Making Emissive Array Patents (Class 438/34)
  • Patent number: 9070779
    Abstract: A metal oxide thin film transistor includes a metal oxide semiconductor channel with the metal oxide semiconductor having a conduction band with a first energy level. The transistor further includes a layer of passivation material covering at least a portion of the metal oxide semiconductor channel. The passivation material has a conduction band with a second energy level equal to, or less than 0.5 eV above the first energy level.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: June 30, 2015
    Assignee: CBRITE Inc.
    Inventors: Chan-Long Shieh, Fatt Foong, Juergen Musolf, Gang Yu
  • Patent number: 9064978
    Abstract: The pixel structure includes a scan line, a data line, a thin-film transistor, a first electrode layer, a protective layer and a second electrode layer. The thin-film transistor is electrically connected to the scan line and the data line, and includes a gate, an oxide semiconductor layer, an insulating layer, a source and a drain. The first electrode layer is in the same layer as the oxide semiconductor layer, and is surrounded by the scan line and the data line. The second electrode layer is located on the first electrode layer, and the protective layer is located between the first electrode layer and the second electrode layer, wherein one of the first and second electrode layers is electrically connected to the thin-film transistor, and the other is connected to a common voltage. The second electrode layer includes a plurality of slits exposing an area of the first electrode layer.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: June 23, 2015
    Assignee: HannStar Display Corporation
    Inventors: Hsien-Tang Hu, Chang-Ming Chao, Mu-Kai Kang, Jui-Chi Lai
  • Patent number: 9046684
    Abstract: A method of treating a surface includes providing an object and applying a masking layer to a target surface area of the object. A sacrificial material is applied to a non-target surface area of the object. The method also includes removing the masking layer from the target surface area. The target surface area is exposed to a substance that etches or coats the target surface area. The sacrificial material from the non-target surface area of the object is removed, leaving the target surface area of the object etched or coated by the substance while the non-target surface area is not etched or coated by the substance.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: June 2, 2015
    Assignee: Google Inc.
    Inventors: Casey Feinstein, Matthieu Liger, Chia-Jean Wang
  • Patent number: 9048461
    Abstract: A method of manufacturing an Organic Light Emitting Diode (OLED) pixel is disclosed. The method includes forming an anode and forming a pixel definition layer. The pixel definition layer includes a first sub-pixel area, a second sub-pixel area, a third sub-pixel area corresponding to the third sub-pixel, and a pixel spacing area. The first sub-pixel, the second sub-pixel and the third sub-pixel are separated from each other by the pixel spacing area. The method also includes coating a long-chain fatty acid ester layers on the pixel spacing area, the second sub-pixel area, and the third sub-pixel area, coating light emitting layers on the sub-pixel areas and on the long-chain fatty acid ester layers, and ashing the substrate and removing the long-chain fatty acid ester layers to form light emitting patterns. The method also includes forming a cathode.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: June 2, 2015
    Assignees: Shanghai Tianma Micro-Electronics Co., Ltd., Tianma Micro-Electronics Co., Ltd.
    Inventors: Yujun Li, Zhensheng Lu, Bengang Zhao
  • Publication number: 20150147836
    Abstract: The disclosure provides a cleaning agent composition for a flat panel display device, including: polyaminocarboxylic acid; alkali base; a nonionic surfactant; and a fluoride component. The cleaning agent composition for the flat panel display device can effectively remove metal oxides and organic contaminants on the substrate without impairing a transparent conductive layer.
    Type: Application
    Filed: July 15, 2014
    Publication date: May 28, 2015
    Inventors: In-Bae Kim, Jong-Hyun Choung, Young Min Moon, Hong Sick Park, Hyeon Jeong Sang, Jae Woo Jeong, Min Hee Kim, Young Jin Park, Sang-Moon Yun, Sang Dai Lee, Hyun Cheol Jeong
  • Publication number: 20150144906
    Abstract: A display unit includes: an organic light emitting element including a first electrode, an organic layer, and a second electrode in order, the organic layer including a conductive layer; and an auxiliary electrode configured to be electrically connected to the second electrode via the conductive layer in the organic layer.
    Type: Application
    Filed: October 21, 2014
    Publication date: May 28, 2015
    Inventor: Tomoyoshi Ichikawa
  • Publication number: 20150144951
    Abstract: A thin film transistor array panel including: an insulation substrate, a gate line provided on the insulation substrate and including a gate electrode, a gate insulating layer provided on the gate line, a semiconductor layer provided on the gate insulating layer, and a source electrode and a drain electrode provided on the semiconductor layer and separated from each other, and the gate insulating layer includes a fluorinated silicon oxide (SiOF) layer, and the gate electrode, the semiconductor layer, the source electrode, and the drain electrode form a thin film transistor, and a threshold voltage shift value of the thin film transistor is substantially less than 4.9 V.
    Type: Application
    Filed: April 21, 2014
    Publication date: May 28, 2015
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Doo-Na Kim, Hyeon Jun Lee, Chang Ok Kim, Yoon Ho Kim, Ki Seong Seo, Jung Yun Jo
  • Publication number: 20150147838
    Abstract: A manufacturing method of a display device of the invention includes a step of forming an organic layer in correspondence with respective pixels on a substrate having a display area and a non-display area, the step of forming the organic layer includes a step of depositing a material of the organic layer using a mask having a frame-like frame and a mask foil fixed to the frame, the mask foil has openings provided in an area corresponding to the display area and dummy holes provided along an outer periphery of the area corresponding to the display area in an area corresponding to the non-display area, and an area of a plan view shape of the dummy hole adjacent to a midpoint of a side of the outer periphery is larger than an area of a plan view shape of the dummy hole adjacent to a corner of the outer periphery.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventor: Takeshi OOKAWARA
  • Publication number: 20150144974
    Abstract: The present invention discloses a vertical AC LED element and fabrication method thereof, wherein the vertical AC LED element comprises a conductive substrate (102); a light-emitting module on the conductive substrate (102), including two horizontally arranged in parallel and mutually-isolated LEDs; wherein the first and second LEDs include a first semiconductor layer (111), a light-emitting layer (112) and a second semiconductor layer (113) from top down; a first insulating layer (131) is arranged between the second semiconductor layer (113) of the first LED and the conductive substrate (102) for mutual isolation; an ohmic contact is formed between the second semiconductor layer (113) of the second LED and the conductive substrate (102); a first conductive structure that connects the first semiconductor layer (111) of the first LED, the second semiconductor layer (113) of the second LED and the conductive substrate (102); and a second conductive structure that connects the second semiconductor layer (113) of
    Type: Application
    Filed: March 21, 2013
    Publication date: May 28, 2015
    Inventors: Shunping Chen, Xiaoqiang Zeng, Shaohua Huang, Qunfeng Pan, Jyh-Chiarng Wu
  • Publication number: 20150144907
    Abstract: An organic light emitting diode display panel is disclosed, which comprises: a first substrate having a first edge, a second edge, a third edge opposite to the first edge, and a fourth edge opposite to the second edge; a second substrate opposite to the first substrate; an organic light emitting diode unit disposed on the second substrate; a fit unit disposed between the first substrate and the second substrate and surrounding the organic light emitting diode unit; and a buffer unit disposed between the first substrate and the second substrate and between the frit unit facing to the first edge of the first substrate and the first edge thereof, wherein the buffer unit has a first end with a first cutting edge connecting to the second edge. In addition, the present invention also provides a method for manufacturing the same.
    Type: Application
    Filed: October 24, 2014
    Publication date: May 28, 2015
    Inventors: Tun-Huang LIN, Hao-Jung HUANG
  • Publication number: 20150147837
    Abstract: A method of manufacturing a display device including providing a substrate, forming a semiconductor layer on the substrate, forming a first insulating layer on the semiconductor layer, forming a metal layer on the first insulating layer, forming a second insulating layer on the metal layer, forming an etching buffer layer on the second insulating layer, forming a photosensitive film pattern on the etching buffer layer, and etching the etching buffer layer and the first and second insulating layers to expose the semiconductor layer.
    Type: Application
    Filed: August 8, 2014
    Publication date: May 28, 2015
    Inventors: Seok Il Kwon, Deuk Jong Kim
  • Patent number: 9040323
    Abstract: Pixels of a display device include a first substrate, an organic insulation layer disposed on the first substrate and having an upper surface formed in an uneven structure, an inorganic insulation layer disposed on the organic insulation layer and formed in the uneven structure, a first electrode disposed on the inorganic insulation layer and formed in the uneven structure, and a device to provide a data voltage to the first electrode, in which the first electrode includes a reflective electrode to reflect incident light.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: May 26, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jungmoo Hong, Hyundae Lee
  • Patent number: 9040993
    Abstract: An organic light-emitting display apparatus and a method of manufacturing the same. The organic light-emitting display apparatus includes an organic light-emitting device in which a pixel electrode, an intermediate layer that includes an emissive layer, and a cathode electrode are sequentially stacked. The cathode contact unit includes a cathode bus line that is formed on the same layer as the pixel electrode and contacts the cathode electrode, a first auxiliary electrode that is formed on the cathode bus line along an edge area of the cathode bus line, and a second auxiliary electrode that contacts the first auxiliary electrode.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: May 26, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Chun-Gi You, Joon-Hoo Choi
  • Patent number: 9040330
    Abstract: A deposition apparatus includes (i) a sheet including a slit area, first and second dummy slit areas, and a binding area; and (ii) a frame. The slit area has a plurality of patterning slits that are extended along a first direction and arranged along a second direction crossing the first direction. The first and second dummy slit areas are outside the slit area along the second direction and along the opposite direction to the second direction respectively and have a plurality of dummy slits. The binding area surrounds the slit area and the first and second dummy slit areas. The frame is attached to the binding area of the sheet and shields at least some of the plurality of dummy slits of the first and second dummy slit areas.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 26, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Myong-Hwan Choi, Woon-Hyun Choi, Kyoung-Won Oh
  • Publication number: 20150137087
    Abstract: An organic light-emitting element including: a substrate; a light-emitting part above the substrate, the light-emitting part including an organic layer; and banks defining bounds of the organic layer in a direction along a main surface of the substrate. In the organic light-emitting element, in plan view, a surface of the organic layer is longer in a first direction than in a second direction perpendicular to the first direction, and in the second direction, the surface of the organic layer is convex, protruding upwards in a thickness direction of the organic layer, and in the first direction, the surface of the organic layer is concave, protruding downwards in the thickness direction.
    Type: Application
    Filed: September 26, 2012
    Publication date: May 21, 2015
    Applicant: PANASONIC CORPORATION
    Inventor: Tsuyoshi Yamamoto
  • Publication number: 20150140711
    Abstract: A method according to embodiments of the invention includes providing a wafer comprising a semiconductor structure grown on a growth substrate. The semiconductor structure includes a light emitting layer disposed between an n-type region and a p-type region. The wafer includes trenches defining individual semiconductor devices. The trenches extend through an entire thickness of the semiconductor structure to reveal the growth substrate. The method further includes forming a thick conductive layer on the semiconductor structure. The thick conductive layer is configured to support the semiconductor structure when the growth substrate is removed. The method further includes removing the growth substrate.
    Type: Application
    Filed: May 8, 2013
    Publication date: May 21, 2015
    Inventors: Jipu Lei, Alexander H. Nickel, Stefano Schiaffino, Grigoriy Basin
  • Publication number: 20150137091
    Abstract: An organic light-emitting diode display device includes a substrate, a light-absorption layer, an active array structure, and an organic light-emitting diode. The substrate has a first and a second surface opposite to each other. The light-absorption layer is disposed on the first surface, and has at least one opening exposing a portion of the first surface. The active array structure is positioned on the second surface, and includes at least one data line, at least one gate line, and at least one switching device electrically connected to the gate and data lines. The light-absorption layer overlaps at least one of the data line and the gate line when viewed in a direction perpendicular to the substrate. The organic light-emitting diode is electrically connected to the switching device, and the organic light-emitting diode overlaps the opening when viewed in the direction perpendicular to the substrate.
    Type: Application
    Filed: August 20, 2014
    Publication date: May 21, 2015
    Inventors: Wei-Chou LAN, Ted-Hong SHINN, Xue-Hung TSAI, Chi-Liang WU, Chih-Hsiang YANG
  • Publication number: 20150140713
    Abstract: To eliminate electric discharge when an element formation layer including a semiconductor element is peeled from a substrate used for manufacturing the semiconductor element, a substrate over which an element formation layer and a peeling layer are formed and a film are made to go through a gap between pressurization rollers. The film is attached to the element formation layer between the pressurization rollers, bent along a curved surface of the pressurization roller on a side of the pressurization rollers, and collected. Peeling is generated between the element formation layer and the peeling layer and the element formation layer is transferred to the film. Liquid is sequentially supplied by a nozzle to a gap between the element formation layer and the peeling layer, which is generated by peeling, so that electric charge generated on surfaces of the element formation layer and the peeling layer is diffused by the liquid.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 21, 2015
    Inventors: Shingo EGUCHI, Yohei MONMA, Atsuhiro TANI, Misako HIROSUE, Kenichi HASHIMOTO, Yasuharu HOSAKA
  • Publication number: 20150140712
    Abstract: An etchant includes, based on a total amount of the etchant, from about 0.5 to about 20 wt % of a persulfate, from about 0.01 to about 2 wt % of a fluorine compound, from about 1 to about 10 wt % of an inorganic acid, from about 0.5 to about 5 wt % of an azole compound, from about 0.1 to about 5 wt % of an electron-donating compound, from about 0.1 to about 5 wt % of a chlorine compound, from about 0.05 to about 3 wt % of a copper salt, from about 0.1 to about 10 wt % of an organic acid or an organic acid salt, and a remaining amount of water.
    Type: Application
    Filed: June 30, 2014
    Publication date: May 21, 2015
    Inventors: Seon-il KIM, In-Bae KIM, HONGSICK PARK, Jong-Hyun CHOUNG, Inseol KUK, Suckjun LEE, Giyong NAM, Youngchul PARK, Inho YU, Youngjin YOON
  • Patent number: 9035326
    Abstract: Disclosed is a light emitting module capable of representing improved heat radiation and improved light collection. there is provided a light emitting module. The light emitting module includes a metallic circuit board formed therein with a cavity, and a light emitting device package including a nitride insulating substrate attached in the cavity of the metallic circuit board, at least one pad part on the nitride insulating substrate, and at least one light emitting device attached on the pad part.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 19, 2015
    Assignee: LG INNOTEK CO., LTD.
    Inventor: Yun Min Cho
  • Patent number: 9034738
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: May 19, 2015
    Assignee: SONY CORPORATION
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobukata Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Patent number: 9035311
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 19, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Tae-Hoon Yang, Jin-Wook Seo, Soo-Beom Jo, Dong-Hyun Lee, Kil-Won Lee, Maxim Lisachenko, Yun-Mo Chung, Bo-Kyung Choi, Jong-Ryuk Park, Ki-Yong Lee
  • Patent number: 9034675
    Abstract: Techniques are provided for manufacturing a light-emitting device having high internal quantum efficiency, consuming less power, having high luminance, and having high reliability. The techniques include forming a conductive light-transmitting oxide layer comprising a conductive light-transmitting oxide material and silicon oxide, forming a barrier layer in which density of the silicon oxide is higher than that in the conductive light-transmitting oxide layer over the conductive light-transmitting oxide layer, forming an anode having the conductive light-transmitting oxide layer and the barrier layer, heating the anode under a vacuum atmosphere, forming an electroluminescent layer over the heated anode, and forming a cathode over the electroluminescent layer. According to the techniques, the barrier layer is formed between the electroluminescent layer and the conductive light-transmitting oxide layer.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: May 19, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kengo Akimoto, Junichiro Sakata, Yoshiharu Hirakata, Norihito Sone
  • Patent number: 9035330
    Abstract: An organic light-emitting display device and a method of manufacturing the same are disclosed. The organic light-emitting display device includes: a substrate, a plurality of pixels on the substrate, a plurality of first electrodes, each disposed in each of the plurality of pixels, a pixel defining layer including a first pixel defining sub-layer disposed between each two adjacent first electrodes, and a second pixel defining sub-layer covering the first pixel defining sub-layer and surface edge portions of each two adjacent first electrodes, an intermediate layer disposed on each of the first electrodes and including an emission layer, and a second electrode configured to face the first electrodes.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: May 19, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin-Goo Kang, Mu-Hyun Kim, Jae-Bok Kim, Dong-Kyu Lee, Ji-Young Kim
  • Publication number: 20150130777
    Abstract: A display device having a substrate including a first display area, a second display area, a non-display area disposed adjacent to the first and second display areas, a plurality of first pixels disposed in the first display area, a plurality of second pixels disposed in the second display area, a first groove disposed in the non-display area and recessed downward from an upper surface of the substrate, a first flexible film disposed in the first groove, and a plurality of pad electrodes disposed on the first flexible film in the non-display area between the first and second display areas and connecting the first pixels are connected to the second pixels in a row.
    Type: Application
    Filed: June 23, 2014
    Publication date: May 14, 2015
    Inventors: DaeJin Park, Bumsoo Kam, Gilhwan Yeo, Hyung-Il Jeon
  • Publication number: 20150129901
    Abstract: An optoelectronic semiconductor chip and a method for producing an optoelectronic semiconductor chip are disclosed. In an embodiment an optoelectronic semiconductor chip includes a support having a support top side, a semiconductor layer sequence having an active layer for generating electromagnetic radiation, wherein the active layer is located between an n-type n-layer and a p-type p-layer of the semiconductor layer sequence, wherein the semiconductor layer sequence, as seen in a plan view of the support top side, is patterned into emitter regions arranged next to one another and electrical conductor tracks located on a side of the semiconductor layer sequence facing away from the support, where the electrical conductor tracks include contact surfaces. The chip further includes an n-contact point and a p-contact point for electrically contacting the semiconductor chip, wherein the emitter regions are electrically connected in series via the at least two conductor tracks.
    Type: Application
    Filed: June 27, 2013
    Publication date: May 14, 2015
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Lutz Höppel, Norwin von Malm
  • Patent number: 9029847
    Abstract: An organic light emitting diode display device is disclosed. The organic light emitting diode display device includes: an element substrate configured to include a plurality of pixel regions; a first passivation layer formed on the element substrate; an organic light emitting diode which includes a first electrode formed on the first passivation layer, a first insulation film formed on the first passivation layer with the first electrode and configured to define an emission region, and an organic layer and a second electrode formed on the first insulation film; a first fixed layer formed on the first passivation layer under an edge of the insulation film and configured to prevent a direct contact of the first passivation layer and the edge of the first insulation film; and a second passivation layer formed on the organic light emitting diode.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: May 12, 2015
    Assignee: LG Display Co., Ltd.
    Inventors: Sun Hee Lee, Jung Yeon Kim
  • Patent number: 9029857
    Abstract: An organic light-emitting display device includes a substrate including a rectangular light-emitting area and a circuit area, the circuit area including a thin film transistor, the light-emitting area including an electroluminescent layer produced by a solution deposition process, the light-emitting area being bounded by a first major side, a second major side, a first minor side and a second minor side, the first major side being opposite from and parallel to a second major side, each of these sides having wiring or dummies arranged thereat, and a pixel defining layer arranged on the wirings and on the dummies. In order to produce a uniform thickness electroluminescent layer via a solution deposition process, top surfaces of the pixel defining layer on each of the wirings and dummies that border the light emitting area are arranged in a same plane that is parallel to the substrate.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: May 12, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin-Goo Kang, Young-In Hwang, Ji-Young Kim, Hyo-Seok Kim
  • Publication number: 20150123108
    Abstract: Provided is an organic electroluminescence element that eliminates uneven light emission and changes a light emitting pattern. The organic electroluminescence element including: a supporting substrate; a first electrode; N sets of light emitting units including one or more organic functional layers, where N represents an integer of 2 or more; and one or more (N?1) sets of intermediate metal layers with optical transparency, each disposed between the adjacent light emitting units; and a second electrode. Herein, at least one organic functional layer of each light emitting unit is a layer subjected to patterning using a mask during formation of the organic functional layer, a layer subjected to patterning via light irradiation after formation of the organic functional layer, or a layer subjected to patterning using a mask during formation of the organic functional layer and further subjected to patterning via light irradiation after the formation of the organic functional layer.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 7, 2015
    Inventor: Takashi UDA
  • Patent number: 9024288
    Abstract: Embodiments of the present invention provide an array substrate, a manufacturing method thereof and a display device. The manufacturing method of an array substrate, comprising: forming a gate electrode on a base substrate by a first patterning process, and then depositing a gate insulating layer on the base substrate on which the gate electrode is formed; forming source and drain electrodes on the base substrate obtained after the above step, by a second patterning process; forming an active layer formed of a graphene layer, and a protective layer disposed on the active layer, on the base substrate obtained after the above steps, by a third patterning process; and forming a planarizing layer on the base substrate, obtained after the above steps, by a fourth patterning process, in which the planarizing layer is provided with a through hole through which the source or drain electrode is exposed.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 5, 2015
    Assignee: BOE Technology Group Co., Ltd.
    Inventor: Tuo Sun
  • Patent number: 9023672
    Abstract: A light emitting system and related method are disclosed.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: May 5, 2015
    Inventors: Todd Hodrinsky, Donald T. Wesson, Jr., Deborah D. Cebry, Matthew D. Gidman, Robert M. Sarazin
  • Patent number: 9023668
    Abstract: A method for producing a substrate having an irregular concave and convex surface for scattering light includes: manufacturing a substrate having the irregular concave and convex surface; irradiating the concave and convex surface of the manufactured substrate with inspection light from a direction oblique to a normal direction and detecting returning light of the inspection light returned from the concave and convex surface by a light-receiving element provided in the normal direction of the concave and convex surface; and judging unevenness of luminance of the concave and convex surface by an image processing device based on light intensity of the returning light received. An organic EL element which includes a diffraction-grating substrate having an irregular concave and convex surface is produced with a high throughput.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: May 5, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yusuke Sato, Suzushi Nishimura
  • Publication number: 20150118776
    Abstract: A manufacturing method of a display device includes: forming a thin film transistor on a substrate, forming a pixel electrode connected to the thin film transistor, and forming a common electrode insulated from the pixel electrode. At least one of forming the pixel electrode and forming the common electrode includes: forming an electrode layer on the substrate, coating a photoresist on the electrode layer to form a first electrode sub-layer on which the photoresist is coated and a second electrode sub-layer on which the photoresist is not coated, generating etching vapor by heating an etching solution in a double boiler, and etching the second electrode sub-layer by using the etching vapor.
    Type: Application
    Filed: May 1, 2014
    Publication date: April 30, 2015
    Applicant: Samsung Display Co., Ltd.
    Inventors: Hongsick Park, Seon-il Kim
  • Publication number: 20150118777
    Abstract: A method of manufacturing a light emitting device having a plurality of nano-light emitting structures is provided. The method comprises depositing a first conductivity-type semiconductor material on a substrate to form a base layer. A mask having a plurality of openings is formed on the base layer. The first conductivity-type nitride semiconductor material is deposited in the openings of the mask to form a plurality of nanocores having a main portion bounded by the mask and an exposed tip portion. A current blocking layer is deposited on the tip portion of the nanocores. A portion of the mask is removed to expose the main portion of the nanocore. An active material layer is deposited on the plurality of nanocores. A second conductivity-type nitride semiconductor layer is deposited on the active material layer.
    Type: Application
    Filed: September 12, 2014
    Publication date: April 30, 2015
    Inventors: Yeon Woo Seo, Jung-Sub Kim, Young Jin Choi, Denis Sannikov, Han Kyu Seong, Dae Myung Chun, Jae Hyeok Heo
  • Publication number: 20150116295
    Abstract: An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a lower substrate including a display area and a non-display area surrounding the display area, wherein a plurality of pixels are formed in the display area. The OLED display also includes an embedded circuit formed in the configured to apply a plurality of signals to the pixels, and an initialization wiring formed in the non-display area and configured to apply an initialization voltage to each of the pixels. The initialization circuit is formed in a layer so as to at least partially overlap with the area of the embedded circuit.
    Type: Application
    Filed: April 4, 2014
    Publication date: April 30, 2015
    Applicant: Samsung Display Co., Ltd.
    Inventor: Chang-Soo Pyon
  • Patent number: 9018647
    Abstract: A thin film deposition apparatus, a method of manufacturing an organic light-emitting display device by using the thin film deposition apparatus, and an organic light-emitting display device manufactured by using the method. A thin film deposition apparatus for forming a thin film on a substrate includes a first chamber in a vacuum state; first and second stages arranged in parallel in the first chamber wherein the substrate is fixable to at least one of the first and second stages; a mask contactable with the substrate; and a first deposition source and a second deposition source that are movable relative to the first and second stages and are configured to discharge a deposition material onto the substrate.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 28, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Un-Cheol Sung, Beom Rak Choi
  • Publication number: 20150108509
    Abstract: The invention relates to a method for producing serially interconnected optoelectronic components as well as optoelectronic components interconnected according to the method. In a first step, an electrically non-conductive layer with optoelectronic material introduced therein and at least one first wire or thread (2) located in the layer is produced. The first wire or thread either is electrically conductive from the outset or can subsequently be treated in such a way that it becomes electrically conductive as a result of the treatment. A first and second electrooptically active region of the layer is electrically connected to the first wire or thread in such a way that they are electrically interconnected to each other in series. By the wire, regions of the layer are subdivided in a simple manner, as a result of which a plurality of optoelectronic components are produced in a technically simple manner. Continuous production is possible.
    Type: Application
    Filed: March 26, 2013
    Publication date: April 23, 2015
    Inventor: Dieter Meissner
  • Publication number: 20150108481
    Abstract: A thin film transistor includes a bottom gate electrode, a top gate electrode and an active pattern. The top gate electrode includes a transparent conductive material and overlaps with the bottom gate electrode. A boundary of the bottom gate electrode and a boundary of the top gate electrode are coincident with each other in a cross-sectional view. The active pattern includes a source portion, a drain portion and a channel portion disposed between the source portion and the drain portion. The channel portion overlaps with the bottom gate electrode and the top gate electrode.
    Type: Application
    Filed: August 5, 2014
    Publication date: April 23, 2015
    Inventors: YOON-HO KHANG, DONG-JO KIM, SU-HYOUNG KANG, YONG-SU LEE
  • Publication number: 20150108434
    Abstract: The invention discloses a touch detecting structure, an organic light emitting touch display device, a method of detecting a touch on a device and a method of manufacturing a device. The touch detecting structure includes: a first signal transmission line arranged on a first substrate of an organic light emitting touch display device; an insulating layer arranged on the first signal transmission line and having a via hole and a protrusion; a second signal transmission line located on the insulating layer and passing the top of the protrusion; a signal transmission terminal arranged on the lateral surface of the protrusion and having one end connected with the first signal transmission line through the via hole and the other end located on the top of the protrusion, and insulated from the second signal transmission line; and a cathode film arranged on a second substrate.
    Type: Application
    Filed: March 21, 2014
    Publication date: April 23, 2015
    Applicants: Tianma Micro-Electronics Co., Ltd., Shanghai Tianma Micro-Electronics Co., Ltd.
    Inventors: Kai TIAN, Yujun Li
  • Publication number: 20150110140
    Abstract: A circuit system includes: a first optoelectronic semiconductor component situated with an n-conductive surface facing an electrically conductive support surface and connected to the support surface in an electrically conductive manner; and a second optoelectronic semiconductor component situated with a p-conductive surface facing the support surface and connected to the support surface in an electrically conductive manner.
    Type: Application
    Filed: April 11, 2013
    Publication date: April 23, 2015
    Inventors: Andreas Letsch, Hans-Jochen Schwarz, Martin Astner
  • Publication number: 20150111331
    Abstract: A method of fabricating a display panel apparatus, includes forming a TFT layer, forming a planarizing film, forming a lower electrode, an electrode plate, and an auxiliary electrode, forming banks, forming the organic EL layer, and forming an upper electrode. The electrode plate has an opening exposing a portion of a surface of the planarizing film. In at least one of the forming of the lower electrode, the electrode plate and the auxiliary electrode, and the forming of the banks, the opening of the electrode plate outgasses the planarizing film. The electrode plate has a power supply that receives current through the electrode plate. The opening extends in parallel with a side of the display near the opening. Current flowing between the power supply and a portion connecting the auxiliary electrode and the electrode plate flows along an extending direction of the opening.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Applicant: PANASONIC CORPORATION
    Inventors: Takashi OSAKO, Shinya ONO, Seiji NISHIYAMA
  • Publication number: 20150108511
    Abstract: An optoelectronic module has at least one semiconductor chip for emitting electromagnetic radiation. The semiconductor chip has a layer having a first conductivity, a layer having a second conductivity, a radiation surface and a contact surface which lies opposite the radiation surface. A contact is attached to the radiation surface. A frame made of a potting compound laterally encloses the semiconductor chip in at least some regions such that the radiation surface and the contact surface are substantially free of the potting compound. A first contact structure is arranged in at least some regions on the frame and in at least some regions on the contact surface. A second contact structure is arranged in at least some regions on the frame and in at least some regions on the contact of the radiation surface.
    Type: Application
    Filed: May 15, 2013
    Publication date: April 23, 2015
    Inventor: Stefan Illek
  • Publication number: 20150108446
    Abstract: There is provided a display device (100) including a step forming member (14) which forms a step between a first region (s1) and a second region (s2) over a substrate (11) so that the first region (s1, 173R) becomes higher than the second region (s2, 173G) when viewed from the substrate (11), a first light emitting (173R) layer transferred to the first region, and a second light emitting layer (173G) transferred to the first region and the second region, and which has an emission wavelength shorter than an emission wavelength of the first light emitting layer.
    Type: Application
    Filed: May 31, 2013
    Publication date: April 23, 2015
    Inventor: Makoto Ando
  • Patent number: 9012900
    Abstract: An organic light emitting diode display device capable of improving capacitance Cst of a storage capacitor and transmittance and a method of fabricating the same are disclosed. The organic light emitting diode display device includes a driving thin film transistor (TFT) formed on the substrate, a passivation film formed to cover the TFT driver, a color filter formed on the passivation film in a luminescent region, a planarization film formed to cover the color filter, a transparent metal layer formed on the planarization film, an insulating film formed on the transparent metal layer, a first electrode connected to the TFT driver and overlapping the transparent metal layer while interposing the insulating film therebetween, an organic light emitting layer and a second electrode which are sequentially formed on the first electrode. The transparent metal layer, the insulating film, and the first electrode constitute a storage capacitor in the luminescent region.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: April 21, 2015
    Assignee: LG Display Co., Ltd.
    Inventors: Jung-Sun Beak, Jeong-Oh Kim, Yong-Min Kim
  • Patent number: 9012892
    Abstract: The present teachings provide methods for forming organic layers for an organic light-emitting device (OLED) using an inkjet printing or thermal printing process. The method can further use one or more additional processes, such as vacuum thermal evaporation (VTE), to create an OLED stack. OLED stack structures are also provided wherein at least one of the charge injection or charge transport layers is formed by an inkjet printing or thermal printing method at a high deposition rate. The structure of the organic layer can be amorphous, crystalline, porous, dense, smooth, rough, or a combination thereof, depending on deposition parameters and post-treatment conditions. An OLED microcavity is also provided and can be formed by one of more of the methods.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 21, 2015
    Assignee: Kateeva, Inc.
    Inventor: Jianglong Chen
  • Patent number: 9012915
    Abstract: An organic light-emitting display apparatus includes a buffer layer that is on a substrate and includes nanoparticles including nickel (Ni), a pixel electrode on the buffer layer, an organic emission layer on the pixel electrode, and an opposite electrode on the organic emission layer. A method of manufacturing the organic light-emitting display apparatus is provided.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 21, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jae-Hwan Oh, Yeoung-Jin Chang, Seong-Hyun Jin, Won-Kyu Lee, Jae-Beom Choi
  • Patent number: 9012251
    Abstract: Disclosed is a method for preventing a short circuit between metal wires in an organic light emitting diode display device. The method includes: forming an inorganic layer on a substrate; forming an opening in the inorganic layer for exposing a part of the substrate; forming a metal layer on the inorganic layer, the metal layer including two metal wires respectively positioned at two sides of the opening; forming an organic layer on the two metal wires of the metal layer; and forming an indium tin oxide layer on the organic layer. The present invention can ensure that the short circuit does not occur between the metal wires by forming the opening in the inorganic layer.
    Type: Grant
    Filed: November 28, 2013
    Date of Patent: April 21, 2015
    Assignee: Shenzhen China Star Optoelectronics Technology Co. Ltd.
    Inventor: Kai-Yuan Ko
  • Publication number: 20150102296
    Abstract: A organic light emitting diode display including an organic light emitting display panel displaying an image, and a lower passivation film attached to a bottom of the organic light emitting panel and including a polymer resin and an antistatic agent, wherein the lower passivation film includes a plurality of stress adjustment patterns disposed to be adjacent to each other wherein decreasing the bending interval between the bending stress adjustment patterns formed at the lower passivation film processed with the antistatic agent and attached at the position corresponding to the bending portion of the organic light emitting panel, thereby selectively minimizes the stress of the bending portion of the organic light emitting panel, therefore, asymmetry of strains of the bending portions of the organic light emitting display panel can be prevented to remove a picture abnormality, and static electricity may be prevented.
    Type: Application
    Filed: March 24, 2014
    Publication date: April 16, 2015
    Applicant: Samsung Display Co., Ltd.
    Inventors: Sang Woo Kim, Soon Ryong Park, Ju Yeop Seong, Yong Hoon Chun, Chul Woo Jeong
  • Publication number: 20150104894
    Abstract: A light-emitting panel includes: a substrate and a light-emitting functional multilayer formed on the substrate, wherein the light-emitting functional multilayer including a first functional layer and a second functional layer, a thickness of part of the first functional layer positioned in a first light-emitting region is smaller than a thickness of part of the first functional layer positioned in a second light-emitting region, a thickness of part of the second functional layer positioned in the first light-emitting region is greater than a thickness of part of the second functional layer positioned in the second light-emitting region, and when the light-emitting functional multilayer is viewed in a layering direction, the first light-emitting region and the second light-emitting region are adjacent or distant from each other in a direction perpendicular to the layering direction, and each include a plurality of pixels that are each composed of a plurality of adjacent sub-pixels.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 16, 2015
    Applicant: PANASONIC CORPORATION
    Inventor: Seiji NISHIYAMA
  • Publication number: 20150104893
    Abstract: A method of manufacturing a photo-alignment layer, includes: disposing a polymer material on a substrate; pre-baking the polymer material disposed on the substrate; irradiating a light to the pre-baked polymer material, to photo-align the pre-baked polymer material; and thermal-treating the irradiated pre-baked polymer material, to harden the irradiated pre-baked polymer material. The thermal-treating includes a first thermal-treatment, and a second thermal-treatment at a higher temperature than the first thermal-treatment.
    Type: Application
    Filed: July 29, 2014
    Publication date: April 16, 2015
    Inventors: Mi Hwa LEE, Suk Hoon KANG, Yeong Rong PARK, Jun-Woo LEE, Baek Kyun JEON