On Insulating Substrate Or Layer (i.e., Soi Type) Patents (Class 438/311)
  • Publication number: 20120028432
    Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Applicant: Analog Devices, Inc.
    Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
  • Patent number: 8101501
    Abstract: To provide a method of manufacturing a semiconductor device, which prevents impurities from entering an SOI substrate. A source gas including one or plural kinds selected from a hydrogen gas, a helium gas, or halogen gas are excited to generate ions, and the ions are added to a bonding substrate to thereby form a fragile layer in the bonding substrate. Then, a region of the bonding substrate that is on and near the surface thereof, i.e., a region ranging from a shallower position than the fragile layer to the surface is removed by etching, polishing, or the like. Next, after attaching the bonding substrate to a base substrate, the bonding substrate is separated at the fragile layer to thereby form a semiconductor film over the base substrate. After forming the semiconductor film over the base substrate, a semiconductor element is formed using the semiconductor film.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 24, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Yoichi Iikubo, Shunpei Yamazaki
  • Patent number: 8101490
    Abstract: A method for manufacturing a semiconductor device includes: irradiating a growth substrate with laser light to focus the laser light into a prescribed position inside a crystal for a semiconductor device or inside the growth substrate, the crystal for the semiconductor device being formed on a first major surface of the growth substrate; moving the laser light in a direction parallel to the first major surface; and peeling off a thin layer including the crystal for the semiconductor device from the growth substrate, a wavelength of the laser light being longer than an absorption end wavelength of the crystal for the semiconductor device or the growth substrate, the laser light being irradiated inside a crystal for the semiconductor device or inside the growth substrate.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: January 24, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masanobu Ando, Toru Gotoda, Toru Kita
  • Patent number: 8097519
    Abstract: By removing material during the formation of trench openings of isolation structures in an SOI device, the subsequent implantation process for defining the well region for a substrate diode may be performed on the basis of moderately low implantation energies, thereby increasing process uniformity and significantly reducing cycle time of the implantation process. Thus, enhanced reliability and stability of the substrate diode may be accomplished while also providing a high degree of compatibility with conventional manufacturing techniques.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: January 17, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Maciej Wiatr, Markus Forsberg, Roman Boschke
  • Publication number: 20110291242
    Abstract: In a semiconductor device in which an IGBT, a control circuit for the IGBT and so on are formed on an SOI substrate divided by trenches, the invention is directed to providing the IGBT with a higher breakdown voltage, an enhanced turn-off characteristic and so on. An N type epitaxial layer is formed on a dummy semiconductor substrate, a trench is formed in the N type epitaxial layer, an N type buffer layer and then a P type embedded collector layer are formed on the sidewall of the trench and the front surface of the N type epitaxial layer, and the bottom of the trench and the P+ type embedded collector layer are covered by an embedded insulation film. The embedded insulation film is covered by a polysilicon film, and a P type semiconductor substrate is attached to the polysilicon film with an insulation film being interposed therebetween.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 1, 2011
    Applicant: ON Semiconductor Trading, Ltd. a Bermuda limited liability company
    Inventor: Mitsuru SOMA
  • Patent number: 8062957
    Abstract: The invention relates to a method for preparing a surface of a semiconductor substrate by oxidizing the surface of the semiconductor substrate to thereby transform the natural oxide into an artificial oxide and then removing the artificial oxide, in particular to obtain an oxide-free substrate surface.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: November 22, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Radouane Khalid
  • Patent number: 8058095
    Abstract: Methods and devices associated with phase change cell structures are described herein. In one or more embodiments, a method of forming a phase change cell structure includes forming a substrate protrusion that includes a bottom electrode, forming a phase change material on the substrate protrusion, forming a conductive material on the phase change material, and removing a portion of the conductive material and a portion of the phase change material to form an encapsulated stack structure.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 15, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 8048754
    Abstract: An object is to provide a single crystal semiconductor layer with extremely favorable characteristics without performing CMP treatment or heat treatment at high temperature. Further, an object is to provide a semiconductor substrate (or an SOI substrate) having the above single crystal semiconductor layer. A first single crystal semiconductor layer is formed by a vapor-phase epitaxial growth method on a surface of a second single crystal semiconductor layer over a substrate; the first single crystal semiconductor layer and a base substrate are bonded to each other with an insulating layer interposed therebetween; and the first single crystal semiconductor layer and the second single crystal semiconductor layer are separated from each other at an interface therebetween so as to provide the first single crystal semiconductor layer over the base substrate with the insulating layer interposed therebetween. Thus, an SOI substrate can be manufactured.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: November 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Fumito Isaka, Sho Kato, Takashi Hirose
  • Patent number: 8048753
    Abstract: Shallow trench isolation silicon-on-insulator (SOI) devices are formed with improved charge protection. Embodiments include an SOI film diode and a P+ substrate junction as a charging protection device. Embodiments also include a conductive path from the SOI transistor drain, through a conductive contact, a metal line, a second conductive contact, an SOI diode, isolated from the transistor, a third conductive contact, a second conductive line, and a fourth conductive contact to a P+-doped substrate contact in the bulk silicon layer of the SOI substrate.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: November 1, 2011
    Assignee: Globalfoundries Inc.
    Inventors: Jingrong Zhou, David Wu, James F. Buller
  • Patent number: 8048773
    Abstract: A single crystal semiconductor separated from a single crystal semiconductor substrate is formed partly over a supporting substrate with a buffer layer provided therebetween. The single crystal semiconductor is separated from the single crystal semiconductor substrate by irradiation with accelerated ions, formation of a fragile layer by the ion irradiation, and heat treatment. A non-single crystal semiconductor layer is formed over the single crystal semiconductor and irradiated with a laser beam to be crystallized, whereby an SOI substrate is manufactured.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: November 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masaki Koyama, Kosei Noda, Kenichiro Makino, Hideto Ohnuma, Kosei Nei
  • Patent number: 8043890
    Abstract: The present invention relates to a device and a method for dividing up substrates (2) in wafer form (e.g. wafers), which is used in the semiconductor industry, MST (microstructure technology) industry and photovoltaic industry, whereby improved reliability of the process and lower reject rates are accomplished. This object is achieved according to the invention by using adhesion forces that act between the substrates in wafer form and the devices (1) thereby used.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: October 25, 2011
    Inventors: Wolfgang Coenen, Nils Hendrik Coenen
  • Patent number: 8039351
    Abstract: A method of fabricating a hetero-junction bipolar transistor (HBT) is disclosed, where the HBT has a structure incorporating a hetero-junction bipolar structure disposed on a substrate including of silicon crystalline orientation <110>. The hetero-junction bipolar structure may include an emitter, a base and a collector. The substrate may include a shallow-trench-isolation (STI) region and a deep trench region on which the collector is disposed. The substrate may include of a region of silicon crystalline orientation <100> in addition to silicon crystalline orientation <110> to form a composite substrate by using hybrid orientation technology (HOT). The region of crystalline orientation <100> may be disposed on crystalline orientation <110>. Alternatively, the region of silicon crystalline orientation <110> may be disposed on crystalline orientation <100>.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Rajendran Krishnasamy
  • Patent number: 8035196
    Abstract: The present invention provides a method of forming a bipolar transistor. The method includes doping a silicon layer with a first type of dopant and performing a first implant process to implant dopant of a second type opposite the first type in the silicon layer. The implanted dopant has a first dopant profile in the silicon layer. The method also includes performing a second implant process to implant additional dopant of the second type in the silicon layer. The additional implanted dopant has a second dopant profile in the silicon layer different than the first dopant profile. The method further includes growing an insulating layer formed over the silicon layer by consuming a portion of the silicon layer and the first type of dopant.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: October 11, 2011
    Assignee: Zarlink Semiconductor (US) Inc.
    Inventors: Thomas J. Krutsick, Christopher J. Speyer
  • Patent number: 8030139
    Abstract: A method of producing a thin film transistor includes a gate electrode formation step that forms a gate electrode on a substrate, a gate insulating layer formation step that forms a gate insulating layer on the substrate in such a manner as to cover the gate electrode formed in the gate electrode formation step, a source/drain electrodes formation step that forms a source electrode and a drain electrode on the gate insulating layer, and a semiconductor layer formation step that applies an aqueous solution for semiconductor layer formation which is an aqueous solution comprising at least a single wall carbon nanotube and a surfactant between the source electrode and the drain electrode formed in the source/drain electrodes formation step by a coating process to form a semiconductor layer comprising the single wall carbon nanotube.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: October 4, 2011
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Takeshi Asano, Taishi Takenobu, Masashi Shiraishi
  • Publication number: 20110233727
    Abstract: The present invention discloses a vertical SOI bipolar junction transistor and a manufacturing method thereof. The bipolar junction transistor includes an SOI substrate from down to up including a body region, a buried oxide layer and a top silicon film; an active region located in the top silicon film formed by STI process; a collector region located in the active region deep close to the buried oxide layer formed by ion implantation; a base region located in the active region deep close to the top silicon film formed by ion implantation; an emitter and a base electrode both located over the base region; a side-wall spacer located around the emitter and the base electrode. The present invention utilizing a simple double poly silicon technology not only can improve the performance of the transistor, but also can reduce the area of the active region in order to increase the integration density.
    Type: Application
    Filed: July 14, 2010
    Publication date: September 29, 2011
    Applicant: SHANGHAI INSTITUTE OF MICROELECTRONICS AND INFORMATION TECHNOLOGY, CHINESE ACADEMY
    Inventors: Jing Chen, Jiexin Luo, Qingqing Wu, Jianhua Zhou, Xiaolu Huang, Xi Wang
  • Patent number: 8026145
    Abstract: A process for the preparation of low resistivity arsenic or phosphorous doped (N+/N++) silicon wafers which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, reliably form oxygen precipitates.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 27, 2011
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Vladimir Voronkov, Gabriella Borionetti
  • Patent number: 8022506
    Abstract: A semiconductor on insulator device has an insulator layer, an active layer (40) on the insulator layer, a lateral arrangement of collector (10), emitter (30) and base (20) on the active layer, and a high Base-dose region (70) extending under the emitter towards the insulator to suppress vertical current flowing under the emitter. This region (70) reduces the dependence of current-gain and other properties on the substrate (Handle-wafer) voltage. This region can be formed of the same doping type as the base, but having a stronger doping. It can be formed by masked alignment in the same step as an n type layer used as the body for a P-type DMOS transistor.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: September 20, 2011
    Assignee: NXP B.V.
    Inventor: Adrianus W. Ludikhuize
  • Patent number: 8003473
    Abstract: Embodiments of the invention provide a method of fabricating a semiconductor device. The method includes defining a sub-collector region in a layer of doped semiconductor material; forming an active region, a dielectric region, and a reach-through region on top of the layer of doped semiconductor material with the dielectric region separating the active region from the reach-through region; and siliciding the reach-through region and a portion of the sub-collector region to form a partially silicided conductive pathway. A semiconductor device made thereby is also provided.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Francois Pagette, Christian Lavoie, Anna Topol
  • Patent number: 7985638
    Abstract: A semiconductor device manufacturing method which sequentially forms a gate oxide film and gate electrode material over a semiconductor layer of an SOI substrate and patterns the material into gate electrodes. The method further comprises the steps of forming sidewalls made of an insulator to cover side surfaces of the gate electrode; ion-implanting into the semiconductor layer on both sides of the gate electrode to form drain/source regions; partially etching the sidewalls to expose upper parts of the side surfaces of the gate electrode; depositing a metal film to cover the tops of the drain/source regions and of the gate electrode and the exposed upper parts of the side surfaces of the gate electrode; and performing heat treatment on the SOI substrate to form silicide layers respectively in the surfaces of the gate electrode and of the drain/source regions.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: July 26, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Masao Okihara
  • Patent number: 7986029
    Abstract: A semiconductor structure having a hybrid crystal orientation is provided. The semiconductor structure includes an insulator layer, e.g., a buried oxide (BOX), on a first semiconductor layer, and a second semiconductor layer on the buried oxide, wherein the first and second semiconductor layers have a first and a second crystal orientation, respectively. A first region of the second semiconductor layer is replaced with an epitaxially grown layer of the first semiconductor layer, thereby providing a substrate having a first region with a first crystal orientation and a second region with a second crystal orientation. An isolation structure is formed to isolate the first and second regions. Thereafter, NMOS and PMOS transistors may be formed on the substrate in the region having the crystal orientation that is the most appropriate.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: July 26, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chiang-Ming Chuang, Kuang-Hsin Chen, I-Lu Wu
  • Patent number: 7982281
    Abstract: According to one embodiment of the present invention, a SOI device includes a first composite structure including a substrate layer, a substrate isolation layer being disposed on or above the substrate layer, a buried layer being disposed on or above the substrate isolation layer, and a semiconductor layer being disposed on or above the buried layer; a trench structure being formed within the first composite structure; and a second composite structure provided on the side walls of the trench structure, wherein the second composite structure includes a first isolation layer covering the part of the side walls formed by the semiconductor layer and formed by an upper part of the buried layer; and a contact layer covering the isolation layer and the part of the side walls formed by a lower part of the buried layer.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: July 19, 2011
    Assignee: Infineon Technologies AG
    Inventor: Gabriel Dehlinger
  • Patent number: 7981754
    Abstract: To provide a manufacturing method of a semiconductor substrate and a manufacturing method of a semiconductor device, which prevent reduction in breakdown voltage of a gate oxide film of a device formed in a semiconductor substrate to improve a reliability of the gate oxide film. A manufacturing method of a semiconductor substrate according to the present invention includes: exposing a silicon surface of an active layer substrate 1 made of single-crystal silicon, to which a semiconductor device is formed; forming an oxide film on a support substrate 2 made of single-crystal silicon; and bonding the silicon surface of the active layer substrate 1 to the oxide film formed on the support substrate 2. The silicon surface of the active layer substrate 1 is exposed by removing a spontaneous oxidation film 7 formed on the surface.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: July 19, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroaki Katou
  • Patent number: 7981327
    Abstract: Disclosed is a method for producing a metal particle dispersion wherein a metal compound is reduced by using carbodihydrazide represented by the formula (1) below or a polybasic acid polyhydrazide represented by the formula (2) below (wherein R represents an n-valent polybasic acid residue) in a liquid medium. By reducing the metal compound in the presence of a compound having a function preventing discoloration of the metal, there can be obtained a metal particle dispersion having excellent discoloration preventing properties. Metal particles produced by such methods have a uniform particle diameter and are excellent in dispersion stability. By using a conductive resin composition or conductive ink containing a metal particle dispersion obtained by such production methods, there can be formed a conductive coating film, such as a conductive circuit or an electromagnetic layer, having good characteristics.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: July 19, 2011
    Assignee: Toyo Ink Mfg. Co. Ltd.
    Inventors: Kaori Sakaguchi, Kinya Shiraishi
  • Patent number: 7977178
    Abstract: A semiconductor device includes a buried insulator layer formed on a bulk substrate; a first type semiconductor material formed on the buried insulator layer, and corresponding to a body region of a field effect transistor (FET); a second type of semiconductor material formed over the buried insulator layer, adjacent opposing sides of the body region, and corresponding to source and drain regions of the FET; the second type of semiconductor material having a different bandgap than the first type of semiconductor material; wherein a source side p/n junction of the FET is located substantially within whichever of the first and the second type of semiconductor material having a lower bandgap, and a drain side p/n junction of the FET is located substantially entirely within whichever of the first and the second type of semiconductor material having a higher bandgap.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Seong-Dong Kim, Zhijiong Lou, Huilong Zhu
  • Patent number: 7972941
    Abstract: A gate structure is formed on a substrate. An insulating interlayer is formed covering the gate structure. The substrate is heat treated while exposing a surface of the insulating interlayer to a hydrogen gas atmosphere. A silicon nitride layer is formed directly on the interlayer insulating layer after the heat treatment and a metal wiring is formed on the insulating interlayer. The metal wiring may include copper. Heat treating the substrate while exposing a surface of the interlayer insulating layer to a hydrogen gas atmosphere may be preceded by forming a plug through the first insulating interlayer that contacts the substrate, and the metal wiring may be electrically connected to the plug. The plug may include tungsten.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Won Hong, Gil-Heyun Choi, Jong-Myeong Lee, Geum-Jung Seong
  • Publication number: 20110143513
    Abstract: The disclosed subject matter provides a method of forming a bipolar transistor. The method includes depositing a first insulating layer over a first layer of material that is doped with a dopant of a first type. The first layer is formed over a substrate. The method also includes modifying a thickness of the first oxide layer based on a target dopant profile and implanting a dopant of the first type in the first layer. The dopant is implanted at an energy selected based on the modified thickness of the first insulating layer and the target dopant profile.
    Type: Application
    Filed: February 15, 2011
    Publication date: June 16, 2011
    Inventors: Thomas J. Krutsick, Christopher J. Speyer
  • Patent number: 7955937
    Abstract: By forming bulk-like transistors in sensitive RAM areas of otherwise SOI-based CMOS circuits, a significant savings in valuable chip area may be achieved since the RAM areas may be formed on the basis of a bulk transistor configuration, thereby eliminating hysteresis effects that may typically be taken into consideration by providing transistors of increased transistor width or by providing body ties. Hence, the benefit of high switching speed may be maintained in speed-critical circuitry, such as CPU cores, while at the same time the RAM circuit may be formed in a highly space-efficient manner.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: June 7, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Manfred Horstmann, Thomas Feudel, Thomas Heller
  • Patent number: 7955938
    Abstract: An apparatus for supplying electrical power to a movable member. The apparatus includes a fixed member, the movable member moving relative to the fixed member, a flexible wiring member having an end connected to the movable member and another end connected to the fixed member, configured to transmit the electrical power from the fixed member to the movable member, and a cooling member configured to cool the fixed member.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: June 7, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takao Ukaji
  • Patent number: 7955940
    Abstract: A method of forming a SOI substrate, diodes in the SOI substrate and electronic devices in the SOI substrate and an electronic device formed using the SOI substrate. The method of forming the SOI substrate includes forming an oxide layer on a silicon first substrate; ion-implanting hydrogen through the oxide layer into the first substrate, to form a fracture zone in the substrate; forming a doped dielectric bonding layer on a silicon second substrate; bonding a top surface of the bonding layer to a top surface of the oxide layer; thinning the first substrate by thermal cleaving of the first substrate along the fracture zone to form a silicon layer on the oxide layer to formed a bonded substrate; and heating the bonded substrate to drive dopant from the bonding layer into the second substrate to form a doped layer in the second substrate adjacent to the bonding layer.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas Walter Dyer, Junedong Lee, Dominic J. Schepis
  • Patent number: 7951685
    Abstract: The present invention provides a method for manufacturing a gallium nitride semiconductor epitaxial crystal substrate with a dielectric film which has a low gate leak current and negligibly low gate lag, drain lag, and current collapse characteristics. The method for manufacturing a semiconductor epitaxial crystal substrate is a method for manufacturing a semiconductor epitaxial crystal substrate in which a dielectric layer of a nitride dielectric material or an oxide dielectric material in an amorphous form functioning as a passivation film or a gate insulator is provided on a surface of a nitride semiconductor crystal layer grown by metal organic chemical vapor deposition. In the method, after the nitride semiconductor crystal layer is grown in an epitaxial growth chamber, the dielectric layer is grown on the nitride semiconductor crystal layer in the epitaxial growth chamber.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: May 31, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hiroyuki Sazawa, Naohiro Nishikawa, Masahiko Hata
  • Patent number: 7951660
    Abstract: A method for fabricating a metal-oxide-semiconductor device structure. The method includes introducing a dopant species concurrently into a semiconductor active layer that overlies an insulating layer and a gate electrode overlying the semiconductor active layer by ion implantation. The thickness of the semiconductor active layer, the thickness of the gate electrode, and the kinetic energy of the dopant species are chosen such that the projected range of the dopant species in the semiconductor active layer and insulating layer lies within the insulating layer and a projected range of the dopant species in the gate electrode lies within the gate electrode. As a result, the semiconductor active layer and the gate electrode may be doped simultaneously during a single ion implantation and without the necessity of an additional implant mask.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: May 31, 2011
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Larry Alan Nesbit
  • Patent number: 7943530
    Abstract: Prototype semiconductor structures each including a semiconductor link portion and two adjoined pad portions are formed by lithographic patterning of a semiconductor layer on a dielectric material layer. The sidewalls of the semiconductor link portions are oriented to maximize hole mobility for a first-type semiconductor structures, and to maximize electron mobility for a second-type semiconductor structures. Thinning by oxidation of the semiconductor structures reduces the width of the semiconductor link portions at different rates for different crystallographic orientations. The widths of the semiconductor link portions are predetermined so that the different amount of thinning on the sidewalls of the semiconductor link portions result in target sublithographic dimensions for the resulting semiconductor nanowires after thinning.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Lidija Sekaric, Tymon Barwicz, Dureseti Chidambarrao
  • Patent number: 7939415
    Abstract: By forming a first portion of a substrate contact in an SOI device on the basis of a trench capacitor process, the overall manufacturing process for patterning contact elements may be enhanced since the contacts may only have to extend down to the level of the semiconductor layer. Since the lower portion of the substrate contact may be formed concurrently with the fabrication of trench capacitors, complex patterning steps may be avoided which may otherwise have to be introduced when the substrate contacts are to be formed separately from contact elements connecting to the device level.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 10, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Ralf Richter
  • Patent number: 7939416
    Abstract: A method of manufacturing a bipolar transistor is compatible with FinFET processing. A collector region (18) is formed and patterned, base contact regions (26) formed on either side, and a gap formed between the base contact region. A base (28), spacers (30) and an emitter (32) are formed in the gap.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: May 10, 2011
    Assignee: NXP B.V.
    Inventors: Sebastien Nuttinck, Erwin Hijzen, Johannes J. T. M. Donkers, Guillaume L. R. Boccardi
  • Patent number: 7939454
    Abstract: A method for packaging solar cell module. The method includes providing a first substrate member and forming a plurality of thin film photovoltaic cells overlying the surface region of the first substrate member. A first connector member and a second connector member having a second thickness are operably coupled to each of the plurality of thin film photovoltaic cells. A first spacer element and a second spacer element overly portions of the surface region of the first substrate member. The method provides a laminating material overlying the plurality of thin film photovoltaic cells, the spacer elements, and the connector members. A second substrate member overlies the laminating material. A lamination process is performed to form the solar cell module by maintaining a spatial gap occupied by the laminating material between an upper surface regions of the connector members and the second substrate member using the spacer elements.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: May 10, 2011
    Assignee: Stion Corporation
    Inventor: Chester A. Farris, III
  • Patent number: 7939417
    Abstract: A structure is disclosed including a substrate including an insulator layer on a bulk layer, and a bipolar transistor in a first region of the substrate, the bipolar transistor including at least a portion of an emitter region in the insulator layer. Another disclosed structure includes an inverted bipolar transistor in a first region of a substrate including an insulator layer on a bulk layer, the inverted bipolar transistor including an emitter region, and a back-gated transistor in a second region of the substrate, wherein a back-gate conductor of the back-gated transistor and at least a portion of the emitter region are in the same layer of material. A method of forming the structures including a bipolar transistor and back-gated transistor together is also disclosed.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, William F. Clark, Jr., Edward J. Nowak
  • Patent number: 7939412
    Abstract: An electronic device can include an insulating layer and a fin-type transistor structure. The fin-type structure can have a semiconductor fin and a gate electrode spaced apart from each other. A dielectric layer and a spacer structure can lie between the semiconductor fin and the gate electrode. The semiconductor fin can include channel region including a portion associated with a relatively higher VT lying between a portion associated with a relatively lower VT and the insulating layer. In one embodiment, the supply voltage is lower than the relatively higher VT of the channel region. A process for forming the electronic device is also disclosed.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: May 10, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, James D. Burnett
  • Publication number: 20110101500
    Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: Analog Devices, Inc.
    Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
  • Publication number: 20110101486
    Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: Analog Devices, Inc.
    Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, Bernard Patrick Stenson
  • Patent number: 7927956
    Abstract: A semiconductor substrate having a silicon layer is provided. In one embodiment, the substrate is a silicon-on-insulator (SOI) substrate having an oxide layer underlying the silicon layer. An amorphous or polycrystalline silicon germanium layer is formed overlying the silicon layer. Alternatively, germanium is implanted into a top portion of the silicon layer to form an amorphous silicon germanium layer. The silicon germanium layer is then oxidized to convert the silicon germanium layer into a silicon dioxide layer and to convert at least a portion of the silicon layer into germanium-rich silicon. The silicon dioxide layer is then removed prior to forming transistors using the germanium-rich silicon. In one embodiment, the germanium-rich silicon is selectively formed using a patterned masking layer over the silicon layer and under the silicon germanium layer. Alternatively, isolation regions may be used to define local regions of the substrate in which the germanium-rich silicon is formed.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: April 19, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Alexander L. Barr, Mariam G. Sadaka, Ted R. White
  • Patent number: 7927972
    Abstract: Even if an oxygen ion implanted layer in a wafer for active layer is not a completely continuous SiO2 layer but a layer mixed partially with Si or SiOx, it is removed by here is provided a method for producing a bonded wafer in which it is possible to remove an oxygen ion implanted layer effectively as it is by repetitive treatment with an oxidizing solution and HF solution at a step of removing the oxygen ion implanted layer in a bonded wafer.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: April 19, 2011
    Assignee: Sumco Corporation
    Inventors: Akihiko Endo, Tatsumi Kusaba
  • Patent number: 7927962
    Abstract: A method of manufacturing a semiconductor device and a semiconductor device manufactured by the method, the method comprising: (a) forming a buffer layer on a semiconductor substrate; (b) patterning the buffer layer in a first direction to form buffer layer patterns having lateral surfaces and being spaced from each other at predetermined intervals; (c) forming a semiconductor epitaxial layer on and between the buffer layer patterns; (d) forming a first trench in the semiconductor epitaxial layer in a second direction perpendicular to the first direction to expose lateral surfaces of the buffer layer patterns; (e) selectively removing the buffer layer patterns exposed by the first trench to form spaces; (f) forming buried insulation films in the spaces formed by removal of the buffer layer patterns, a portion of semiconductor epitaxial layer being disposed between the buried insulation films; (g) removing a portion of the semiconductor epitaxial layer disposed between the buried insulation films to form a sec
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: April 19, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Min Soo Yoo
  • Patent number: 7927957
    Abstract: A bonded silicon wafer is produced by a method including an oxygen ion implantation step on a silicon wafer for active layer having the specified wafer face; a step of bonding the silicon wafer for active layer to a silicon wafer for support; a first heat treatment step; an inner SiO2 layer exposing step; a step of removing the inner SiO2 layer; and a planarizing step of polishing a silicon wafer composite or subjecting the silicon wafer composite to a heat treatment in a reducing atmosphere (a second heat treatment step).
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: April 19, 2011
    Assignee: SUMCO Corporation
    Inventors: Tatsumi Kusaba, Akihiko Endo, Hideki Nishihata, Nobuyuki Morimoto
  • Patent number: 7915148
    Abstract: A silicon on insulator (SOI) substrate is converted into a strained SOI substrate by first providing an SOI substrate having a thin silicon layer and an insulator and at least one first epitaxial relaxing layer on the SOI-substrate. Then a defect region is produced in a layer by implantation of SI ions above the silicon layer of the SOI-substrate. Finally the first layer is relaxed by a thermal treatment in an inert atmosphere to simultaneously strain the silicon layer of the SOI-substrate via dislocation mediated strain transfer and to produce the strained silicon layer directly on the insulator.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: March 29, 2011
    Assignee: Forschungszentrum Julich GmbH
    Inventor: Siegfried Mantl
  • Patent number: 7910448
    Abstract: Fabrication of a mono-crystalline emitter using a combination of selective and differential growth modes. The steps include providing a trench (14) formed on a silicon substrate (16) having opposed silicon oxide side walls (12); selectively growing a highly doped mono-crystalline layer (18) on the silicon substrate in the trench; and non-selectively growing a silicon layer (20) over the trench in order to form an amorphous polysilicon layer over the silicon oxide sidewalls.
    Type: Grant
    Filed: January 22, 2005
    Date of Patent: March 22, 2011
    Assignee: NXP B.V.
    Inventors: Philippe Meunier-Beillard, Petrus Magnee
  • Patent number: 7906439
    Abstract: The invention provides a method of fabricating and electromechanical device having an active element on at least one substrate, the method having the steps of: a) making a heterogeneous substrate having a first portion, an interface layer, and a second portion, the first portion including one or more buried zones sandwiched between first and second regions formed in a first monocrystalline material, the first region extending to the surface of the first portion, and the second region extending to the interface layer, at least one said buried zone being made at least in part out of a second monocrystalline material so as to make it selectively attackable relative to the first and second regions; b) making openings from the surface of the first portion and through the first region, which openings open out to at least one said buried zone; and c) etching at least part of at least one buried zone to form at least one cavity so as to define at least one active element that is at least a portion of the second regio
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: March 15, 2011
    Assignee: Commissarit a l'Energie Atomique
    Inventors: François Perruchot, Bernard Diem, Vincent Larrey, Laurent Clavelier, Emmanuel Defay
  • Patent number: 7906403
    Abstract: Consistent with an example embodiment, there is a bipolar transistor with a reduced collector series resistance integrated in a trench of a standard CMOS shallow trench isolation region. The bipolar transistor includes a collector region manufactured in one fabrication step, therefore having a shorter conductive path with a reduced collector series resistance, improving the high frequency performance of the bipolar transistor. The bipolar transistor further includes a base region with a first part on a selected portion of the collector region (6, 34), which is on the bottom of the trench, and an emitter region on a selected portion of the first part of the base region. A base contact electrically contacts the base region on a second part of the base region, which is on an insulating region. The collector region is electrically contacted on top of a protrusion with a collector contact.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: March 15, 2011
    Assignee: NXP B.V.
    Inventors: Johannes JTM Donkers, Wibo D. Van Noort, Philippe Meunier-Beillard, Sebastien Nuttinck, Erwin Hujzen, Francois Neuilly
  • Patent number: 7898008
    Abstract: A bipolar device is integrated in an active layer, wherein delimitation trenches surround respective active areas housing bipolar transistors of complementary types. Each active area accommodates a buried layer; a well region extending on top of the buried layer; a top sinker region extending between the surface of the device and the well region; a buried collector region extending on top of the well region and laterally with respect to the top sinker region; a base region, extending on top of the buried collector region laterally with respect to the top sinker region; and an emitter region extending inside the base region. The homologous regions of the complementary transistors have a similar doping level, being obtained by ion-implantation of epitaxial layers wherein the concentration of dopant added during the growth is very low, possibly zero.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 1, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Piero Giorgio Fallica, Roberto Modica
  • Patent number: 7892934
    Abstract: On the side of a surface (the bonding surface side) of a single crystal Si substrate, a uniform ion implantation layer is formed at a prescribed depth (L) in the vicinity of the surface. The surface of the single crystal Si substrate and a surface of a transparent insulating substrate as bonding surfaces are brought into close contact with each other, and bonding is performed by heating the substrates in this state at a temperature of 350° C. or below. After this bonding process, an Si—Si bond in the ion implantation layer is broken by applying impact from the outside, and a single crystal silicon thin film is mechanically peeled along a crystal surface at a position equivalent to the prescribed depth (L) in the vicinity of the surface of the single crystal Si substrate.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: February 22, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Makoto Kawai, Yoshihiro Kubota, Atsuo Ito, Koichi Tanaka, Yuuji Tobisaka, Shoji Akiyama
  • Publication number: 20110034001
    Abstract: A method of manufacturing a bipolar transistor is compatible with FinFET processing. A collector region (18) is formed and patterned, base contact regions (26) formed on either side, and a gap formed between the base contact region. A base (28), spacers (30) and an emitter (32) are formed in the gap.
    Type: Application
    Filed: March 30, 2009
    Publication date: February 10, 2011
    Applicant: NXP B.V.
    Inventors: Sebastien Nuttinck, Erwin Hijzen, Johannes J. T. M. Donkers, Guillaume L. R. Boccardi