling insulating layer from etching-damage includes the steps of forming sequentially a tunnel insulating layer, a first conductive layer, a dielectric layer and a second conductive layer on a semiconductor substrate; etching the second conductive layer, the dielectric layer and the first conductive layer to form gate patterns, the first conductive layer remaining on the tunnel insulating layer between the gate patterns to prevent the tunnel insulating layer from being exposed; performing a cleaning process to remove impurities generated in the etching step; performing an ion implanting process to mono-crystallize the first conductive layer remaining on the tunnel insulating layer; and performing an oxidation process to form an oxide layer on top and side walls of the gate patterns and to convert the mono-crystallized first conductive layer into an insulating layer.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 12, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hyun Soo Shon
  • Patent number: 7799639
    Abstract: Fabrication of a nonvolatile memory device includes sequentially forming a tunnel oxide layer, a first conductive layer, and a nitride layer on a semiconductor substrate. A stacked pattern is formed from the tunnel oxide layer, the first conductive layer, and the nitride layer and a trench is formed in the semiconductor substrate adjacent to the stacked pattern. An oxidation process is performed to form a sidewall oxide layer on a sidewall of the trench and the first conductive layer. Chlorine is introduced into at least a portion of the stacked pattern subjected to the oxidation process. Introducing Cl into the stacked pattern may at least partially cure defects that are caused therein during fabrication of the structure.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-jin Noh, Si-Young Choi, Bon-young Koo, Ki-hyun Hwang, Chul-sung Kim, Sung-kweon Baek
  • Patent number: 7776691
    Abstract: The object is simplification of a manufacturing process for nonvolatile memory by reducing additional processes for forming a charge storage structure, and downsizing of nonvolatile memory.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: August 17, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Takaharu Nakamura, Tetsuhiro Maruyama, Masao Tsujimoto, Ikuo Kurachi
  • Patent number: 7772068
    Abstract: A method of manufacturing a non-volatile memory including the following steps is provided. First, a dielectric layer, a first conductive layer and a patterned mask layer are sequentially formed on a substrate. A portion of the first conductive layer is removed using the patterned mask layer as a mask to form a plurality of first gates. An oxidation process is performed to form an oxide layer on the sidewalls of the first gates. The patterned mask layer is removed. A plurality of second gates is formed between two adjacent first gates so that the first gates and the second gates co-exist to form a memory cell column. A doped region is formed in the substrate adjacent to the memory cell column.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 10, 2010
    Assignee: Macronix International Co., Ltd.
    Inventor: Ming-Hsiang Hsueh
  • Patent number: 7767523
    Abstract: A non-volatile semiconductor memory device includes: a nonvolatile memory area including gate electrodes, each including stack of a floating gate, an inter-electrode insulating film and a control gate, and having first insulating side walls formed on side walls of the gate electrode; a peripheral circuit area including single-layer gate electrodes made of the same layer as the control gate; and a first border area including: a first isolation region formed in the semiconductor substrate for isolating the non-volatile memory area and peripheral circuit area; a first conductive pattern including a portion made of the same layer as the control gate and formed above the isolation region; and a first redundant insulating side wall made of the same layer as the first insulating side wall and formed on the side wall of the first conductive pattern on the side of the non-volatile memory area.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: August 3, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Shinichi Nakagawa
  • Patent number: 7749845
    Abstract: A method of manufacturing a semiconductor device having a polycrystalline silicon layer (5) includes; a step of forming a mask layer (7) on the polycrystalline silicon layer (5); a step of forming a side wall (8) that is provided on a side face of the mask layer (7) and covers part of the polycrystalline silicon layer (6); a step of doping an impurity (52) into the polycrystalline silicon layer (5) by using at least one of the mask layer (7) and the side wall (8) as a mask; and a step of etching the polycrystalline silicon layer (5, 6) by using at least one of the mask layer (7) and the side wall (8) as a mask.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: July 6, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shigeharu Yamagami, Masakatsu Hoshi, Tetsuya Hayashi, Hideaki Tanaka, Yoshio Shimoida
  • Patent number: 7732280
    Abstract: A method of forming a semiconductor device having an offset spacer may include forming a gate electrode on a semiconductor substrate. An etch stop layer including a nitride may be formed on the entire surface of the semiconductor substrate having the gate electrode. First spacers may be formed on the sidewalls of the gate electrode. The first spacers may be formed of a material layer having an etch selectivity with respect to the etch stop layer. The etch stop layer may be exposed on the semiconductor substrate on both sides of the gate electrode. Lightly-doped drain (LDD) regions may be formed in the semiconductor substrate using the gate electrode and the first spacers as an ion implantation mask. Second spacers may be formed on the first spacers. Accordingly, a semiconductor device having an offset spacer may be provided.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 8, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sung-Gun Kang
  • Patent number: 7723187
    Abstract: A salicide treatment is performed on a common source line to reduce surface resistance and contact resistance, thereby improving a cell current characteristic. Therefore, a chip can be reduced in size and chips per wafer can be increased, thereby achieving high yield. In addition, it is possible to overcome the structural limitation of the flash cell when the semiconductor memory device is highly integrated and shrunken.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: May 25, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Youngsun Ko
  • Patent number: 7704829
    Abstract: A nonvolatile memory device and method for fabricating the same are provided. The nonvolatile memory device includes an active region; a source region formed in the active region; a source line formed on the source region and electrically connected with the source region, to cross over the active region; word lines aligned at each sidewall of the source line to cross over the active region in parallel with the source line; and a charge storage layer interposed between the word lines and the active region. Since the word lines are formed at both sides of the source line using an anisotropic etch-back process, without photolithography, the area of a unit cell can be reduced.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: April 27, 2010
    Assignee: LG Electronics Inc.
    Inventor: Sang Bum Lee
  • Patent number: 7704830
    Abstract: A self-aligned split gate bitcell includes first and second regions of charge storage material separated by a gap devoid of charge storage material. Spacers are formed along sidewalls of sacrificial layer extending above and on opposite sides of the bitcell stack, wherein the spacers are separated from one another by at least a gap length. Etching the bitcell stack, selective to the spacers, forms a gap that splits the bitcell stack into first and second gates which together form the split gate bitcell stack. A storage portion of bitcell stack is also etched, wherein etching extends the gap and separates the corresponding layer into first and second separate regions, the extended gap being devoid of charge storage material. Dielectric material is deposited over the gap and etched back to expose a top surface of the sacrificial layer, which is thereafter removed to expose sidewalls of the split gate bitcell stack.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: April 27, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Tushar P. Merchant, Ramachandran Muralidhar, Lakshmanna Vishnubhotla
  • Patent number: 7691712
    Abstract: Semiconductor device structures and fabrication methods for field effect transistors in which a gate electrode is provided with an air gap or void disposed adjacent to a sidewall of the gate electrode. The void may be bounded by a dielectric spacer proximate to the sidewall of the gate electrode and a dielectric layer having a spaced relationship with the dielectric spacer. The methods of the invention involve the use of a temporary spacer consisting of a sacrificial material supplied adjacent to the sidewall of the gate electrode, which is removed after the dielectric layer is formed.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Ricardo Alves Donaton, Jack Allan Mandelman
  • Patent number: 7687364
    Abstract: A multi-component low-k isolation spacer for a conductive region in a semiconductor structure is described. In one embodiment, a replacement isolation spacer process is utilized to enable the formation of a two-component low-k isolation spacer adjacent to a sidewall of a gate electrode in a MOS-FET device.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: March 30, 2010
    Assignee: Intel Corporation
    Inventor: Bernhard Sell
  • Patent number: 7682901
    Abstract: A method for fabricating a nonvolatile memory device includes forming a tunneling insulation layer and a conductive layer for a floating gate over a substrate, partially etching the conductive layer, the tunneling insulation layer, and the substrate to form a trench, forming an isolation layer filling a portion of the trench, forming spacers on both sidewalls of the conductive layer not covered by the isolation layer, recessing a portion of the exposed isolation layer using the spacers as an etch barrier layer to form wing spacers, removing the spacers, performing a primary cleaning process on the resulting substrate using a mixed solution of H2SO4 and H2O2 and a mixed solution of NH4OH, H2O2, and H2O, and performing a secondary cleaning process on the resulting structure using a mixed solution of a HF solution and a deionized water and a mixed solution of NH4OH, H2O2, and H2O.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: March 23, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hae-Soo Kim
  • Patent number: 7682904
    Abstract: The present invention relates to a method of fabricating a flash memory device and includes forming an air-gap having a low dielectric constant between word lines and floating gates. Further, a tungsten nitride (WN) layer is formed on sidewalls of a tungsten (W) layer for a control gate. Hence, the cross section of the control gate that is finally formed can be increased while preventing abnormal oxidization of the tungsten layer in a subsequent annealing process. The method of the present invention can improve interference between neighboring word lines and, thus improve the reliability of a device. Accordingly, a robust high-speed device can be implemented.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: March 23, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Eun Soo Kim, Jung Geun Kim, Suk Joong Kim
  • Patent number: 7678679
    Abstract: A growth material that grows selectively on the vertical sidewalls of a vertical device forms sidewall spacers on substantially vertical sidewalls of the vertical device that is disposed on a horizontal substrate surface of a semiconductor substrate. A spacer-like seed liner may be provided on the vertical sidewalls of the vertical device to control selective growth. The vertical device may be a gate electrode of a field effect transistor (FET). With selectively grown sidewall spacers, heavily doped contact regions of the FET may be precisely spaced apart from the gate electrode. The distance of the heavily doped contact regions to the gate electrode does not depend from the height of the gate electrode. Distances of more than 150 nm between the heavily doped contact region and the gate electrode may be achieved so as to facilitate the formation of, for example, DMOS devices.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: March 16, 2010
    Assignee: Qimonda AG
    Inventors: Dirk Manger, Jyoti Gupta, Christoph Ludwig, Hans Lindemann
  • Patent number: 7666740
    Abstract: A nonvolatile semiconductor memory device that realizes a multi-bit cell and a method for manufacturing the same includes manufacturing the nonvolatile semiconductor memory device to be capable of storing multi-bit data, for example, 4-bit data, in a single memory cell and, as a result, the integration degree of a NOR type nonvolatile semiconductor memory device can be improved.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: February 23, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Dong-Oog Kim
  • Patent number: 7642156
    Abstract: Embodiments relate to a three-dimensional flash memory cell and method of forming the same that may be improve the uniformity of flash memory cell by removing a width difference of a polysilicon pattern when forming a floating gate of flash memory device, to thereby improve the reliability of semiconductor device. The process may be simplified due to the self-alignment in the step of forming the polysilicon pattern, which may improve the yield.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: January 5, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Seong-Gyun Kim
  • Patent number: 7622343
    Abstract: A laser doping process comprising: irradiating a laser beam operated in a pulsed mode to a single crystal semiconductor substrate of a first conductive type in an atmosphere of an impurity gas which imparts the semiconductor substrate a conductive type opposite to said first conductive type and incorporating the impurity contained in said impurity gas into the surface of said semiconductor substrate, thereby modifying the type and/or the intensity of the conductive type thereof. Provides devices having a channel length of 0.5 ?m or less and impurity regions 0.1 ?m or less in depth.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: November 24, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuhiko Takemura
  • Patent number: 7608509
    Abstract: In a semiconductor device and a method of manufacturing the semiconductor device, preliminary isolation regions having protruded upper portions are formed on a substrate to define an active region. After an insulation layer is formed on the active region, a first conductive layer is formed on the insulation layer. The protruded upper portions of the preliminary isolation regions are removed to form isolation regions on the substrate and to expose sidewalls of the first conductive layer, and compensation members are formed on edge portions of the insulation layer. The compensation members may complement the edge portions of the insulation layer that have thicknesses substantially thinner than that of a center portion of the insulation layer, and may prevent deterioration of the insulation layer. Furthermore, the first conductive layer having a width substantially greater than that of the active region may enhance a coupling ratio of the semiconductor device.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: October 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul-Sung Kim, Yu-Gyun Shin, Bon-Young Koo, Sung-Kweon Baek, Young-Jin Noh
  • Patent number: 7605044
    Abstract: A method of manufacturing a semiconductor device including at least one step of: forming a transistor on and/or over a semiconductor substrate; forming silicide on and/or overa gate electrode and a source/drain region of the transistor; removing an uppermost oxide film from a spacer of the transistor; and forming a contact stop layer on and/or over the entire surface of the substrate including the gate electrode.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: October 20, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jin-Ha Park
  • Patent number: 7598140
    Abstract: A semiconductor device having excellent characteristics is provided without deteriorated film quality. A first oxide film is divided into three regions A, B and C. Lengths I, II and III of the regions A, B and C in a plane direction of the silicon substrate are set equal to each other. In the first oxide film, a thermal treatment is carried out such that the film thicknesses of the regions A and C are increased. The thermal treating time, the thermal treating temperature and other parameters are adjusted such that sectional areas of the regions A and C become 1.5 times of a sectional area of the region B, while a film thickness of the region B is maintained.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: October 6, 2009
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Yuki Saito, Yasutaka Kobayashi
  • Patent number: 7592227
    Abstract: Example embodiments of the present invention relate to methods of manufacturing a semiconductor device. Other example embodiments of the present invention relate to methods of manufacturing a semiconductor device having a gate electrode. In the method of manufacturing the semiconductor device, a gate electrode may be formed on a semiconductor substrate. Damage in the semiconductor substrate and a sidewall of the gate electrode may be cured, or repaired, by a radical re-oxidation process to form an oxide layer on the semiconductor substrate and the gate electrode.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: September 22, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Sun Lee, Jai-Dong Lee, Bong-Hyun Kim, Man-Sug Kang, Jung-Hwan Kim, Hyun-Jin Shin, Won-Seok Yoo, Seung-Mok Shin
  • Patent number: 7582530
    Abstract: Formation techniques are utilized to increase the space or distance between floating gates of a memory array of floating gate transistors. In at least some embodiments, floating gates are first formed over the substrate and then portions of the floating gates are removed to increase the spacing between the floating gates. An interlayer dielectric layer is then formed over the substrate and a control gate layer is formed thereover.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: September 1, 2009
    Assignee: Intel Corporation
    Inventors: Henry Chao, Krishna Parat
  • Patent number: 7575967
    Abstract: In a manufacturing method for a semiconductor device, a first impurity diffusion layer for a low impurity concentration drain of a second conductivity type is formed within a semiconductor layer of a first conductivity type, and a second impurity diffusion layer for a high impurity concentration drain of the second conductivity type is formed adjacent to the first impurity diffusion layer, with the second impurity diffusion layer having a higher impurity concentration than the first impurity diffusion layer. An interlayer insulating film is formed on the semiconductor substrate layer. A drain extension region having a high thermal conductivity is formed on a surface of the first impurity diffusion layer. A contact hole is formed through the interlayer insulating film and up to the second impurity diffusion layer.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: August 18, 2009
    Assignee: Seiko Instruments Inc.
    Inventors: Naoto Saitoh, Yuichiro Kitajima
  • Patent number: 7572697
    Abstract: A method of manufacturing flash memory devices wherein, after gate lines are formed, an HDP oxide film having at least the same height as that of a floating gate is formed between the gate lines. Spacers are formed between the remaining spaces using a nitride film. Accordingly, the capacitance between the floating gates can be lowered. After an ion implantation process is performed, spacers can be removed. It is therefore possible to secure contact margin of the device.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: August 11, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young Ok Hong
  • Patent number: 7563676
    Abstract: Disclosed is a non-volatile (e.g., NOR type flash) memory cell array and a method for manufacturing the same. The memory cell array includes a plurality of isolation layers on a semiconductor substrate, parallel to a bit line and defining an active device area, a plurality of common source areas in the semiconductor substrate, separated from each other by the isolation layers such that the common source areas connect memory cells adjacent to each other in a bit line direction, a common source line on the semiconductor substrate, connected to each source area and extending in a word-line direction, an insulating spacer along a first sidewall of the common source line, a gate at a second sidewall of the insulating spacer including a tunnel oxide layer, a first electrode, an inter-electrode dielectric layer, and a second electrode, and a drain area in the semiconductor substrate on an opposite side of the gate from the common source area.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: July 21, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Heong Jin Kim
  • Patent number: 7563673
    Abstract: Disclosed herein is a method for forming a gate structure of a semiconductor device. The method comprises forming a plurality of gates including a first gate dielectric film, a first gate conductive film, and a gate silicide film sequentially stacked on a silicon substrate having a field oxide film, forming a thermal oxide film on a side of the first gate conductive film, etching the silicon substrate exposed between the plurality of gates to a predetermined depth to form a plurality of trenches, forming a second gate oxide film on the interior wall of the trenches, and forming a second gate conductive film in a spacer shape on a predetermined region of the second gate oxide film, and on a side of the first gate conductive film, the gate silicide film, and the thermal oxide film.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: July 21, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Young Bog Kim, Jun Soo Chang, Min Yong Lee, Yong Seok Eun
  • Patent number: 7560329
    Abstract: The semiconductor device comprises a gate electrode 112 formed over a semiconductor substrate 10, a sidewall spacer 116 formed on the side wall of the gate electrode 112, a sidewall spacer 144 formed on the side wall of the gate electrode 112 with the sidewall spacer 116 formed on, and an oxide film 115 formed between the sidewall spacer 116 and the sidewall spacer 144, and the semiconductor substrate 10. The film thickness of the oxide film 115 between the sidewall spacer 144 and the semiconductor substrate 10 is thinner than the film thickness of the oxide film 115 between the sidewall spacer 116 and the semiconductor substrate 10.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: July 14, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Shinichi Nakagawa
  • Patent number: 7547601
    Abstract: A method of providing a memory cell includes providing a body of a semiconductor material having a first conductivity type, arranging a filter of a conductor-filter system in contact with a first conductor of the conductor-filter system, arranging at least portion of a second conductor of a conductor-insulator system in contact with the filter, arranging a first insulator of the conductor-insulator system in contact with the second conductor at an interface, arranging a first region spaced from the second conductor, arranging a channel of the body between the first region and the second conductor, arranging a second insulator adjacent to the first region, arranging a charge storage region between the first and the second insulators, arranging a first portion of a word-line adjacent to and insulated from the charge storage region, and arranging a second portion of the word-line adjacent to and insulated from the body.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 16, 2009
    Assignee: Marvell World Trade Ltd.
    Inventor: Chih-Hsin Wang
  • Publication number: 20090140315
    Abstract: A semiconductor memory device comprises: a plurality of transistors having a stacked-gate structure, each transistor including a semiconductor substrate, a gate insulator formed on the semiconductor substrate, a lower gate formed on the semiconductor substrate with the gate insulator interposed, an intergate insulator formed on the lower gate, and an upper gate formed and silicided on the lower gate with the intergate insulator interposed. A portion of the transistors has an aperture formed through the intergate insulator to connect the lower gate with the upper gate and further includes a silicide suppression region between the aperture and the gate insulator to suppress diffusion of metal atoms from the silicided upper gate.
    Type: Application
    Filed: November 21, 2008
    Publication date: June 4, 2009
    Inventor: Takuji KUNIYA
  • Publication number: 20090142894
    Abstract: A method for fabricating a semiconductor structure. The novel transistor structure comprises first and second source/drain (S/D) regions whose top surfaces are lower than a top surface of the channel region of the transistor structure. A semiconductor layer and a gate stack on the semiconductor layer are provided. The semiconductor layer includes (i) a channel region directly beneath the gate stack, and (ii) first and second semiconductor regions essentially not covered by the gate stack, and wherein the channel region is disposed between the first and second semiconductor regions. The first and second semiconductor regions are removed. Regions directly beneath the removed first and second semiconductor regions are removed so as to form first and second source/drain regions, respectively, such that top surfaces of the first and second source/drain regions are below a top surface of the channel region.
    Type: Application
    Filed: February 9, 2009
    Publication date: June 4, 2009
    Inventors: Huilong Zhu, Lawrence A. Clevenger, Omer H. Dokumaci, Oleg Gluschenkov, Kaushik A. Kumar, Carl J. Radens, Dureseti Chidambarrao
  • Publication number: 20090124055
    Abstract: A gate structure in a transistor and method for fabricating the structure are disclosed. A gate structure is formed on a substrate. The gate structure includes three layers: an oxide layer, a nitride layer and a polysilicon layer. The oxide layer is located on the substrate, the nitride layer is located on the oxide layer, and the polysilicon layer is located on the nitride layer. The gate structure is reoxidized to form a layer of oxide over the gate structure.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 14, 2009
    Inventor: Frank Randolph Bryant
  • Patent number: 7521325
    Abstract: A permeation preventing film of a silicon nitride film 16 is inserted between a silicon substrate 10 and a High-k gate insulation film 18 to thereby prevent the High-k gate insulation film 18 from being deprived of oxygen, while oxygen anneal is performed after a gate electrode layer 20 has been formed to thereby supplement oxygen. The silicon nitride film 16, which is the permeation preventing film, becomes a silicon oxide nitride film 17 without changing the film thickness, whereby characteristics deterioration of the High-k gate insulation film 18 due to the oxygen loss can be prevented without lowering the performance of the transistor. The semiconductor device having the gate insulation film formed of even a high dielectric constant material can be free from the shift of the threshold voltage.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: April 21, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Tsunehisa Sakoda, Masaomi Yamaguchi, Hiroshi Minakata, Yoshihiro Sugita, Kazuto Ikeda
  • Patent number: 7518176
    Abstract: Distance ?m between a floating gate and a drain contact of a floating gate transistor forming a memory cell is set to be greater than a distance ? determined based on a minimum design dimension between a control gate and a contact of a peripheral transistor. Data retention characteristics of a programmable memory which stores data in accordance with the amount of accumulated charges in the floating gate can be ensured without being affecting by mask misalignment or the like.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: April 14, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Takashi Tanaka, Seiichi Endo
  • Patent number: 7510923
    Abstract: Slim spacers are implemented in transistor fabrication. More particularly, wide sidewall spacers are initially formed and used to guide dopants into source/drain regions in a semiconductor substrate. The wide sidewall spacers are then removed and slim sidewall spacers are formed alongside a gate stack of the transistor. The slim spacers facilitate transferring stress from an overlying pre metal dielectric (PMD) liner to a channel of the transistor, and also facilitate reducing a resistance in the transistor by allowing silicide regions to be formed closer to the channel. This mitigates yield loss by facilitating predictable or otherwise desirable behavior of the transistor.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: March 31, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Karen Hildegard Ralston Kirmse, Shirin Siddiqui
  • Patent number: 7494874
    Abstract: A method of manufacturing a flash memory device includes the steps of forming a tunnel oxide layer and a polysilicon layer over a semiconductor substrate. An etch process is then performed to form a pattern and a trench. An isolation layer is formed in the trench. A polysilicon spacer layer is formed on the resulting surface. A specific region of the polysilicon spacer layer and the isolation layer is etched in a single etch process to form a recess hole in a central portion of the isolation layer. The polysilicon spacer layer is then removed.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: February 24, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Myung-Kyu Ahn
  • Patent number: 7482226
    Abstract: A drain (7) includes a lightly-doped shallow impurity region (7a) aligned with a control gate (5), and a heavily-doped deep impurity region (7b) aligned with a sidewall film (8) and doped with impurities at a concentration higher than that of the lightly-doped shallow impurity region (7a). The lightly-doped shallow impurity region (7a) leads to improvement of the short-channel effect and programming efficiency. A drain contact hole forming portion (70) is provided to the heavily-doped impurity region (7b) to reduce the contact resistance at the drain (7).
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: January 27, 2009
    Assignees: Fujitsu Limited, Spansion LLC, Advanced Micro Devices, Inc.
    Inventors: Hideki Komori, Hisayuki Shimada, Yu Sun, Hiroyuki Kinoshita
  • Patent number: 7482660
    Abstract: A nonvolatile semiconductor memory according to an example of the present invention is provided with a memory cell having a floating gate electrode and a control gate electrode, and a select gate transistor having a select gate electrode and connected in series to the memory cell. A cell unit is comprised with the memory cell and the select gate transistor. A bird's beak of the edge at the memory cell side of the select gate electrode is larger than a bird's beak of at least one edge of the floating gate electrode.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: January 27, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kanji Osari
  • Patent number: 7476583
    Abstract: An insulating film provided below a floating gate electrode includes a first insulating film located at both end portions below the floating gate electrode, and a second insulating film sandwiched between the first insulating films and located in a middle portion below the floating gate electrode. The first insulating film and the second insulating film are formed in separate steps, and the first insulating film is thicker than the second insulating film. With this structure, when an insulating film is provided between the floating gate electrode and a silicon substrate to have a thickness more increased at its end portion than at its middle portion, the thickness can be increased more freely and a degree of the increase can be controlled more readily.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: January 13, 2009
    Assignee: Renesas Technology Corp.
    Inventor: Takashi Terauchi
  • Publication number: 20090001446
    Abstract: A method of fabricating a flash memory device includes forming a stack electrode on a semiconductor substrate; forming a side spacer on a side wall of the stack electrode; forming a photo-resist film pattern with a predetermined thickness on the side wall of the side spacer; and forming a source/drain junction on the semiconductor substrate through ion implant using the photo-resist film as a mask for ion implant.
    Type: Application
    Filed: June 26, 2008
    Publication date: January 1, 2009
    Applicant: DONGBU HITEK CO., LTD.
    Inventor: Sung Jin Kim
  • Publication number: 20080316828
    Abstract: Methods, devices, and systems for a memory in logic cell are provided. One or more embodiments include using a cell structure having a first gate, a second gate, and a third gate, e.g., a control gate, a back gate, and a floating gate, as a memory in logic cell. The method includes programming the floating gate to a first state to cause the memory in logic cell to operate as a first logic gate type. The method further includes programming the floating gate to a second state to cause the memory in logic cell to operate as a second logic gate type.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 25, 2008
    Inventors: Hussein I. Hanafi, Leonard Forbes, Alan R. Reinberg
  • Patent number: 7456115
    Abstract: The present invention provides methods for forming semiconductor FET devices having reduced gate edge leakage current by using plasma or thermal nitridation and low-temperature plasma re-oxidation processes post gate etch.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: November 25, 2008
    Assignee: International Business Machines Corporation
    Inventors: Anthony I-Chih Chou, Shreesh Narasimha
  • Patent number: 7452766
    Abstract: Methods and apparatus are provided. For an embodiment, a plurality fins is formed in a substrate so that the fins protrude from a substrate. After the plurality fins is formed, the fins are isotropically etched to reduce a width of the fins and to round an upper surface of the fins. A first dielectric layer is formed overlying the isotropically etched fins. A first conductive layer is formed overlying the first dielectric layer. A second dielectric layer is formed overlying the first conductive layer. A second conductive layer is formed overlying the second dielectric layer.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 18, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Seiichi Aritome
  • Patent number: 7439157
    Abstract: A method includes removing a portion of a substrate to define an isolation trench; forming a first dielectric layer on exposed surfaces of the substrate in the trench; forming a second dielectric layer on at least the first dielectric layer, the second dielectric layer containing a different dielectric material than the first dielectric layer; depositing a third dielectric layer to fill the trench; removing an upper portion of the third dielectric layer from the trench and leaving a lower portion covering a portion of the second dielectric layer; oxidizing the lower portion of the third dielectric layer after removing the upper portion; removing an exposed portion of the second dielectric layer from the trench, thereby exposing a portion of the first dielectric layer; and forming a fourth dielectric layer in the trench covering the exposed portion of the first dielectric layer.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Zailong Bian, John Smythe, Janos Fucsko, Michael Violette
  • Patent number: 7439106
    Abstract: A semiconductor device is fabricated with a selected critical dimension. A gate dielectric layer is formed over a semiconductor body. A gate layer comprised of a conductive material, such as polysilicon, is formed over the gate dielectric layer. The gate layer is patterned to form a gate electrode having a first horizontal dimension. One or more growth-stripping operations are performed to reduce a critical dimension of the gate electrode to a second horizontal dimension, where the second horizontal dimension is less than the first horizontal dimension.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: October 21, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Steven Arthur Vitale
  • Patent number: 7439131
    Abstract: A flash memory device has a resistivity measurement pattern and method of forming the same. A trench is formed in an isolation film in a Self-Aligned Floating Gate (SAFG) scheme. The trench is buried to form a resistivity measurement floating gate. This allows the resistivity of the floating gate to be measured even in the SAFG scheme. Contacts for resistivity measurement are directly connected to the resistivity measurement floating gate. Therefore, variation in resistivity measurement values, which is incurred by the parasitic interface, can be reduced.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: October 21, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki Hong Yang, Sang Wook Park
  • Publication number: 20080220579
    Abstract: According to a method for fabricating a stress enhanced MOS device having a channel region at a surface of a semiconductor substrate, first and second trenches are etched into the semiconductor substrate, the first trench having a first side surface, and the second trench having a second side surface. The first and second side surfaces are formed astride the channel region. The first and second side surfaces are then oxidized in a controlled oxidizing environment to thereby grow an oxide region. The oxide region is then removed, thereby repositioning the first and second side surfaces closer to the channel region. With the first and second side surfaces repositioned, the first and second trenches are filled with SiGe.
    Type: Application
    Filed: March 7, 2007
    Publication date: September 11, 2008
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Rohit PAL, David BROWN, Scott LUNING
  • Publication number: 20080206945
    Abstract: A forms spacers in a electronic device integrated on a semiconductor substrate that includes: first and second transistors each comprising a gate electrode projecting from the substrate and respective source/drain regions. The process comprises: forming in cascade a first protective layer and a first conformal insulating layer of a first thickness on the whole electronic device; forming a first mask to cover the first transistor; removing the first conformal insulating layer not covered by the first mask; removing the first mask; forming a second conformal insulating layer of a second thickness on the whole device; and removing the insulating layers until the protective layer is exposed to form first spacers of a first width on the side walls of the gate electrodes of the first transistor and second spacers of a second width on the side walls of the gate electrodes of the second transistor.
    Type: Application
    Filed: February 28, 2007
    Publication date: August 28, 2008
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Giorgio Servalli, Giulio Albini, Carlo Cremonesi