Having A Perfecting Coating Patents (Class 438/465)
  • Patent number: 8722514
    Abstract: In one embodiment, a semiconductor device includes a glass substrate, a semiconductor substrate disposed on the glass substrate, and a magnetic sensor disposed within and/or over the semiconductor substrate.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: May 13, 2014
    Assignee: Infineon Technologies AG
    Inventors: Carsten von Koblinski, Volker Strutz, Manfred Engelhardt
  • Patent number: 8716066
    Abstract: A method of forming a packaged semiconductor device includes loading an array of package sites in position for saw singulation, saw singulating the array of package sites, and performing a non-electrolytic plating operation on exposed lead tips of individual packages from the array of package sites as the array of package sites is saw singulated.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Leo M. Higgins, III
  • Patent number: 8691666
    Abstract: A method for producing a chip (13) in which a die bonding adhesive layer (24) and a wafer (1) are laminated on a close-contact layer (31) of a fixing jig (3), the chip is formed by completely cutting the wafer and the die bonding adhesive layer and then the chip is picked up together with the die bonding adhesive layer from the fixing jig by deforming the close-contact layer of the fixing jig. In the method the fixing jig is provided with the close-contact layer and a jig base (30) that is provided with a plurality of protrusions (36) on one side and a sidewall (35) at the outer circumference section of the one side. The close-contact layer is laminated on the surface of the jig base provided with the protrusions and is bonded on the upper surface of the sidewall. On the surface of the jig base provided with the protrusions, a partitioned space is formed by the close-contact layer, the protrusions, and the sidewall.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: April 8, 2014
    Assignee: Lintec Corporation
    Inventors: Takeshi Segawa, Naofumi Izumi
  • Publication number: 20140087543
    Abstract: It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.
    Type: Application
    Filed: December 5, 2013
    Publication date: March 27, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuhiro JINBO, Hironobu SHOJI, Hideto OHNUMA, Shunpei YAMAZAKI
  • Patent number: 8679870
    Abstract: Provided is a method of manufacturing a semiconductor element having at a cut portion with excellent quality, which minimizes a region on a silicon substrate necessary for cutting, and which prevents cutting water used when cutting by dicing is carried out from entering the semiconductor element. The method of manufacturing a semiconductor element includes: arranging, on the silicon substrate, multiple semiconductor element portions so as to be adjacent to one another; bonding the silicon substrate and a glass substrate together using the resin; and cutting the silicon substrate and the glass substrate, respectively, in a region in which the resin is provided, the cutting the silicon substrate and the glass substrate including: half-cutting the silicon substrate by dicing; cutting the glass substrate by scribing; and dividing the silicon substrate, the glass substrate, and the resin.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: March 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ichiro Kataoka, Kazuya Igarashi
  • Publication number: 20140070374
    Abstract: There is provided a method of fabricating a semiconductor device, method including: a) forming semiconductor elements in plural element regions surrounded by assumed dicing lines on a first principal surface of a semiconductor wafer; b) grinding the second principal surface in such a way that an outer peripheral portion of a second principal surface on the opposite side of the first principal surface of the semiconductor wafer becomes thicker than an inner peripheral portion of the second principal surface; c) forming a metal film, in such a way as to avoid sections corresponding to the dicing lines, on the second principal surface that has been ground in the grinding step; and d) cutting the semiconductor wafer from the second principal surface side along portions where the metal film is not formed on the dicing lines.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 13, 2014
    Applicant: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Hiroyuki NUMAGUCHI
  • Publication number: 20140061873
    Abstract: A method for processing a wafer in accordance with various embodiments may include: forming a passivation over the wafer; forming a protection layer over at least a surface of the passivation facing away from the wafer, wherein the protection layer includes a material that is selectively etchable to a material of the passivation; forming a mask layer over at least a surface of the protection layer facing away from the wafer, wherein the mask layer includes a material that is selectively etchable to the material of the protection layer; etching the wafer using the mask layer as a mask; selectively etching the material of the mask layer to remove the mask layer from the protection layer, after etching the wafer; and selectively etching the material of the protection layer to remove the protection layer from the passivation, after selectively etching the material of the mask layer.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Joachim Hirschler, Gudrun Stranzl
  • Patent number: 8664025
    Abstract: The width of scribe lines may be reduced in semiconductor devices by applying a process technique in which trenches may be formed first from the rear side on the basis of a required width of the corresponding trenches, while subsequently it may be cut into the substrate from the front side on the basis of a reduced thickness of the corresponding saw blades, thereby also enabling a reduction of the scribe line width. Furthermore, contamination of the front side, i.e., of the metallization system, may be reduced, for instance, by performing an optional intermediate cleaning process.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 4, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Daniel Richter, Frank Kuechenmeister
  • Patent number: 8658515
    Abstract: The present invention aims to provides a method of manufacturing a film for a semiconductor device in which a dicing film, a die bond film, and a protecting film are laminated in this order, including the steps of: irradiating the die bond film with a light ray having a wavelength of 400 to 800 nm to detect the position of the die bond film based on the obtained light transmittance and punching the dicing film out based on the detected position of the die bond film, and in which T2/T1 is 0.04 or more, wherein T1 is the light transmittance of the portion where the dicing film and the protecting film are laminated and T2 is the light transmittance of the portion where the dicing film, the die bond film, and the protecting film are laminated.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: February 25, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Koichi Inoue, Miki Morita, Yuichiro Shishido
  • Patent number: 8658908
    Abstract: A multiple patterning wiring board includes a base substrate including a plurality of wiring board regions arranged in rows and columns, the wiring board regions each including an electronic component mounting region in a center portion thereof, a dividing groove at borders between wiring board regions in one main face of the base substrate, a lid member bonding region being formed between the electronic component mounting region and the dividing groove in the main face of the base substrate, and the lid member bonding region 1c including a groove, the groove having a width less than or equal to the width of the region and a depth that is less than a depth of the dividing groove.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: February 25, 2014
    Assignee: Kyocera Corporation
    Inventor: Shuzou Nakashima
  • Patent number: 8643147
    Abstract: An integrated circuit structure includes a lower dielectric layer; an upper dielectric layer over the lower dielectric layer; and a seal ring. The seal ring includes an upper metal line in the upper dielectric layer; a continuous via bar underlying and abutting the upper metal line, wherein the continuous via bar has a width greater than about 70 percent of a width of the upper metal line; a lower metal line in the lower dielectric layer; and a via bar underlying and abutting the lower metal line. The via bar has a width substantially less than a half of a width of the lower metal line.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: February 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Puu Jeng, Shih-Hsun Hsu, Shang-Yun Hou, Hao-Yi Tsai, Chen-Hua Yu
  • Patent number: 8642446
    Abstract: A semiconductor wafer contains a plurality of semiconductor die separated by a saw street. A contact pad is formed over an active surface of the semiconductor die. A protective pattern is formed over the active surface of the semiconductor die between the contact pad and saw street of the semiconductor die. The protective pattern includes a segmented metal layer or plurality of parallel segmented metal layers. An insulating layer is formed over the active surface, contact pad, and protective pattern. A portion of the insulating layer is removed to expose the contact pad. The protective pattern reduces erosion of the insulating layer between the contact pad and saw street of the semiconductor die. The protective pattern can be angled at corners of the semiconductor die or follow a contour of the contact pad. The protective pattern can be formed at corners of the semiconductor die.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: February 4, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Xia Feng, Kang Chen, Jianmin Fang
  • Patent number: 8643177
    Abstract: A method of processing a wafer including a plurality of integrated circuit devices on a front side of the wafer, may include thinning the wafer from a back side opposite the front side. After thinning the wafer, a back side layer may be provided on the back side of the thinned wafer opposite the front side, and the back side layer may be configured to counter stress on the front side of the wafer including the plurality of integrated circuit devices thereon. After providing the back side layer, the plurality of integrated circuit devices may be separated. Related structures are also discussed.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 4, 2014
    Assignee: Amkor Technology, Inc.
    Inventors: Glenn A. Rinne, Kevin Engel, Julia Roe, Christopher John Berry
  • Publication number: 20140017882
    Abstract: Methods of using a hybrid mask composed of a first water soluble film layer and a second water-soluble layer for wafer dicing using laser scribing and plasma etch described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a hybrid mask above the semiconductor wafer. The hybrid mask is composed of a first water-soluble layer disposed on the integrated circuits, and a second water-soluble layer disposed on the first water-soluble layer. The method also involves patterning the hybrid mask with a laser scribing process to provide a patterned hybrid mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The method also involves etching the semiconductor wafer through the gaps in the patterned hybrid mask to singulate the integrated circuits.
    Type: Application
    Filed: June 13, 2013
    Publication date: January 16, 2014
    Inventors: Wei-Sheng Lei, Brad Eaton, Aparna Iyer, Todd Egan, Madhava Rao Yalamanchili, Ajay Kumar
  • Publication number: 20140015109
    Abstract: Methods of dicing semiconductor wafers, and transporting singulated die, are described. In an example, a method of dicing a wafer having a plurality of integrated circuits thereon involves dicing the wafer into a plurality of singulated dies disposed above a dicing tape. The method also involves forming a water soluble material layer over and between the plurality of singulated dies, above the dicing tape.
    Type: Application
    Filed: June 14, 2013
    Publication date: January 16, 2014
    Inventors: Wei-Sheng Lei, Brad Eaton, Aparna Iyer, Saravjeet Singh, Todd Egan, Ajay Kumar, Seshadri Ramaswami
  • Patent number: 8624348
    Abstract: A microelectronic element is disclosed that includes a semiconductor chip and a continuous monolithic metallic edge-reinforcement ring that covers each of the plurality of edge surfaces of the semiconductor chip and extending onto the front surface. The semiconductor chip may have front and rear opposed surfaces and a plurality of contacts at the front surface and edge surfaces extending between the front and rear surfaces. The semiconductor chip may also embody at least an active device or a passive device.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: January 7, 2014
    Assignee: Invensas Corporation
    Inventor: Ilyas Mohammed
  • Patent number: 8614139
    Abstract: The present invention provides a dicing film with a protecting film that enables to paste a dicing film to a semiconductor wafer without a shift in position while reducing a downtime. There is provided a dicing film with a protecting film in which a dicing film and a protecting film are laminated, wherein the difference between the transmittance of the protecting film and the transmittance of the dicing film with a protecting film at a portion of the dicing film where light for detecting a film transmits first is 20% or more in a wavelength of 600 to 700 nm.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 24, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Yuichiro Shishido, Takeshi Matsumura
  • Publication number: 20130337634
    Abstract: A fabrication method for producing semiconductor chips with enhanced die strength comprises following steps: forming a semiconductor wafer with enhanced die strength by comprising the substrate, the active layer on the front side of the substrate and the backside metal layer on the backside of the substrate, wherein at least one integrated circuit forms in the active layer; forming a protection layer on a front side of the semiconductor wafer; dicing the semiconductor wafer by at least one laser dicing process and removing the laser dicing residues and removing said protection layer by at least one etching process, whereby plural semiconductor chips with enhanced die strength are produced, and wherein the backside metal layer of said semiconductor chip fully covers the backside of said semiconductor chip after dicing.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Applicant: WIN Semiconductors Corp.
    Inventor: Chang-Hwang HUA
  • Patent number: 8609515
    Abstract: A dicing die bonding film including a bonding layer; and a pressure-sensitive adhesive layer adjoining the bonding layer, the pressure-sensitive adhesive layer having a storage modulus of about 400 to about 600 kPa at 25° C. and a peel strength of about 200 to about 350 mN/25 mm with respect to the bonding layer as measured according to KS-A-01107 standard.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 17, 2013
    Assignee: Cheil Industries, Inc.
    Inventors: Min Kyu Hwang, Ji Ho Kim, Ki Tae Song
  • Patent number: 8598015
    Abstract: A laser processing method which can highly accurately cut objects to be processed having various laminate structures is provided. An object to be processed comprising a substrate and a laminate part disposed on the front face of the substrate is irradiated with laser light L while a light-converging point P is positioned at least within the substrate, so as to form a modified region due to multiphoton absorption at least within the substrate, and cause the modified region to form a starting point region for cutting. When the object is cut along the starting point region for cutting, the object 1 can be cut with a high accuracy.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: December 3, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu
  • Patent number: 8580657
    Abstract: A method of forming an integrated circuit structure includes providing a wafer having a first semiconductor chip, a second semiconductor chip, and a scribe line between and adjoining the first semiconductor chip and the second semiconductor chip; forming a notch in the scribe line, wherein the notch has a bottom no higher than a top surface of a semiconductor substrate in the wafer; forming a first insulation film over the wafer, wherein the first insulation film extends into the notch; removing a portion of the first insulation film from a center of the notch, wherein a remaining portion of the first insulation film comprises an edge in the notch; and sawing the wafer to separate the first semiconductor chip and the second semiconductor chip.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: November 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yian-Liang Kuo, Chien-Yi Chen, Yu-Ting Lin, Yung-Sheng Huang
  • Patent number: 8569877
    Abstract: Embodiments of the present invention are directed to metallic solderability preservation coating on connectors of semiconductor package to prevent oxide. Singulated semiconductor packages can have contaminants, such as oxides, on exposed metal areas of the connectors. Oxidation typically occurs on the exposed metal areas when the semiconductor packages are not stored in appropriate environments. Copper oxides prevent the connectors from soldering well. An anti-tarnish solution of the present invention is used to coat the connectors during sawing, after sawing, or both of a semiconductor array to preserve metallic solderability. The anti-tarnish solution is a metallic solution, which advantageously allows the semiconductor packages to not need be assembled immediately after fabrication.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: October 29, 2013
    Assignee: UTAC Thai Limited
    Inventors: Woraya Benjavasukul, Thipyaporn Somrubpornpinan, Panikan Charapaka
  • Patent number: 8569108
    Abstract: A coating for a microelectronic device comprises a polymer film (131) containing a filler material (232). The polymer film has a thermal conductivity greater than 3 W/m·K and a thickness (133) that does not exceed 10 micrometers. The polymer film may be combined with a dicing tape (310) to form a treatment (300) that simplifies a manufacturing process for a microelectronic package (100) and may be used in order to manage a thermal profile of the microelectronic device.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 29, 2013
    Assignee: Intel Corporation
    Inventors: Dingying Xu, Leonel R. Arana, Nachiket R. Raravikar, Mohit Mamodia, Rajasekaran Swaminathan, Rahul Manepalli
  • Patent number: 8563339
    Abstract: One close loop system and method for electrophoretic deposition (EPD) of phosphor material on light emitting diodes (LEDs). The system comprises a deposition chamber sealed from ambient air. A mixture of phosphor material and solution is provided to the chamber with the mixture also being sealed from ambient air. A carrier holds a batch of LEDs in the chamber with the mixture contacting the areas of the LEDs for phosphor deposition. A voltage supply applies a voltage to the LEDs and the mixture to cause the phosphor material to deposit on the LEDs at the mixture contacting areas.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: October 22, 2013
    Assignee: Cree, Inc.
    Inventors: Eric J. Tarsa, Michael Leung, Bernd Keller, Robert Underwood, Mark Youmans
  • Patent number: 8551817
    Abstract: A wafer having a front face formed with a functional device is irradiated with laser light while positioning a light-converging point within the wafer with the rear face of the wafer acting as a laser light incident face, so as to generate multiphoton absorption, thereby forming a starting point region for cutting due to a molten processed region within the wafer along a line. Consequently, a fracture can be generated from the starting point region for cutting naturally or with a relatively small force, so as to reach the front face and rear face. Therefore, when an expansion film is attached to the rear face of the wafer by way of a die bonding resin layer after forming the starting point region for cutting and then expanded, the wafer and die bonding resin layer can be cut along the line.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: October 8, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kenshi Fukumitsu, Fumitsugu Fukuyo, Naoki Uchiyama, Ryuji Sugiura, Kazuhiro Atsumi
  • Patent number: 8518805
    Abstract: Disclosed is a method for dicing a semiconductor wafer. The method for dicing a semiconductor wafer prevents a die from being contaminated with silicon dust, generated during the dicing of the wafer, and thus prevents defects in a subsequent wire bonding step, such as defects in bonding wire, contamination of a semiconductor device, etc. The method for dicing a semiconductor wafer comprises the steps of: applying a fluorine-containing polymer coating agent onto one surface of a wafer having a circuit pattern formed thereon to form a polymer coating layer, before dicing the wafer.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: August 27, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Kwang-Jae Jo, Kyung-Ho Jang
  • Patent number: 8519511
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 8518801
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 8476109
    Abstract: Semiconductor workpiece carriers and methods for processing semiconductor workpieces are disclosed herein. In one embodiment, a semiconductor workpiece carrier assembly includes (a) a support structure having an opening sized to receive at least a portion of a semiconductor workpiece, and (b) a replaceable carrier positioned at the opening. The replaceable carrier includes a base and an adhesive layer on the base. The base has a surface, and the adhesive layer covers only a section of the surface of the base. The adhesive layer releasably attaches the replaceable carrier to the support structure.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: July 2, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Chee Peng Neo, Hong Hak Teo, Jamilon Bin Sukami
  • Publication number: 20130149842
    Abstract: The present invention provides a laminated sheet that can prevent the decrease in adhering strength of a resin composition layer and the deterioration in electrical reliability and in which a back grinding tape can be peeled from a plurality of semiconductor elements collectively after dicing. The laminated sheet has a back grinding tape in which a pressure-sensitive adhesive layer is formed on a base, and a resin composition layer that is provided on the pressure-sensitive adhesive layer of the back grinding tape, wherein the tensile modulus of the pressure-sensitive adhesive layer at 23° C. is 0.1 to 5.0 MPa, and the T-peeling strength between the pressure-sensitive adhesive layer and the resin composition layer is 0.1 to 5 N/20 mm at 23° C. and 300 mm/min.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 13, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventor: NITTO DENKO CORPORATION
  • Patent number: 8461024
    Abstract: A wafer translator is provided with a patterned layer of wafer bonding thermoset plastic and is removably attached with a wafer so as to form a wafer/wafer translator pair. The wafer translator acts as a mechanical support during a thinning process as well as during a wafer dicing operation. The singulated integrated circuits are then removed from the wafer translator. In some embodiments, wafer level testing of the integrated circuits on the wafer is performed subsequent to the wafer thinning process but before the wafer and wafer translator are separated. In other embodiments, wafer level testing of the integrated circuits on the wafer is performed subsequent to the wafer dicing operation but before the diced wafer and wafer translator are separated.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: June 11, 2013
    Assignee: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T. Johnson
  • Patent number: 8461025
    Abstract: A protective film forming method for forming a protective film of resin on the front side of a wafer, where the method includes a step of holding the wafer on a spinner table in the condition where the front side of said wafer is oriented upward; a step of forming a water layer of a thickness of between about 1 mm and about 3 mm to cover the front side of the wafer; a step of dropping a liquid resin onto the water layer at the center of the wafer; and a step of rotating the spinner table to rotate the wafer held on the spinner table, thereby scattering the water layer and radially spreading the liquid resin dropped on the water layer to form a first resin film covering the front side of the wafer by a centrifugal force produced during rotation of the wafer.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: June 11, 2013
    Assignee: Disco Corporation
    Inventor: Nobuyasu Kitahara
  • Publication number: 20130143390
    Abstract: A dicing/die bonding integral film of the present invention includes a base film, a pressure-sensitive adhesive layer which is formed on the base film and to which a wafer ring for blade dicing is bonded, and a bonding layer formed on the adhesive layer and having a central portion to which a semiconductor wafer to be diced is bonded, wherein a planar shape of the bonding layer is circular, an area of the bonding layer is greater than an area of the semiconductor wafer and smaller than an area of each of the base film and the adhesive layer, and a diameter of the bonding layer is greater than a diameter of the semiconductor wafer and less than an inner diameter of the wafer ring, and a difference in diameter between the bonding layer and the semiconductor wafer is greater than 20 mm and less than 35 mm,
    Type: Application
    Filed: July 13, 2011
    Publication date: June 6, 2013
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Rie Katou, Takayuki Matsuzaki, Shinya Katou, Ryoji Furutani, Tatsuya Sakuta, Kouji Komorida
  • Publication number: 20130133938
    Abstract: A dicing sheet includes a base, an intermediate layer on one face of the base, and an pressure sensitive adhesive layer provided on the intermediate layer and having the thickness of 8 to 30 ?m. The pressure sensitive adhesive layer includes a compound having an energy ray curable double bond in a molecule, and a storage elasticity G? at 23° C. of the pressure sensitive adhesive layer before curing is larger than 4 times of a storage elasticity at 23° C. of the intermediate layer. When the dicing sheet is laminated via the adhesive sheet on a wafer formed with a cylinder shape electrodes having a height of 15 ?m and a diameter of 15 ?m at a pitch of 40 ?m having 3 rows 3 columns in equal spacing, at a center of the electrode of the cylinder shape electrodes formed in 3 rows 3 columns, the pressure sensitive adhesive layer does not contact at a part of a height of 7.5 ?m or less of the electrode.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 30, 2013
    Applicant: LINTEC CORPORATION
    Inventor: LINTEC Corporation
  • Patent number: 8450189
    Abstract: The present invention relates to a film for flip chip type semiconductor back surface to be formed on the back surface of a semiconductor element flip chip-connected to an adherend, the film for flip chip type semiconductor back surface having a tensile storage elastic modulus at 25° C. after thermal curing within a range of from 10 GPa to 30 GPa, in which the tensile storage elastic modulus at 25° C. after thermal curing of the film for flip chip type semiconductor back surface falls within a range of from 4 times to 20 times the tensile storage elastic modulus at 25° C. before thermal curing thereof.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: May 28, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Goji Shiga, Naohide Takamoto, Fumiteru Asai
  • Patent number: 8450187
    Abstract: Multiphoton absorption is generated, so as to form a part which is intended to be cut 9 due to a molten processed region 13 within a silicon wafer 11, and then an adhesive sheet 20 bonded to the silicon wafer 11 is expanded. This cuts the silicon wafer 11 along the part which is intended to be cut 9 with a high precision into semiconductor chips 25. Here, opposing cut sections 25a, 25a of neighboring semiconductor chips 25, 25 are separated from each other from their close contact state, whereby a die-bonding resin layer 23 is also cut along the part which is intended to be cut 9. Therefore, the silicon wafer 11 and die-bonding resin layer 23 can be cut much more efficiently than in the case where the silicon wafer 11 and die-bonding resin layer 23 are cut with a blade without cutting a base 21.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: May 28, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Ryuji Sugiura
  • Patent number: 8442362
    Abstract: An optical coupling structure that interfaces between optical devices mounted on a substrate and optical waveguides formed in the substrate. A manufacturing method includes preparing a wafer formed on an inorganic solid material on a dicing tape and cutting the back surface of the wafer to form substantially angled portions using a dicing blade having a point angle. The dicing tape is stripped from the wafer and the wafer is separated at the valleys between the substantially angled portions to obtain an optical coupling element. The obtained optical coupling element is a three-dimensional polyhedral light-reflecting member having a mirror surface corresponding to a surface of the wafer. The obtained optical coupling element is inserted into a trench that opens, substantially perpendicular to an optical waveguide of an optical transmission substrate, in the main surface of the optical transmission substrate to provide a structure for optical coupling with the outside.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Shigeru Nakagawa, Hidetoshi Numata, Kuniaki Sueoka, Yoichi Taira
  • Patent number: 8440545
    Abstract: A method of manufacturing a semiconductor device includes spraying fluid onto a surface of a treatment target substrate including a semiconductor substrate; forming a protection layer on the surface of the treatment target substrate after spraying the fluid; selectively removing the protection layer and a part of the treatment target substrate by an energy beam; and conducting removal processing on an area of the treatment target substrate from which the protection layer and the part of the treatment target substrate are selectively removed.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: May 14, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hironori Fukaya, Yuzo Shimobeppu, Kazuhiro Yoshimoto, Yoshiaki Shinjo, Kazuo Teshirogi, Mika Sakamoto
  • Patent number: 8435869
    Abstract: A method for manufacturing a semiconductor device includes forming a semiconductor laminated structure on a substrate as a wafer including semiconductor laser structures; forming a first groove between the semiconductor laser structures on a major surface of the wafer; separating the wafer to laser bars including at least two of the semiconductor laser structures arrayed in a bar shape, after forming the first groove; forming a second groove in the first groove of the laser bars, the second groove having a width no wider than the first groove; and separating one of the laser bars into respective semiconductor lasers along the second groove.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: May 7, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Misao Hironaka, Harumi Nishiguchi, Kyosuke Kuramoto, Masatsugu Kusunoki
  • Patent number: 8420509
    Abstract: The present invention provides a film for flip chip type semiconductor back surface, which is to be formed on a back surface of a semiconductor element flip-chip connected on an adherend, the film including a wafer adhesion layer and a laser marking layer, in which the wafer adhesion layer has an elastic modulus (at 50° C.) of 10 MPa or less and the laser marking layer has an elastic modulus (at 50° C.) of 100 MPa or more.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 16, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Naohide Takamoto, Takeshi Matsumura, Goji Shiga
  • Patent number: 8420510
    Abstract: Provided is a method of manufacturing a semiconductor device wherein the space between semiconductor elements that are three-dimensionally mounted can be filled easily and securely. The method of manufacturing a semiconductor device of the present invention includes preparing a semiconductor wafer with a plurality of members for connection formed on both first and second surfaces; preparing a laminated film including a dicing sheet with a pressure-sensitive adhesive layer laminated on a base material, and a curable film that is laminated on the pressure-sensitive adhesive layer and has a thickness equivalent to or more than the height of the member for connection on the first surface; pasting the curable film of the laminated film to the semiconductor wafer while facing the curable film to the first surface so that the members for connection are not exposed to the pressure-sensitive adhesive layer; and dicing the semiconductor wafer to form a semiconductor element.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 16, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Takashi Oda, Naohide Takamoto, Hiroyuki Senzai
  • Publication number: 20130089970
    Abstract: To provide a method of manufacturing a semiconductor device including a step of attaching a surface protective tape onto the surface of a wafer which has completed the wafer process, a step of subjecting the back surface of the wafer to back grinding, and a step of attaching a peeling assist tape onto the surface protective tape while vacuum-adsorbing the back surface of the wafer to apply a tension to the assist tape, thereby separating the surface protective tape from the wafer, wherein a vacuum suction system has a peripheral suction system for the peripheral part of the wafer and an internal suction system for the internal region of the wafer.
    Type: Application
    Filed: September 11, 2012
    Publication date: April 11, 2013
    Applicant: Renesas Electronics Corporation
    Inventor: Haruo AMADA
  • Patent number: 8389380
    Abstract: A method for making a semiconductor on insulator (SeOI) type substrate that includes an integrated ground plane under the insulating layer wherein the substrate is intended to be used in making electronic components. This method includes implanting atoms or ions of a metal in at least one portion of a semiconducting receiver substrate, carrying out a heat treatment of the receiver substrate in order to obtain an integrated ground plane on or in at least one portion of that receiver substrate, transferring an active layer stemming from a semiconducting donor substrate onto the receiver substrate, with an insulating layer being inserted in between the donor and receiver substrates to obtain the substrate with an integrated ground plane.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: March 5, 2013
    Assignee: Soitec
    Inventor: Xavier Hebras
  • Patent number: 8383436
    Abstract: By performing plasma etching on the second surface of a semiconductor wafer on the first surface of which an insulating film is placed in dividing regions and on the second surface of which a mask for defining the dividing regions are placed, the second surface being located opposite from the first surface, the insulating film is exposed from an etching bottom portion by removing portions that correspond to the dividing regions. Subsequently, by continuously performing the plasma etching in the state in which the exposed insulating film is surface charged with electric charge due to ions in the plasma, corner portions put in contact with the insulating film are removed in the device-formation-regions. Consequently, individualized semiconductor chips having a high transverse rupture strength are manufactured.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: February 26, 2013
    Assignee: Panasonic Corporation
    Inventor: Kiyoshi Arita
  • Patent number: 8361883
    Abstract: A laser processing method which can highly accurately cut objects to be processed having various laminate structures is provided. An object to be processed comprising a substrate and a laminate part disposed on the front face of the substrate is irradiated with laser light L while a light-converging point P is positioned at least within the substrate, so as to form a modified region due to multiphoton absorption at least within the substrate, and cause the modified region to form a starting point region for cutting. When the object is cut along the starting point region for cutting, the object 1 can be cut with a high accuracy.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: January 29, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu
  • Patent number: 8357567
    Abstract: It is an object of the present invention to provide a manufacturing method of a semiconductor device where a semiconductor element is prevented from being damaged and throughput speed thereof is improved, even in a case of thinning or removing a supporting substrate after forming the semiconductor element over the supporting substrate.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 22, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Ryosuke Watanabe
  • Publication number: 20120329250
    Abstract: Provided is a method of manufacturing a semiconductor device wherein the space between semiconductor elements that are three-dimensionally mounted can be filled easily and securely. The method of manufacturing a semiconductor device of the present invention includes preparing a semiconductor wafer with a plurality of members for connection formed on both first and second surfaces; preparing a laminated film including a dicing sheet with a pressure-sensitive adhesive layer laminated on a base material, and a curable film that is laminated on the pressure-sensitive adhesive layer and has a thickness equivalent to or more than the height of the member for connection on the first surface; pasting the curable film of the laminated film to the semiconductor wafer while facing the curable film to the first surface so that the members for connection are not exposed to the pressure-sensitive adhesive layer; and dicing the semiconductor wafer to form a semiconductor element.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 27, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Takashi Oda, Naohide Takamoto, Hiroyuki Senzai
  • Patent number: 8314013
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: November 20, 2012
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 8309434
    Abstract: A semiconductor device includes: a semiconductor element having first and second surfaces, wherein the semiconductor element includes at least one electrode, which is disposed on one of the first and second surfaces; and first and second metallic layers, wherein the first metallic layer is disposed on the first surface of the semiconductor element, and wherein the second metallic layer is disposed on the second surface of the semiconductor element. The one electrode is electrically coupled with one of the first and second metallic layers, which is disposed on the one of the first and second surfaces. The one electrode is coupled with an external circuit through the one of the first and second metallic layers.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: November 13, 2012
    Assignee: DENSO CORPORATION
    Inventors: Yasutomi Asai, Hiroshi Ishino
  • Patent number: 8310032
    Abstract: In a wafer, a first chip region and a second chip region are separated from each other by a dicing region. The dicing region includes: a first center region; a first intermediate region located on the first chip region's side of the first center region; a second intermediate region located on the second chip region's side of the first center region; a first outer region located on the first chip region's side of the first intermediate region; and a second outer region located on the second chip region's side of the second intermediate region. Surfaces of the first and second intermediate regions are respectively covered by bank-shaped resin films extending in a longitudinal direction of the dicing region. Respective surfaces of the first center region, the first outer region and the second outer region are not covered by resin films.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: November 13, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshitsugu Kawashima