Making Plural Insulated Gate Field Effect Transistors Of Differing Electrical Characteristics Patents (Class 438/275)
  • Publication number: 20110073958
    Abstract: A memory cell having N transistors including at least one pair of access transistors, one pair of pull-down transistors, and one pair of pull-up transistors to form a memory cell, wherein N is an integer at least equal to six, wherein each of the access transistors and each of the pull-down transistors is a same one of an n-type or a p-type transistor, and each of the pull-up transistors is the other of an n-type or a p-type transistor, wherein at least one of the pair of the pull down transistors and the pair of the pull up transistors are asymmetric.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Leland Chang, Jeffrey W. Sleight
  • Patent number: 7915657
    Abstract: Disclosed herein is a semiconductor integrated circuit including: a memory circuit section used for storing data; and a non-memory circuit section which is provided to serve as a section other than the memory circuit section and used for storing no data, wherein the second-conduction-type impurity concentration of a second-conduction-type semiconductor area including a channel created for a first-conduction-type transistor employed in the non-memory circuit section is lower than the second-conduction-type impurity concentration of a second-conduction-type semiconductor area including a channel created for a first-conduction-type transistor employed in the memory circuit section.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: March 29, 2011
    Assignee: Sony Corporation
    Inventors: Nobukazu Mikami, Hiroki Usui, Takuya Nakauchi
  • Patent number: 7915105
    Abstract: The present disclosure provides a method for fabricating a semiconductor device. The method includes forming first, second, third, and fourth gate structures on a semiconductor substrate, each gate structure having a dummy gate, removing the dummy gate from the first, second, third, and fourth gate structures, thereby forming first, second, third, and fourth trenches, respectively, forming a metal layer to partially fill in the first, second, third, and fourth trenches, forming a first photoresist layer over the first, second, and third trenches, etching a portion of the metal layer in the fourth trench, removing the first photoresist layer, forming a second photoresist layer over the second and third trenches, etching the metal layer in the first trench and the remaining portion of the metal layer in the fourth trench, and removing the second photoresist layer.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: March 29, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Matt Yeh, Shun Wu Lin, Chung-Ming Wang, Chi-Chun Chen
  • Patent number: 7915128
    Abstract: A transistor suitable for high-voltage applications and a method of manufacture is provided. A first device is formed by depositing a dielectric layer and a conductive layer over a substrate. A hard mask is deposited over the conductive layer and patterned using photolithography techniques. The photoresist material is removed prior to etching the underlying conductive layer and dielectric layer. The hard mask is also used as an implant mask. Another mask may be deposited and formed over the conductive layer to form other devices in other regions of the substrate. The other mask is preferably removed from over the hard mask prior to etching the conductive layer and the dielectric layer.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: March 29, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu Wen Chen, Fu-Hsin Chen, Ming-Ren Tsai, William Wei-Yuan Tien
  • Publication number: 20110068412
    Abstract: By covering ends of a field insulating film in a region where a MOS transistor having a relatively thin gate insulating film is formed with a relatively thick gate insulating film, a channel region of the MOS transistor having the relatively thin gate insulating film is set apart from an inversion-preventing diffusion layer formed under the field insulating film so as not to be influenced by film thickness fluctuation of the field insulating film, etching fluctuation of the relatively thick gate insulating film, and impurity concentration fluctuation at both sides of the channel due to the inversion-preventing diffusion layer.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 24, 2011
    Inventor: Yuichiro Kitajima
  • Patent number: 7910442
    Abstract: A method including partially etching a first portion of a first layer, wherein the first layer is a conductive layer, is provided. The method further includes removing at least a portion of a second layer. The method further includes completing etching of said first portion of the conductive layer so that said first portion of the conductive layer is removed. The method further includes completing formation of the semiconductor device.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William J. Taylor, Jr., Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer
  • Patent number: 7910421
    Abstract: Provided is a method of manufacturing a semiconductor device, in which the thickness of a gate insulating layer of a CMOS device can be controlled. The method can include selectively injecting fluorine (F) into a first region on a substrate and avoiding injecting the fluorine (F) into a second region on the substrate. A first gate insulating layer is formed of oxynitride layers on the first and second regions to have first and second thicknesses, respectively, where the first thickness is less than the second thickness. A second gate insulating layer is formed on the first gate insulating layer and a gate electrode pattern is formed on the second gate insulating layer.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-jin Hyun, Si-young Choi, In-sang Jeom, Gab-jin Nam, Sang-bom Kang, Sug-hun Hong
  • Patent number: 7910441
    Abstract: A semiconductor device includes a substrate (20), a source region (58) formed over the substrate, a drain region (62) formed over the substrate, a first gate electrode (36) over the substrate adjacent to the source region and between the source and drain regions, and a second gate electrode (38) over the substrate adjacent to the drain region and between the source and drain regions.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Xin Lin, Jiang-Kai Zuo
  • Patent number: 7910443
    Abstract: A method for fabricating a semiconductor device includes forming a conductive material layer for forming a gate over a substrate including a cell region and a peripheral region, forming hard mask patterns over the conductive material layer, forming a mask pattern over the resultant structure in the cell region, exposing the peripheral region, trimming the hard mask patterns in the peripheral region, removing the mask pattern, and etching the conductive material layer to form gate patterns using the hard mask patterns.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: March 22, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yun-Seok Cho
  • Patent number: 7910444
    Abstract: A forms spacers in a electronic device integrated on a semiconductor substrate that includes: first and second transistors each comprising a gate electrode projecting from the substrate and respective source/drain regions. The process comprises: forming in cascade a first protective layer and a first conformal insulating layer of a first thickness on the whole electronic device; forming a first mask to cover the first transistor; removing the first conformal insulating layer not covered by the first mask; removing the first mask; forming a second conformal insulating layer of a second thickness on the whole device; and removing the insulating layers until the protective layer is exposed to form first spacers of a first width on the side walls of the gate electrodes of the first transistor and second spacers of a second width on the side walls of the gate electrodes of the second transistor.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 22, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giorgio Servalli, Giulio Albini, Carlo Cremonesi
  • Patent number: 7902058
    Abstract: In a metal gate replacement process, strain may be selectively induced in the channels of NMOS and PMOS transistors. For example, a material having a higher coefficient of thermal expansion than the substrate may be used to form the gate electrodes of PMOS transistors. A material with a lower coefficient of thermal expansion than that of the substrate may be used to form the gate electrodes of NMOS transistors.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: March 8, 2011
    Assignee: Intel Corporation
    Inventors: Suman Datta, Jack Kavalieros, Mark L. Doczy, Matthew V. Metz, Justin K. Brask, Robert S. Chau, Brian S. Doyle
  • Patent number: 7902021
    Abstract: A method for making a semiconductor device is disclosed. In accordance with the method, a semiconductor structure is provided which includes (a) a substrate (203), (b) first and second gate electrodes (219) disposed over the substrate, each of the first and second gate electrodes having first and second sidewalls, and (c) first (223) and second (225) sets of spacer structures disposed adjacent to the first and second gate electrodes, respectively. A first layer of photoresist (231) is then disposed over the structure such that the first set of spacer structures is exposed and the second set of spacer structures is covered, after which the first set of spacer structures is partially etched.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: March 8, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Anadi Srivastava
  • Patent number: 7897466
    Abstract: There is provided a method for manufacturing a semiconductor device having a high breakdown voltage transistor and a low breakdown voltage transistor provided on a same semiconductor substrate.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: March 1, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Yuji Akao
  • Patent number: 7897447
    Abstract: A method for reducing defects at an interface between a amorphized, recrystallized cleaved wafer layer and an unamorphized cleaved wafer layer can comprise an anneal and an exposure to hydrochloric acid. The anneal and acid exposure can be performed within an epitaxial reactor chamber to minimize wafer transport.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: March 1, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Angelo Pinto
  • Patent number: 7897467
    Abstract: After silicon oxide film (9) is formed on the surface of a semiconductor substrate (1), the silicon oxide film (9) in a region in which a gate insulation film having a small effective thickness is formed is removed using diluted HF and after that, high dielectric constant insulation film (10) is formed on the semiconductor substrate (1). Consequently, two kinds of gate insulation films, namely, a gate insulation film (12) comprised of stacked film of high dielectric constant insulation film (10) and silicon oxide film (9) and gate insulation film (11) comprised of the high dielectric constant insulation film (10) are formed on the semiconductor substrate (1).
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: March 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Sakai, Atsushi Hiraiwa, Satoshi Yamamoto
  • Publication number: 20110042756
    Abstract: A semiconductor device having an MOSFET serving as an element to be protected, and an electrostatic protection MOSFET element mounted on the same substrate is produced with the small number of steps while implementing a high protection ability. Low concentration regions and gate electrodes are formed and then an insulation film is formed on a whole surface. Then, etching is performed using a resist pattern as a mask to leave the insulation film in a region from a part of the gate electrode to a part of the low concentration region in each of regions A1 and A3, and on a side wall of the gate electrode in a region A2. Then, a high concentration ion implantation is performed using the gate electrodes and the insulation films as masks, and then a silicide layer is formed.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 24, 2011
    Inventor: Satoshi Hikida
  • Patent number: 7892932
    Abstract: A semiconductor device having a tensile and/or compressive strain applied thereto and methods of manufacturing the semiconductor devices and design structure to enhance channel strain. The method includes forming a gate structure for an NFET and a PFET and forming sidewalls on the gate structure for the NFET and the PFET using a same deposition and etching process. The method also includes providing stress materials in the source and drain regions of the NFET and the PFET.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: February 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Carl J Radens
  • Patent number: 7892908
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Methods such as amorphization and templated recrystallization (ATR) have disadvantages for fabrication of deep submicron CMOS. This invention is a method of forming an integrated circuit (IC) which has (100) and (110)-oriented regions. The method forms a directly bonded silicon (DSB) layer of (110)-oriented silicon on a (100)-oriented substrate. The DSB layer is removed in the NMOS regions and a (100)-oriented silicon layer is formed by selective epitaxial growth (SEG), using the substrate as the seed layer. NMOS transistors are formed on the SEG layer, while PMOS transistors are formed on the DSB layer. An integrated circuit formed with the inventive method is also disclosed.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: February 22, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Angelo Pinto, Frank S. Johnson, Benjamin P. McKee, Shaofeng Yu
  • Patent number: 7888747
    Abstract: A semiconductor device includes a semiconductor substrate; a first impurity diffusion suppression layer and a thicker second impurity diffusion suppression layer formed on the semiconductor substrate in first and second isolated transistor regions; first and second crystal layers formed on the first and second impurity diffusion suppression layers; first and second gate electrodes formed on the first and second crystal layers; first and second p-type channel regions formed in the semiconductor substrate, the first impurity diffusion suppression layer and respective of the first and second crystal layers below the first and second gate electrodes; and first and second source/drain regions formed on both sides of the first and second channel region; wherein the first and second p-type channels have lower impurity concentrations in respective of the first and second crystal layers than in the semiconductor substrate.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Hokazono
  • Publication number: 20110031473
    Abstract: Nanowire-based devices are provided. In one aspect, a SRAM cell includes at least one pair of pass gates and at least one pair of inverters formed adjacent to one another on a wafer. Each pass gate includes one or more device layers each having a source region, a drain region and a plurality of nanowire channels connecting the source region and the drain region and a gate common to each of the pass gate device layers surrounding the nanowire channels. Each inverter includes a plurality of device layers each having a source region, a drain region and a plurality of nanowire channels connecting the source region and the drain region and a gate common to each of the inverter device layers surrounding the nanowire channels.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 10, 2011
    Applicant: International Business Machines Corporation
    Inventors: Josephine Chang, Paul Chang, Michael A. Guillorn, Jeffrey Sleight
  • Patent number: 7883970
    Abstract: A semiconductor device having a decoupling capacitor and a method of fabricating the same are provided. The semiconductor device includes a semiconductor substrate having a cell region, a first peripheral circuit region, and a second peripheral circuit region. At least one channel trench is disposed in the cell region of the semiconductor substrate. At least one first capacitor trench is disposed in the first peripheral circuit region of the semiconductor substrate, and at least one second capacitor trench is disposed in the second peripheral circuit region of the semiconductor substrate. A gate electrode is disposed in the cell region of the semiconductor substrate and fills the channel trench. A first upper electrode is disposed in the first peripheral circuit region of the semiconductor substrate and fills at least the first capacitor trench. A second upper electrode is disposed in the second peripheral circuit region of the semiconductor substrate and fills at least the second capacitor trench.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: February 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Ki Kim, Jung-Hwa Lee, Ji-Young Kim
  • Patent number: 7884023
    Abstract: An electronic apparatus is disclosed that comprises a silicon nitride material that has an increased silicon content. The silicon nitride material is manufactured by exposing plasma enhanced chemical vapor deposition (PECVD) silicon nitride to an increased flow of silane while the PECVD silicon nitride is being deposited. The material has anti-reflective coating (ARC) properties and can also be used as a hard mask. When the material is covered with cobalt the material forms conductive cobalt silicide when the cobalt is annealed. A method for siliciding the PECVD silicon nitride is also disclosed.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: February 8, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Heather E. McCulloh, Patrick McCarthy, Steven J. Adler, Henry G. Prosack, Jr.
  • Patent number: 7883971
    Abstract: Disclosed are a gate structure in a trench region of a semiconductor device and a method for manufacturing the same. The semiconductor device includes a pair of drift regions formed in a semiconductor substrate; a trench region formed between the pair of drift regions; an oxide layer spacer on sidewalls of the trench region; a gate formed in the trench region; and a source and a drain formed in the pair of the drift regions, respectively.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: February 8, 2011
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwang Young Ko
  • Patent number: 7883951
    Abstract: A semiconductor device and a method for forming it are described. The semiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: February 8, 2011
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Mark L. Doczy, Jack Kavalieros, Matthew V. Metz, Chris E. Barns, Uday Shah, Suman Datta, Christopher D. Thomas, Robert S. Chau
  • Publication number: 20110027952
    Abstract: A growth mask provided for the deposition of a threshold adjusting semiconductor alloy may be formed on the basis of a deposition process, thereby obtaining superior thickness uniformity. Consequently, P-channel transistors and N-channel transistors with an advanced high-k metal gate stack may be formed with superior uniformity.
    Type: Application
    Filed: July 23, 2010
    Publication date: February 3, 2011
    Inventors: Stephan Kronholz, Carsten Reichel, Annekathrin Zeun, Thorsten Kammler
  • Patent number: 7880202
    Abstract: A semiconductor field effect transistor can be used with RF signals in an amplifier circuit. The transistor includes a source region and a drain region with a channel region interposed in between the source and drain regions. The transistor is structured such that the threshold voltage for current flow through the channel region varies at different points along the width direction, e.g., to give an improvement in the distortion characteristics of the transistor.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: February 1, 2011
    Assignee: Infineon Technologies AG
    Inventor: Peter Baumgartner
  • Patent number: 7879703
    Abstract: A method of fabricating a semiconductor device for reducing a thermal burden on impurity regions of a peripheral circuit region includes preparing a substrate including a cell active region in a cell array region and peripheral active regions in a peripheral circuit region. A cell gate pattern and peripheral gate patterns may be formed on the cell active region and the peripheral active regions. First cell impurity regions may be formed in the cell active region. A first insulating layer and a sacrificial insulating layer may be formed to surround the cell gate pattern and the peripheral gate patterns. Cell conductive pads may be formed in the first insulating layer to electrically connect the first cell impurity regions. The sacrificial insulating layer may be removed adjacent to the peripheral gate patterns. First and second peripheral impurity regions may be sequentially formed in the peripheral active regions adjacent to the peripheral gate patterns.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: February 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Ho Jung, Makoto Yoshida, Jae-Rok Kahng, Chul Lee, Joon-Seok Moon, Cheol-Kyu Lee, Sung-Il Cho
  • Publication number: 20110018068
    Abstract: An integrated device includes: a semiconductor body having a first, depressed, portion and second portions which project from the first portion; a STI structure, extending on the first portion of the semiconductor body, which delimits laterally the second portions and has a face adjacent to a surface of the first portion; low-voltage CMOS components, housed in the second portions, in a first region of the semiconductor body; and a power component, in a second region of the semiconductor body. The power component has at least one conduction region, formed in the first portion of the semiconductor body, and a conduction contact, connected to the conduction region and traversing the STI structure in a direction perpendicular to the surface of the first portion of the semiconductor body.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 27, 2011
    Applicant: STMICROELECTRONICS S.R.L
    Inventors: Riccardo DEPETRO, Stefano MANZINI
  • Publication number: 20110020993
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes a first interconnection disposed on a substrate. The interconnection includes a first silicon interconnection region and a first metal interconnection region sequentially stacked on the substrate. A second interconnection includes a second silicon interconnection region and a second metal interconnection region that are stacked sequentially. The second silicon interconnection region has a lower resistivity than the first silicon interconnection region.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 27, 2011
    Inventors: Jong-Man Park, Santoru Yamada
  • Patent number: 7875516
    Abstract: An integrated circuit including a first gate stack and a second gate stack and a method of manufacturing is disclosed. One embodiment provides non-volatile memory cells including a first gate stack and a gate dielectric on a first surface section of a main surface of a semiconductor substrate, and a second gate stack including a memory layer stack on a second surface section. A first pattern is transferred into the first gate stack and a second pattern into the second gate stack.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: January 25, 2011
    Assignee: Qimonda AG
    Inventors: Roman Knoefler, Michael Specht, Josef Willer
  • Patent number: 7871915
    Abstract: The present disclosure provides a method of fabricating a semiconductor device that includes providing a substrate having a first region and a second region, forming first and second gate stacks in the first and second regions, respectively, the first gate stack including a first dummy gate and the second gate stack including a second dummy gate, removing the first dummy gate in the first gate stack thereby forming a first trench and removing the second dummy gate in the second gate stack thereby forming a second trench, forming a first metal layer in the first trench and in the second trench, removing at least a portion of the first metal layer in the first trench, forming a second metal layer in the remainder of the first trench and in the remainder of the second trench, reflowing the second metal layer, and performing a chemical mechanical polishing (CMP).
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: January 18, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Peng-Soon Lim, Yong-Tian Hou, Chien-Hao Chen, Chi-Chun Chen
  • Publication number: 20110007596
    Abstract: A method of forming an integrated circuit structure includes providing a chip; forming a static random access memory (SRAM) cell including a transistor on the chip; and forming a bias transistor configured to gate a power supply voltage provided to the SRAM cell on the chip. The bias transistor and the transistor of the SRAM cell are formed simultaneously.
    Type: Application
    Filed: May 6, 2010
    Publication date: January 13, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng Hung Lee, Hsu-Shun Chen, Wei Min Chan, Shao-Yu Chou
  • Patent number: 7867884
    Abstract: A wafer fabrication method includes a first step of forming a plurality of first channel regions in a first region on a surface of a water, a second step of forming a plurality of second channel regions having an impurity concentration different from an impurity concentration of the first channel regions, a third step of forming a plurality of third channel regions in a third region on the surface of the water, and a fourth step of forming a plurality of fourth channel regions having an impurity concentration different from an impurity concentration of the third channel regions in a fourth region, wherein the first region and the second region are divided by a first line segment on the wafer, and the third and fourth regions are divided by a second line segment intersecting with the first line segment on the wafer.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: January 11, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Tomohiro Kamimura, Kou Sasaki, Tomoharu Inoue
  • Patent number: 7867858
    Abstract: A method includes forming a first transistor having a first gate dielectric thickness and a first source/drain extension depth, a second transistor having a second gate dielectric thickness and the first source/drain extension depth, and a third transistor having the second gate dielectric thickness and a second source/drain extension depth. The second source/drain extension depth is greater than the first source/drain extension depth. The second gate dielectric thickness is greater than the first gate dielectric thickness. The first transistor is used in a logic circuit. The third transistor is used in an I/O circuit. The second transistor is made without extra processing steps and is better than either the first or third transistor for coupling a power supply terminal to the logic circuit in a power-up mode and decoupling the power supply terminal from the logic circuit in a power-down mode.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: January 11, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Giri Nallapati, Sushama Davar, Robert E. Booth, Michael P. Woo, Mahbub M. Rashed
  • Publication number: 20100327368
    Abstract: High-k metal gate electrode structures are formed on the basis of a threshold adjusting semiconductor alloy formed in the channel region of one type of transistor, which may be accomplished on the basis of selective epitaxial growth techniques using an oxide hard mask growth mask. The hard mask may be provided with superior thickness uniformity on the basis of a wet oxidation process. Consequently, this may allow re-working substrates prior to the selective epitaxial growth process, for instance in view of queue time violations, while also providing superior transistor characteristics in the transistors that do not require the threshold adjusting semiconductor alloy.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 30, 2010
    Inventors: Stephan KRONHOLZ, Carsten REICHEL, Falk GRAETSCHE, Boris BAYHA
  • Publication number: 20100327374
    Abstract: An integrated circuit is disclosed having symmetric and asymmetric MOS transistors of the same polarity, oriented perpendicularly to each other, formed by concurrent halo ion, LDD ion and/or S/D ion implant processes using angled, rotated sub-implants which vary the tilt angle, dose and/or energy between rotations. Implanted halo, LDD and/or S/D source and drain regions formed by angled subimplants may have different extents of overlap with, or lateral separation from, gates of the two types of transistors, producing transistors with two different sets of electrical properties. A process for concurrently fabricating the two types of transistors is also disclosed. Specific embodiments of processes for concurrently forming symmetric and asymmetric transistors are disclosed.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: Kamel Benaissa, Greg C. Baldwin, Shaofeng Yu, Shashank S. Ekbote
  • Publication number: 20100327372
    Abstract: A semiconductor substrate according to one embodiment includes: a first transistor having a first gate insulating film formed on a semiconductor substrate, a first gate electrode formed on the first gate insulating film and a first sidewall formed on a side face of the first gate electrode, the first gate insulating film comprising a high-dielectric constant material as a base material, a part of the first sidewall contacting with the first gate insulating film and containing Si and N; and a second transistor having a second gate insulating film formed on the semiconductor substrate, a second gate electrode formed on the second gate insulating film and a second sidewall formed on a side face of the second gate electrode so as to contact with the second gate insulating film, the second gate insulating film comprising a high-dielectric constant material as a base material, a part of the second sidewall contacting with the second gate insulating film and containing Si and N, wherein at least one of an abundance
    Type: Application
    Filed: March 15, 2010
    Publication date: December 30, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masakazu Goto
  • Patent number: 7859078
    Abstract: A first insulating film is formed. Then, a gate electrode of a low voltage drive thin film transistor and a mask film for covering a region constituting a channel of a high voltage drive thin film transistor are formed with a molybdenum film on the first insulating film. An impurity is implanted into a semiconductor film while using the gate electrode and the mask film as a mask, thereby forming a high density impurity region. Thereafter, the impurity is activated by performing a thermal process under a condition at 500° C. and for 2 hours, for example. Subsequently, the mask film is removed and a second insulating film is formed. A gate electrode of the high voltage drive thin film transistor is formed with an aluminum alloy on the second insulating film.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 28, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Kazushige Hotta
  • Patent number: 7858479
    Abstract: An object is to provide a semiconductor device in which uniform properties are intended and high yields are provided. Process steps are provided in which variations are adjusted in doping and annealing process steps that are subsequent process steps so as to cancel in-plane variations in a substrate caused by dry etching to finally as well provide excellent in-plane consistency in a substrate.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: December 28, 2010
    Assignee: Panasonic Corporation
    Inventors: Bunji Mizuno, Yuichiro Sasaki, Ichiro Nakayama, Hiroyuki Ito, Tomohiro Okumura, Cheng-Guo Jin, Katsumi Okashita, Hisataka Kanada
  • Publication number: 20100320504
    Abstract: Two first semiconductor layers are on a silicon substrate at a given distance from each other. Two second semiconductor layers are on the respective first semiconductor layers and includes a material different from a material of the first semiconductor layers. A first channel region is formed like a wire between the two second semiconductor layers. A first insulating layer is around the first channel region. A second insulating film is on each of opposite side surfaces of the two first semiconductor layers. A third insulating film is on each of opposite side surfaces of the two second semiconductor layers. A gate electrode is on the first, second, and third insulating films. Film thickness of the second insulating film is larger than film thickness of the first insulating film.
    Type: Application
    Filed: December 11, 2009
    Publication date: December 23, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Takeshi KAJIYAMA
  • Publication number: 20100323484
    Abstract: A method of manufacturing a semiconductor device may include, but is not limited to the following processes. First and second gate electrodes are formed over a semiconductor substrate. An epitaxial layer is selectively formed over the semiconductor substrate. The epitaxial layer is adjacent to the first gate electrode. A first impurity is introduced into the semiconductor substrate through the epitaxial layer to form a first impurity region and directly into the semiconductor substrate to form a second impurity region. The first and second impurity regions are adjacent to the first and second gate electrodes, respectively. The first impurity region includes the epitaxial layer. A first bottom surface of the first impurity region is shallower in level than a second bottom surface of the second impurity region.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 23, 2010
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Yoichi FUKUSHIMA
  • Patent number: 7855116
    Abstract: In a nonvolatile semiconductor memory device which has a nonvolatile memory cell portion, a low-voltage operating circuit portion of a peripheral circuit region and a high-voltage operating circuit portion of the peripheral circuit region formed on a substrate and in which elements of the above portions are isolated from one another by filling insulating films, the upper surface of the filling insulating films in the high-voltage operating circuit portion lies above the surface of the substrate and the upper surface of at least part of the filling insulating films in the low-voltage operating circuit portion is pulled back to a portion lower than the surface of the substrate.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: December 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masahiro Kiyotoshi
  • Patent number: 7846800
    Abstract: A circuit having a circuit control terminal, a primary circuit and a protection circuit is provided. The primary circuit includes a primary control terminal and a primary gate oxide of a thickness T1. The primary control terminal is coupled to the circuit control terminal. The protection circuit having a protection control terminal is coupled to the primary circuit. The protection circuit includes a protection gate oxide of a second thickness T2 which is less than T1. The protection gate oxide reduces plasma induced damage in the primary circuit.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: December 7, 2010
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Chung Foong Tan, Jae Gon Lee, Lee Wee Teo, Elgin Quek, Chunshan Yin
  • Publication number: 20100301427
    Abstract: In a replacement gate approach in sophisticated semiconductor devices, a tantalum nitride etch stop material may be efficiently removed on the basis of a wet chemical etch recipe using ammonium hydroxide. Consequently, a further work function adjusting material may be formed with superior uniformity, while the efficiency of the subsequent adjusting of the work function may also be increased. Thus, superior uniformity, i.e., less pronounced transistor variability, may be accomplished on the basis of a replacement gate approach in which the work function of the gate electrodes of P-channel transistors and N-channel transistors is adjusted after completing the basic transistor configuration.
    Type: Application
    Filed: May 21, 2010
    Publication date: December 2, 2010
    Inventors: Markus Lenski, Klaus Hempel, Vivien Schroeder, Robert Binder, Joachim Metzger
  • Patent number: 7842561
    Abstract: A chip with increased impact resistance, attractive design and reduced cost, and a manufacturing method thereof are provided. A semiconductor integrated circuit is formed on a large glass substrate, and a part of data of a ROM included therein is determined by an ink jet method or a laser cutting method. Accordingly, the cost can be reduced without requiring a photomask, resulting in an inexpensive ID chip. Further, depending on the application, the semiconductor integrated circuit is transposed to a flexible substrate, thereby an ID chip with improved impact resistance and more attractive design can be achieved.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: November 30, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kiyoshi Kato
  • Patent number: 7838366
    Abstract: A method of fabricating a metal gate structure is provided. The method includes providing a semiconductor substrate with a planarized polysilicon material; patterned the planarized polysilicon material to form at least a first gate and a second gate, wherein the first gate is located on the active region and the second gate at least partially overlaps with the isolation region; forming an inter-layer dielectric material covering the gates; planarizing the inter-layer dielectric material until exposing the gates and forming an inter layer-dielectric layer; performing an etching process to remove the gates to form a first recess and a second recess within the inter-layer dielectric layer; forming a gate dielectric material on a surface of each of the recesses; forming at least a metal material within the recesses; and performing a planarization process.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 23, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Ting Lin, Che-Hua Hsu, Li-Wei Cheng
  • Publication number: 20100289091
    Abstract: A semiconductor device is provided with an SRAM cell unit. The SRAM cell unit is provided with a data storing section composed of a pair of drive transistors and a pair of load transistors; a data write section composed of a pair of access transistors; and a data read section composed of an access transistor and a drive transistor. Each of the transistors is provided with a semiconductor layer protruding from a base plane; a gate electrode extending on the both facing side planes over the semiconductor layer from above; a gate insulating film between a gate electrode and a semiconductor layer; and a source/drain region. Each semiconductor layer is arranged to have its longitudinal direction along a first direction. In the adjacent SRAM cell units in the first direction, all the corresponding transistors have the semiconductor layer of one transistor on a center line which is along the first direction of the semiconductor layer of the other transistor.
    Type: Application
    Filed: December 1, 2006
    Publication date: November 18, 2010
    Applicant: NEC CORPORATION
    Inventors: Koichi Takeda, Kiyoshi Takeuchi
  • Publication number: 20100289090
    Abstract: When forming sophisticated gate electrode structures of transistor elements of different type, the threshold adjusting channel semiconductor alloy may be provided prior to forming isolation structures, thereby achieving superior uniformity of the threshold adjusting material. Consequently, threshold variability on a local and global scale of P-channel transistors may be significantly reduced.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 18, 2010
    Inventors: Stephan Kronholz, Martin Trentzsch, Richard Carter
  • Publication number: 20100289094
    Abstract: When forming sophisticated gate electrode structures requiring a threshold adjusting semiconductor alloy for one type of transistor, a recess is formed in the corresponding active region, thereby providing superior process uniformity during the deposition of the semiconductor material. Due to the recess, any exposed sidewall surface areas of the active region may be avoided during the selective epitaxial growth process, thereby significantly contributing to enhanced threshold stability of the resulting transistor including the high-k metal gate stack.
    Type: Application
    Filed: May 7, 2010
    Publication date: November 18, 2010
    Inventors: Carsten Reichel, Thorsten Kammler, Annekathrin Zeun, Stephan Kronholz
  • Publication number: 20100283107
    Abstract: The integrated circuit comprises at least one MOS transistor (T) including a gate (GR) having a bottom part in contact with the gate oxide. Said bottom part has an inhomogeneous work function (WFB, WFA) along the length of the gate between the source and drain regions, the value of the work function being greater at the extremities of the gate than in the centre of the gate. The gate comprises a first material (A) in the centre and a second material (B) in the remaining part. Such configuration is obtained for example by silicidation.
    Type: Application
    Filed: December 7, 2006
    Publication date: November 11, 2010
    Inventors: Markus Muller, Alexandre Mondot, Arnaud Pouydebasque