With Epitaxial Layer Formed Over The Trench Patents (Class 438/388)
-
Patent number: 11145658Abstract: An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.Type: GrantFiled: October 21, 2019Date of Patent: October 12, 2021Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Kevin K. Chan, Sivananda K. Kanakasabapathy, Babar A. Khan, Masaharu Kobayashi, Effendi Leobandung, Theodorus E. Standaert, Xinhui Wang
-
Patent number: 9685524Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.Type: GrantFiled: March 9, 2006Date of Patent: June 20, 2017Assignee: VISHAY-SILICONIXInventors: The-Tu Chau, Hoang Le, Kuo-In Chen
-
Patent number: 9412833Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.Type: GrantFiled: February 13, 2008Date of Patent: August 9, 2016Assignee: Vishay-SiliconixInventors: The-Tu Chau, Hoang Le, Kuo-In Chen
-
Patent number: 9269631Abstract: Different strain-inducing semiconductor alloys may be incorporated into the drain and source areas of different transistors in sophisticated semiconductor devices by at least patterning the corresponding cavities in a common manufacturing sequence. Thus, the etch process may be performed on the basis of a high degree of uniformity and the subsequent epitaxial growth processes may, in some illustrative embodiments, be accomplished on the basis of only one additional lithography step.Type: GrantFiled: February 23, 2010Date of Patent: February 23, 2016Assignee: Advance Micro Devices, Inc.Inventors: Stephan Kronholz, Vassilios Papageorgiou
-
Patent number: 9252242Abstract: Diodes and resistors for integrated circuits are provided. Deep trenches (DTs) are integrated into the diodes and resistors for the purposes of thermal conduction. The deep trenches facilitate conduction of heat from a semiconductor-on-insulator substrate to a bulk substrate. Semiconductor fins may be formed to align with the deep trenches.Type: GrantFiled: March 25, 2013Date of Patent: February 2, 2016Assignee: International Business Machines CorporationInventors: Theodorus Eduardus Standaert, Kangguo Cheng, Junjun Li, Balasubramanian Pranatharthi Haran, Shom Ponoth, Tenko Yamashita
-
Patent number: 8936992Abstract: Two trenches having different widths are formed in a semiconductor-on-insulator (SOI) substrate. An oxygen-impermeable layer and a fill material layer are formed in the trenches. The fill material layer and the oxygen-impermeable layer are removed from within a first trench. A thermal oxidation is performed to convert semiconductor materials underneath sidewalls of the first trench into an upper thermal oxide portion and a lower thermal oxide portion, while the remaining oxygen-impermeable layer on sidewalls of a second trench prevents oxidation of the semiconductor materials. After formation of a node dielectric on sidewalls of the second trench, a conductive material is deposited to fill the trenches, thereby forming a conductive trench fill portion and an inner electrode, respectively. The upper and lower thermal oxide portions function as components of dielectric material portions that electrically isolate two device regions.Type: GrantFiled: January 2, 2014Date of Patent: January 20, 2015Assignee: International Business Machines CorporationInventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
-
Patent number: 8810007Abstract: A wiring board provided with a silicon substrate including a through hole that communicates a first surface and a second surface of the silicon substrate. A capacitor is formed on an insulating film, which is applied to the silicon substrate, on the first surface and a wall surface defining the through hole. A capacitor part of the capacitor includes a first electrode, a dielectric layer, and a second electrode that are sequentially deposited on the insulating film on the first surface and the wall surface of the through hole. A penetration electrode is formed in the through hole covered by the first electrode, the dielectric layer, and the second electrode of the capacitor part.Type: GrantFiled: April 17, 2012Date of Patent: August 19, 2014Assignees: Shinko Electric Industries Co., Ltd., Taiyo Yuden Co., Ltd.Inventors: Akihito Takano, Masahiro Sunohara, Hideaki Sakaguchi, Mitsutoshi Higashi, Kenichi Ota, Yuichi Sasajima
-
Patent number: 8716092Abstract: A method for fabricating a MOS transistor is disclosed. First, a semiconductor substrate having a gate thereon is provided. A spacer is then formed on the sidewall of the gate, and two recesses are formed adjacent to the spacer and within the semiconductor substrate. Next, the spacer is thinned, and epitaxial layer is grown in each of the two recesses. By thinning the spacer before the epitaxial layer is formed, the present invention could stop the epitaxial layer to grow against the sidewall of the spacer, thereby preventing problem such as Ion degradation.Type: GrantFiled: December 21, 2011Date of Patent: May 6, 2014Assignee: United Microelectronics Corp.Inventors: Po-Lun Cheng, Pin-Chien Chu
-
Patent number: 8673729Abstract: A method of forming a strap connection structure for connecting an embedded dynamic random access memory (eDRAM) to a transistor comprises forming a buried oxide layer in a substrate, the buried oxide layer defining an SOI layer on a surface of the substrate; forming a deep trench through the SOI layer and the buried oxide layer in the substrate; forming a storage capacitor in a lower portion of the deep trench; conformally doping a sidewall of an upper portion of the deep trench; depositing a metal strap on the conformally doped sidewall and on the storage capacitor; forming at least one fin in the SOI layer, the fin being in communication with the metal strap; forming a spacer over the metal strap and over a juncture of the fin and the metal strap; and depositing a passive word line on the spacer.Type: GrantFiled: December 5, 2012Date of Patent: March 18, 2014Assignee: International Business Machines CorporationInventors: Veeraraghavan S. Basker, Effendi Leobandung, Tenko Yamashita, Chun-Chen Yeh
-
Publication number: 20130183806Abstract: In a vertical dynamic memory cell, monocrystalline semiconductor material of improved quality is provided for the channel of an access transistor by lateral epitaxial growth over an insulator material (which complements the capacitor dielectric in completely surrounding the storage node except at a contact connection structure, preferably of metal, from the access transistor to the storage node electrode) and etching away a region of the lateral epitaxial growth including a location where crystal lattice dislocations are most likely to occur; both of which features serve to reduce or avoid leakage of charge from the storage node. An isolation structure can be provided in the etched region such that space is provided for connections to various portions of a memory cell array.Type: ApplicationFiled: March 7, 2013Publication date: July 18, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventor: International Business Machines Corporation
-
Patent number: 8444791Abstract: A method for manufacturing a ceramic capacitor embedded in a wiring substrate, the ceramic capacitor including a capacitor body which has a pair of capacitor main surfaces and a plurality of capacitor side surfaces also has a structure in which a plurality of internal electrodes are alternately layered through a ceramic dielectric layer, the method has (a) laminating ceramic-made green sheets and combining the green sheets into one, to form a multi-device-forming multilayer unit in which a plurality of product areas, each of which becomes the ceramic capacitor, are arranged in longitudinal and lateral directions along a plane direction, (b) forming a groove portion to form a chamfer portion at a boundary portion between at least one of the capacitor main surfaces and the plurality of capacitor side surfaces, (c) sintering the multi-device-forming multilayer unit, and (d) dividing the product areas into each product area along the groove portion.Type: GrantFiled: June 1, 2010Date of Patent: May 21, 2013Assignee: NGK Spark Plug Co., Ltd.Inventors: Seiji Ichiyanagi, Kenji Murakami, Motohiko Sato, Jun Otsuka
-
Patent number: 8372710Abstract: A semiconductor structure having U-shaped transistors includes source/drain regions at the tops of pairs of pillars defined by crossing trenches in the substrate. One pillar is connected to the other pillar in the pair by a ridge that extends above the surrounding trenches. The ridge and lower portions of the pillars define U-shaped channels on opposite sides of the U-shaped structure, facing a gate structure in the trenches on those opposite sides, forming a two sided surround transistor. Optionally, the space between the pillars of a pair is also filled with gate electrode material to define a three-sided surround gate transistor. One of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. Methods of forming semiconductor structures are also disclosed.Type: GrantFiled: December 19, 2011Date of Patent: February 12, 2013Assignee: Micron Technology, Inc.Inventor: Werner Juengling
-
Publication number: 20120305998Abstract: In a vertical dynamic memory cell, monocrystalline semiconductor material of improved quality is provided for the channel of an access transistor by lateral epitaxial growth over an insulator material (which complements the capacitor dielectric in completely surrounding the storage node except at a contact connection structure, preferably of metal, from the access transistor to the storage node electrode) and etching away a region of the lateral epitaxial growth including a location where crystal lattice dislocations are most likely to occur; both of which features serve to reduce or avoid leakage of charge from the storage node. An isolation structure can be provided in the etched region such that space is provided for connections to various portions of a memory cell array.Type: ApplicationFiled: May 31, 2011Publication date: December 6, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Roger A. Booth, JR., Kangguo Cheng, Joseph Ervin, David M. Fried, Byeong Kim, Chengwen Pei, Ravi M. Todi, Geng Wang
-
Patent number: 8304321Abstract: A wiring substrate in which a capacitor is provided, the capacitor comprising a capacitor body including a plurality of dielectric layers and internal electrode layers provided between the different dielectric layers, wherein said capacitor body has, in at least one side face of said capacitor body, recesses extending in a thickness direction of said capacitor body from at least one of a first principal face of said capacitor body and a second principal face positioned on the side opposite to the first principal face.Type: GrantFiled: November 22, 2010Date of Patent: November 6, 2012Assignee: NGK Spark Plug Co., Ltd.Inventors: Motohiko Sato, Kazuhiro Hayashi, Kenji Murakami, Motonobu Kurahashi, Yusuke Kaieda, Jun Otsuka, Manabu Sato
-
Patent number: 8269307Abstract: The invention provides a STI structure and a method for manufacturing the same. The STI includes a semiconductor substrate; a first trench formed on the upper surface of the semiconductor substrate and filled with an epitaxial layer, wherein the upper surface of the epitaxial layer is higher than that of the semiconductor substrate; and a second trench formed on the epitaxial layer and filled with a first dielectric layer, wherein the upper surface of the first dielectric layer is flush with that of the epitaxial layer, and the width of the second trench is smaller than that of the first trench. The invention reduces the influences of divots on performance of the semiconductor device.Type: GrantFiled: January 27, 2011Date of Patent: September 18, 2012Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huicai Zhong, Haizhou Yin, Qingqing Liang, Huilong Zhu
-
Publication number: 20120202327Abstract: In one embodiment a method of forming a compressive polycrystalline semiconductive material layer is disclosed. The method comprises forming a polycrystalline semiconductive seed layer over a substrate and forming a silicon layer by depositing silicon directly on the polycrystalline silicon seed layer under amorphous process conditions at a temperature below 600 C.Type: ApplicationFiled: February 7, 2011Publication date: August 9, 2012Inventors: Wolfgang Lehnert, Stefan Pompl, Markus Meyer
-
Publication number: 20110248326Abstract: A transistor includes a first fin structure and at least a second fin structure formed on a substrate. A deep trench area is formed between the first and second fin structures. The deep trench area extends through an insulator layer of the substrate and a semiconductor layer of the substrate. A high-k metal gate is formed within the deep trench area. A polysilicon layer is formed within the deep trench area adjacent to the metal layer. The polysilicon layer and the high-k metal layer are recessed below a top surface of the insulator layer. A poly strap in the deep trench area is formed on top of the high-k metal gate and the polysilicon material. The poly strap is dimensioned to be below a top surface of the first and second fin structures. The first fin structure and the second fin structure are electrically coupled to the poly strap.Type: ApplicationFiled: April 7, 2010Publication date: October 13, 2011Applicant: International Business Machines CorporationInventors: SIVANANDA KANAKASABAPATHY, Hemanth Jagannathan, Geng Wang
-
Patent number: 7947569Abstract: A method for producing a semiconductor including a material layer. In one embodiment a trench is produced having two opposite sidewalls and a bottom, in a semiconductor body. A foreign material layer is produced on a first one of the two sidewalls of the trench. The trench is filled by epitaxially depositing a semiconductor material onto the second one of the two sidewalls and the bottom of the trench.Type: GrantFiled: June 30, 2008Date of Patent: May 24, 2011Assignee: Infineon Technologies Austria AGInventors: Anton Mauder, Frank Pfirsch, Rudolf Berger, Stefan Sedlmaier, Wolfgang Lehnert, Raimund Foerg
-
Patent number: 7919385Abstract: A semiconductor device includes a first insulating layer, a capacitor, an adhesive layer, and an intermediate layer. The first insulating layer may include a first insulating film. The first insulating layered structure has a first hole. The capacitor is disposed in the first hole. The capacitor may include bottom and top electrodes and a capacitive insulating film. The capacitive insulating film is sandwiched between the bottom and top electrodes. The adhesive layer contacts with the bottom electrode. The adhesive layer has adhesiveness to the bottom electrode. The intermediate layer is interposed between the adhesive layer and the first insulating film. The intermediate layer contacts with the adhesive layer and with the first insulating film. The intermediate layer has adhesiveness to the adhesive layer and to the first insulating film.Type: GrantFiled: March 9, 2009Date of Patent: April 5, 2011Assignee: Elpida Memory, Inc.Inventor: Yoshitaka Nakamura
-
Patent number: 7863130Abstract: System and method for creating stressed polycrystalline silicon in an integrated circuit. A preferred embodiment includes manufacturing an integrated circuit, including forming a trench in an integrated circuit substrate, forming a cavity within the integrated circuit substrate, wherein the cavity is linked to the trench, depositing a dielectric layer within the cavity, and depositing polycrystalline silicon over the dielectric layer, wherein an inherent stress is induced in the polycrystalline silicon that grows on the dielectric layer. The dielectric layer may be, for example, silicon aluminum oxynitride (SiAlON), mullite (3Al2O3.2SiO2), and alumina (Al2O3).Type: GrantFiled: May 16, 2007Date of Patent: January 4, 2011Assignee: Infineon Technologies AGInventors: Matthias Hierlemann, Chandrasekhar Sarma
-
Patent number: 7811907Abstract: A method for manufacturing a semiconductor device includes steps of: forming a trench on a main surface of a silicon substrate; forming a first epitaxial film on the main surface and in the trench; and forming a second epitaxial film on the first epitaxial film. The step of forming the first epitaxial film has a first process condition with a first growth rate of the first epitaxial film. The step of forming the second epitaxial film has a second process condition with a second growth rate of the second epitaxial film. The second growth rate is larger than the first growth rate.Type: GrantFiled: September 28, 2006Date of Patent: October 12, 2010Assignees: DENSO CORPORATION, Sumco CorporationInventors: Takumi Shibata, Shoichi Yamauchi, Tomonori Yamaoka, Syouji Nogami
-
Patent number: 7763542Abstract: A semiconductor memory device includes a semiconductor substrate. An inter-layer dielectric is disposed on the semiconductor substrate. A bit line is disposed on the inter-layer dielectric. A bit line spacer is fabricated of a nitride layer containing boron and/or carbon and covers sidewalls of the bit line. A method of fabricating the semiconductor memory device is also provided.Type: GrantFiled: August 16, 2006Date of Patent: July 27, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-Gyun Kim, Ki-Sun Kim, Jae-Young Ahn
-
Patent number: 7638828Abstract: The invention concerns a capacitor whereof one first electrode consists of a highly doped active region (D) of a semiconductor component (T) formed on one side of a surface of a semiconductor body, and whereof the second electrode consists of a conductive region (BR) coated with insulation (IL) formed beneath said active region and embedded in the semiconductor body.Type: GrantFiled: January 12, 2004Date of Patent: December 29, 2009Assignee: STMicroelectronics S.A.Inventor: Jean-Pierre Schoellkopf
-
Patent number: 7601603Abstract: A method for manufacturing a semiconductor device includes the steps of: forming a trench in a semiconductor substrate; and forming an epitaxial film on the substrate including a sidewall and a bottom of the trench so that the epitaxial film is filled in the trench. The step of forming the epitaxial film includes a final step before the trench is filled with the epitaxial film. The final step has a forming condition of the epitaxial film in such a manner that the epitaxial film to be formed on the sidewall of the trench has a growth rate at an opening of the trench smaller than a growth rate at a position of the trench, which is deeper than the opening of the trench.Type: GrantFiled: March 31, 2005Date of Patent: October 13, 2009Assignees: DENSO CORPORATION, Sumitomo Mitsubishi Silicon CorporationInventors: Shoichi Yamauchi, Hitoshi Yamaguchi, Tomoatsu Makino, Syouji Nogami, Tomonori Yamaoka
-
Publication number: 20090230471Abstract: A semiconductor structure is described. The structure includes a trench opening formed in a semiconductor substrate having a semiconductor-on-insulator (SOI) layer and a buried insulating (BOX) layer; and a filling material formed in the trench opening, the filling material forming a “V” shape within the trench memory cell, wherein the “V” shape includes a top portion substantially adjacent to a top surface of the BOX layer. A method of fabricating the semiconductor structure is also described. The method includes forming a trench opening in a semiconductor substrate having an SOI layer and a BOX layer; laterally etching the BOX layer such that a portion of the trench opening associated with the BOX layer is substantially greater than a portion of the trench opening associated with the SOI layer; filling the trench opening with a filling material; and recessing the filling material.Type: ApplicationFiled: March 14, 2008Publication date: September 17, 2009Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Xi Li, Kangguo Cheng, Johnathan Faltermeier
-
Patent number: 7560392Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.Type: GrantFiled: May 10, 2006Date of Patent: July 14, 2009Assignee: Micron Technology, Inc.Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
-
Publication number: 20090176347Abstract: Method of limiting the lateral extent of a trench capacitor by a dielectric spacer in a hybrid orientations substrate is provided. The dielectric spacer separates a top semiconductor portion from an epitaxially regrown portion, which have different crystallographic orientations. The deep trench is formed as a substantially straight trench within the epitaxially regrown portion such that part of the epitaxially regrown portion remains overlying the dielectric spacer. The substantially straight trench is then laterally expanded to form a bottle shaped trench and to provide increased capacitance. The lateral expansion of the deep trench is self-limited by the dielectric spacer above the interface between the handle substrate and the buried insulator layer.Type: ApplicationFiled: January 4, 2008Publication date: July 9, 2009Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Kangguo Cheng, Ramachandra Divakaruni
-
Patent number: 7488642Abstract: A method is provided for making a buried plate region in a semiconductor substrate. According to such method, a trench is a single-crystal semiconductor region of a substrate is etched to form a trench elongated in a direction extending downwardly from a major surface of the substrate. A dopant source layer is formed to overlie a lower portion of the trench sidewall but not an upper portion of the trench sidewall. A layer consisting essentially of semiconductor material is epitaxially grown onto a single-crystal semiconductor region exposed at the upper portion of the trench sidewall above the dopant source layer. Through annealing, a dopant is then driven from the dopant source layer into the single-crystal semiconductor material of the substrate adjacent to the lower portion to form a buried plate. Then, the dopant source layer is removed and an isolation collar is formed along at least a part of the upper portion.Type: GrantFiled: March 8, 2007Date of Patent: February 10, 2009Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Ramachandra Divakaruni
-
Publication number: 20090014768Abstract: A deep trench device with a single sided connecting structure. The device comprises a substrate having a trench therein. A buried trench capacitor is disposed in a lower portion of the trench. An asymmetric collar insulator is disposed on an upper portion of the sidewall of the trench. A connecting structure is disposed in the upper portion of the trench, comprising an epitaxial silicon layer disposed on and adjacent to a relatively low portion of the asymmetric collar insulator and a connecting member disposed between the epitaxial silicon layer and a relatively high portion of the asymmetric collar insulator. A conductive layer is disposed between the relatively high and low portions of the asymmetric collar insulator, to electrically connect the buried trench capacitor and the connecting structure. A cap layer is disposed on the connecting structure. A fabrication method for a deep trench device is also disclosed.Type: ApplicationFiled: November 15, 2007Publication date: January 15, 2009Applicant: NANYA TECHNOLOGY CORPORATIONInventors: Shian-Jyh Lin, Chien-Li Cheng
-
Publication number: 20090004807Abstract: Systems and methods associated with semiconductor articles are disclosed, including forming a first layer of material on a substrate, etching trenches within regions defining a passive element in the first layer, forming metal regions on sidewalls of the trenches, and forming a region of dielectric or polymer material over or in the substrate. Moreover, an exemplary method may also include forming areas of metal regions on the sidewalls of the trenches such that planar strip portions of the areas form electrically conductive regions of the passive element(s) that are aligned substantially perpendicularly with respect to a primary plane of the substrate. Other exemplary embodiments may comprise various articles or methods including capacitive and/or inductive aspects, Titanium- and/or Tantalum-based resistive aspects, products, products by processes, packages and composites consistent with one or more aspects of the innovations set forth herein.Type: ApplicationFiled: June 29, 2007Publication date: January 1, 2009Applicant: Silicon Storage Technology, Inc.Inventors: Bomy Chen, Long Chin Wang, Sychyi Fang
-
Patent number: 7470585Abstract: An integrated circuit has at least one semiconductor device for storing charge that includes at least one elementary active component and at least one elementary storage capacitor. The device includes a substrate having a lower region containing at least one buried capacitive elementary trench forming the elementary storage capacitor, and an elementary well located above the lower region of the substrate and isolated laterally by a lateral electrical isolation region. The elementary active component is located in the elementary well or in and on the elementary well. The capacitive elementary trench is located under the elementary active component and is in electrical contact with the elementary well. In one preferred embodiment, the lateral electrical isolation region is formed by a trench filled with a dielectric material and has a greater depth than that of the elementary well. Also provided is a method for fabricating an integrated circuit that includes a semiconductor device for storing charge.Type: GrantFiled: September 21, 2006Date of Patent: December 30, 2008Assignee: STMicroelectronics S.A.Inventors: Olivier Menut, Yvon Gris
-
Patent number: 7439135Abstract: A structure and method of forming a body contact for an semiconductor-on-insulator trench device. The method including: forming set of mandrels on a top surface of a substrate, each mandrel of the set of mandrels arranged on a different corner of a polygon and extending above the top surface of the substrate, a number of mandrels in the set of mandrels equal to a number of corners of the polygon; forming sidewall spacers on sidewalls of each mandrel of the set of mandrels, sidewalls spacers of each adjacent pair of mandrels merging with each other and forming a unbroken wall defining an opening in an interior region of the polygon, a region of the substrate exposed in the opening; etching a contact trench in the substrate in the opening; and filling the contact trench with an electrically conductive material to form the contact.Type: GrantFiled: April 4, 2006Date of Patent: October 21, 2008Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Ramachandra Divakaruni
-
Publication number: 20080239625Abstract: A method for manufacturing an electronic component on a semiconductor substrate, including forming at least one opening in the substrate; forming in the bottom and on the walls of the opening and on the substrate an alternated succession of layers of a first material and of a second material, the second material being selectively etchable with respect to the first material and the substrate; trimming the layer portions of the first material and of the second material which are not located in the opening; selectively etching a portion of the first material to obtain trenches; and filling the trenches with at least one third material.Type: ApplicationFiled: March 31, 2008Publication date: October 2, 2008Applicant: STMicroelectronics Crolles 2 SASInventors: Oliver Kermarrec, Daniel Bensahel, Yves Campidelli
-
Patent number: 7410864Abstract: A method for fabricating a trench includes providing a semiconductor substrate made of a semiconductor material. A trench is etched into a surface of the semiconductor substrate such that a trench wall is produced. At least one layer is provided on the trench wall. This step is performed in such a way that the topmost layer provided on the trench wall is constructed from a sealing material. A selective epitaxy method is carried out in such a way that a monocrystalline semiconductor layer is formed on the surface of the semiconductor substrate and preferably no semiconductor material grows directly on the sealing material. A partial trench is etched in a surface of the epitaxially grown semiconductor layer. This step is performed in such a way that at least part of the layer made of the sealing material is uncovered. An uncovered part of the layer made of the sealing material is then removed.Type: GrantFiled: April 15, 2005Date of Patent: August 12, 2008Assignee: Infineon Technologies AGInventor: Dietmar Temmler
-
Patent number: 7402487Abstract: A process for fabricating a semiconductor device having deep trench structures includes forming a first portion of the trench in a semiconductor substrate and a second portion of the trench in a selectively-formed upper layer. After etching the substrate to form the first portion of the trench, a protective layer is deposited over the inner surface of the trench in the semiconductor substrate and the upper layer is selectively formed on a principal surface of the semiconductor substrate. During formation of the upper layer, a wall surface is formed in the upper layer that is continuous with the wall surface of the trench in the semiconductor substrate. By forming a second portion of the trench in the selectively-formed upper layer, a deep trench is produced having a high aspect ratio and well defined geometric characteristics.Type: GrantFiled: October 18, 2004Date of Patent: July 22, 2008Assignee: Infineon Technologies Richmond, LPInventors: Michael Rennie, Stephen Rusinko
-
Patent number: 7390717Abstract: A fabrication process for a trench type power semiconductor device includes forming inside spacers over a semiconductor surface. Using the spacers as masks, trenches with gates are formed in the semiconductor body. After removing the spacers, source implants are formed in the semiconductor body along the trench edges and are then driven. Insulation caps are then formed over the trenches. Outside spacers are next formed along the sides of the caps. Using these spacers as masks, the semiconductor surface is etched and high conductivity contact regions formed. The outside spacers are then removed and source and drain contacts formed. Alternatively, the source implants are not driven. Rather, prior to outside spacer formation a second source implant is performed. The outside spacers are then formed, portions of the second source implant etched, any remaining source implant driven, and the contact regions formed. The gate electrodes are either recessed below or extend above the semiconductor surface.Type: GrantFiled: February 9, 2005Date of Patent: June 24, 2008Assignee: International Rectifier CorporationInventors: Jianjun Cao, Paul Harvey, David Kent, Robert Montgomery, Kyle Spring
-
Patent number: 7344953Abstract: On a substrate surface, which has been patterned in the form of a relief, of a substrate, typically of a semiconductor wafer, a deposition process is used to provide a covering layer on process surfaces which are vertical or inclined with respect to the substrate surface. The covering layer is patterned in a direction which is vertical with respect to the substrate surface by limiting a process quantity of at least one precursor material and/or by temporarily limiting the deposition process, and is formed as a functional layer or mask for subsequent process steps.Type: GrantFiled: January 26, 2005Date of Patent: March 18, 2008Assignee: Infineon Technologies, AGInventors: Thomas Hecht, Matthias Goldbach, Uwe Schröder
-
Patent number: 7320912Abstract: A method for forming a trench capacitor includes: removing a portion of the substrate to form a trench within the substrate; forming at a buried isolation layer within the substrate; forming in the substrate a first electrode of the trench capacitor at least in areas surrounding a lower portion of the trench; forming a dielectric layer of the trench capacitor; and forming a second electrode of the trench capacitor in the trench. The buried isolation layer intersects with the trench and has one or more gaps for providing body contact between a first substrate area above the buried isolation layer and a second substrate area below the buried isolation layer.Type: GrantFiled: May 10, 2005Date of Patent: January 22, 2008Assignee: PROMOS Technologies Inc.Inventors: Yueh-Chuan Lee, Ming-Sheng Tung
-
Patent number: 7223651Abstract: A memory cell includes a selection transistor and a trench capacitor. The trench capacitor is filled with a conductive trench filling on which an insulating covering layer is arranged. The insulating covering layer is laterally overgrown, proceeding from the substrate with a selectively grown epitaxial layer. The selection transistor is formed in the selectively grown epitaxial layer, comprises a source region connected to the trench capacitor and a drain region connected to a bit line. The junction depth of the source region is chosen so that the source region reaches as far as the insulating covering layer. Optionally, the thickness of the epitaxial layer can be reduced to a thickness by oxidation and a subsequent etching. Afterwards, a contact trench is etched through the source region down to the conductive trench filling, which trench is filled with a conductive contact and electrically connects the conductive trench filling to the source region.Type: GrantFiled: June 5, 2002Date of Patent: May 29, 2007Assignee: Infineon Technologies, AGInventors: Frank Richter, Dietmar Temmler, Andreas Wich-Glasen
-
Patent number: 7205193Abstract: A semiconductor device and method for fabricating the same. The semiconductor device including a first conductive type semiconductor substrate having an active region and a field region defined thereon, and a trench formed in the field region. The semiconductor device also includes a storage dielectric film on an inside surface of the trench, a storage electrode of a capacitor in the trench having the dielectric film formed therein, and an active cell isolation film in the trench on the storage electrode. The semiconductor device further includes a transistor on the semiconductor substrate in the active region, the transistor having gate and a source and/or drain region formed such that the source and/or drain region is electrically connected to the storage electrode.Type: GrantFiled: December 30, 2004Date of Patent: April 17, 2007Assignee: Dongbu Electronics Co., Ltd.Inventor: Kwan Joo Koh
-
Patent number: 7157328Abstract: The surface area of the walls of a trench formed in a substrate is increased. A barrier layer is formed on the walls of the trench such that the barrier layer is thinner near the corners of the trench and is thicker between the corners of the trench. A dopant is introduced into the substrate through the barrier layer to form higher doped regions in the substrate near the corners of the trench and lesser doped regions between the corners of the trench. The barrier layer is removed, and the walls of the trench are etched in a manner that etches the lesser doped regions of the substrate at a higher rate than the higher doped regions of the substrate to widen and lengthen the trench and to form rounded corners at the intersections of the walls of the trench.Type: GrantFiled: January 31, 2005Date of Patent: January 2, 2007Assignees: Infineon Technologies AG, International Business Machines CorporationInventors: Helmut Horst Tews, Stephan Kudelka, Kenneth T. Settlemyer
-
Patent number: 7122439Abstract: A method of fabricating a bottle trench and a bottle trench capacitor. The method including: providing a substrate; forming a trench in the substrate, the trench having sidewalls and a bottom, the trench having an upper region adjacent to a top surface of the substrate and a lower region adjacent to the bottom of the trench; forming an oxidized layer of the substrate in the bottom region of the trench; and removing the oxidized layer of the substrate from the bottom region of the trench, a cross-sectional area of the lower region of the trench greater than a cross-sectional area of the upper region of the trench.Type: GrantFiled: November 17, 2004Date of Patent: October 17, 2006Assignees: International Business Machines Corporation, Infineon Technologies AGInventors: Oh-Jung Kwon, Kenneth T. Settlemyer, Jr., Ravikumar Ramachandran, Min-Soo Kim
-
Patent number: 7112461Abstract: An integrated circuit is provided that includes a substrate incorporating a semiconductor photodiode device having a p-n junction. The photodiode device includes at least one capacitive trench buried in the substrate and connected in parallel with the junction. In a preferred embodiment, the substrate is formed from silicon, and the capacitive trench includes an internal doped silicon region partially enveloped by an insulating wall that laterally separates the internal region from the substrate. Also provided is a method for fabricating an integrated circuit including a substrate that incorporates a semiconductor photodiode device having a p-n junction.Type: GrantFiled: November 18, 2003Date of Patent: September 26, 2006Assignee: STMicroelectronics S.A.Inventors: Olivier Menut, Yvon Gris
-
Patent number: 7101768Abstract: As disclosed herein, a method is provided, in an integrated circuit, for forming an enhanced capacitance trench capacitor. The method includes forming a trench in a semiconductor substrate and forming an isolation collar on a sidewall of the trench. The collar has at least an exposed layer of oxide and occupies only a “collar” portion of the sidewall, while a “capacitor” portion of the sidewall is free of the collar. A seeding layer is then selectively deposited on the capacitor portion of the sidewall. Then, hemispherical silicon grains are deposited on the seeding layer on the capacitor portion of the sidewall. A dielectric material is deposited, and then a conductor material, in that order, over the hemispherical silicon grains on the capacitor portion of the sidewall.Type: GrantFiled: September 27, 2002Date of Patent: September 5, 2006Assignee: International Business Machines CorporationInventors: Kenneth T. Settlemyer, Jr., Porshia Shane Wrschka
-
Patent number: 7094659Abstract: A method of forming a trench capacitor is disclosed. After completion of the bottom electrode of the capacitor, a collar dielectric layer is directly formed on the sidewall of the deep trench using self-starved atomic layer chemical vapor deposition (self-starved ALCVD). Then, a high dielectric constant (high k) dielectric layer is formed overlying the collar dielectric and the bottom portion of the deep trench using atomic layer chemical vapor deposition (ALCVD). Thereafter, a conductive layer is filled into the deep trench and recessed to a predetermined depth. A portion of the dielectric layer and the high dielectric constant (high k) layer at the top of the deep trench are removed to complete the fabrication of the deep trench capacitor.Type: GrantFiled: October 13, 2004Date of Patent: August 22, 2006Assignee: ProMOS Technologies Inc.Inventors: Hsi-Chieh Chen, James Shyu, Hippo Wu
-
Patent number: 7067372Abstract: A memory cell has a trench, in which a trench capacitor is disposed. Furthermore a vertical transistor is formed in the trench above the trench capacitor. A barrier layer is disposed for the electric connection of the conductive trench filling to a lower doping region of the vertical transistor. The barrier layer is a diffusion barrier for dopants or impurities that are contained in the conductive trench filling.Type: GrantFiled: September 9, 2003Date of Patent: June 27, 2006Assignee: Infineon Technologies AGInventors: Martin Schrems, Rolf Weis
-
Patent number: 7026248Abstract: In a method for manufacturing a semiconductor device of the present invention, a portion of a first epitaxial layer formed in a trench in a silicon substrate is removed by vapor phase etching using a halogenated compound or hydrogen. In this removing process, the portion of the first epitaxial layer is removed at a predetermined temperature higher than that during epitaxial growth of the first epitaxial layer and at a predetermined pressure higher than that during epitaxial growth of the first epitaxial layer. Therefore, stress that would otherwise be concentrated at a bottom portion of the trench is relaxed because rearrangement of the silicon atoms increases.Type: GrantFiled: January 21, 2003Date of Patent: April 11, 2006Assignee: Denso CorporationInventors: Shoichi Yamauchi, Nobuhiro Tsuji
-
Patent number: 6989311Abstract: The instant invention is a method for fabricating a trench contact to a deep trench capacitor with a polysilicon filling in a trench hole formed in a silicon substrate. An epitaxy process is performed to selectively grow silicon above the polysilicon filling in the trench hole. An opening leading to the polysilicon filling is anisotropically etched into the epitaxially grown silicon. The opening has lateral dimensions that are smaller than those of the polysilicon filling, and the opening is filled with polysilicon.Type: GrantFiled: May 16, 2002Date of Patent: January 24, 2006Assignee: Infineon Technologies AGInventors: Martin Schrems, Dietmar Temmler, Andreas Wich-Glasen
-
Patent number: 6989561Abstract: Afin-type trench capacitor structure includes a buried plate diffused into a silicon substrate. The buried plate, which surrounds a bottle-shaped lower portion of the trench capacitor structure, is electrically connected to an upwardly extending annular poly electrode, thereby enabling the buried plate and the annular poly electrode to constitute a large-area capacitor electrode of the trench capacitor structure. A capacitor storage node consisting of a surrounding conductive layer, a central conductive layer and a collar conductive layer encompasses the upwardly extending annular poly electrode. A first capacitor dielectric layer isolates the capacitor storage node from the buried plate. A second capacitor dielectric layer and a third capacitor dielectric layer isolate the upwardly extending annular poly electrode from the capacitor storage node.Type: GrantFiled: December 2, 2003Date of Patent: January 24, 2006Assignee: Nanya Technology Corp.Inventors: Shian-Jyh Lin, Sam Liao, Chia-Sheng Yu
-
Patent number: RE44236Abstract: A method for manufacturing a semiconductor device includes the steps of: forming a trench in a semiconductor substrate; and forming an epitaxial film on the substrate including a sidewall and a bottom of the trench so that the epitaxial film is filled in the trench. The step of forming the epitaxial film includes a final step before the trench is filled with the epitaxial film. The final step has a forming condition of the epitaxial film in such a manner that the epitaxial film to be formed on the sidewall of the trench has a growth rate at an opening of the trench smaller than a growth rate at a position of the trench, which is deeper than the opening of the trench.Type: GrantFiled: October 12, 2011Date of Patent: May 21, 2013Assignees: DENSO CORPORATION, Sumco CorporationInventors: Shoichi Yamauchi, Hitoshi Yamaguchi, Tomoatsu Makino, Syouji Nogami, Tomonori Yamaoka