Ionized Molecules Patents (Class 438/515)
  • Publication number: 20110136329
    Abstract: A manufacturing method of a semiconductor device includes preparing a semiconductor substrate which is a base substrate of the semiconductor device and which is formed with a concavity and convexity part on the surface of the semiconductor substrate. The method further comprises depositing on the surface of the semiconductor substrate an impurity thin film including an impurity atom which becomes a donor or an acceptor in the semiconductor substrate and performing an ion implantation from a diagonal upper direction to the impurity thin film deposited on the concavity and convexity part of the semiconductor substrate. The method still further comprises recoiling the impurity atom from the inside of the impurity thin film to the inside of the concavity and convexity part by performing the ion implantation.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 9, 2011
    Applicant: SEN Corporation
    Inventors: Michiro SUGITANI, Genshu Fuse
  • Patent number: 7947582
    Abstract: A method of preparing a floating trap type device on a substrate is described. The method comprises forming a trap layer structure on a substrate, and modifying a composition of one or more layers in the trap layer structure by exposing the trap layer structure to a gas cluster ion beam (GCIB).
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: May 24, 2011
    Assignee: TEL Epion Inc.
    Inventors: John J. Hautala, Mitchell A. Carlson
  • Patent number: 7943204
    Abstract: Methods of implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. A method of manufacturing a semiconductor device including implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. Also disclosed are a system for supplying a boron hydride precursor, and methods of forming a boron hydride precursor and methods for supplying a boron hydride precursor. In one implementation of the invention, the boron hydride precursors are generated for cluster boron implantation, for manufacturing semiconductor products such as integrated circuitry.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: May 17, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: W. Karl Olander, Jose I. Arno, Robert Kaim
  • Patent number: 7919402
    Abstract: A method of semiconductor manufacturing is disclosed in which doping is accomplished by the implantation of ion beams formed from ionized molecules, and more particularly to a method in which molecular and cluster dopant ions are implanted into a substrate with and without a co-implant of non-dopant cluster ion, such as a carbon cluster ion, wherein the dopant ion is implanted into the amorphous layer created by the co-implant in order to reduce defects in the crystalline structure, thus reducing the leakage current and improving performance of the semiconductor junctions. These compounds include co-implants of carbon clusters with implants of monomer or cluster dopants or simply implanting cluster dopants. In particular, the invention described herein consists of a method of implanting semiconductor wafers implanting semiconductor wafers with carbon clusters followed by implants of boron, phosphorus, or arsenic, or followed with implants of dopant clusters of boron, phosphorus, or arsenic.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: April 5, 2011
    Assignee: SemEquip, Inc.
    Inventors: Dale C. Jacobson, Thomas N. Horsky, Wade A. Krull, Karuppanan Sekar
  • Publication number: 20110065269
    Abstract: In an electron device in which plural thin film transistors each having at least a source electrode, a drain electrode, a semiconductor region including a channel, a gate insulation film and a gate electrode are provided on a substrate, a device separation region provided between the plural thin film transistors and the semiconductor region are constituted by a same metal oxide layer, and resistance of the semiconductor region is formed to be lower than resistance of the device separation region.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryo Hayashi, Masafumi Sano
  • Publication number: 20110065268
    Abstract: Methods of implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. A method of manufacturing a semiconductor device including implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. Also disclosed are a system for supplying a boron hydride precursor, and methods of forming a boron hydride precursor and methods for supplying a boron hydride precursor. In one implementation of the invention, the boron hydride precursors are generated for cluster boron implantation, for manufacturing semiconductor products such as integrated circuitry.
    Type: Application
    Filed: October 27, 2010
    Publication date: March 17, 2011
    Applicant: Advanced Technology Materials, Inc.
    Inventors: W. Karl Olander, Jose I. Arno, Robert Kaim
  • Publication number: 20110034013
    Abstract: A method of processing to a substrate while minimizing cost and manufacturing time is disclosed. The implantation of the source and drain regions of a semiconductor device are performed at low temperatures, such as below 273° K. This low temperature implant reduces the structural damage caused by the impacting ions. Subsequently, the implanted substrate is activated using faster forms of annealing. By performing the implant at low temperatures, the damage to the substrate is reduced, thereby allowing a fast anneal to be used to activate the dopants, while eliminating the majority of the defects and damage. Fast annealing is less expensive than conventional furnace annealing, and can achieve higher throughput at lower costs.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Christopher R. Hatem, Benjamin Colombeau
  • Patent number: 7884001
    Abstract: Embodiments relate to an image sensor and a method of manufacturing an image sensor. According to embodiments, an image sensor may include a gate over a semiconductor substrate, a first impurity region over the semiconductor substrate, a second impurity region over the semiconductor substrate, the second impurity region being shallower than the first impurity region, and a third impurity region formed in the first impurity region, and bent toward the gate at a predetermined angle. According to embodiments, the third impurity region may be an n-type impurity region. According to embodiments, an area of a photodiode may be increased and a transfer efficiency of electrons generated from a photodiode may be increased.
    Type: Grant
    Filed: December 27, 2008
    Date of Patent: February 8, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Joung-Ho Lee
  • Publication number: 20110021011
    Abstract: A method of implanting carbon ions into a target substrate, including: ionizing a carbon containing dopant material to produce a plasma having ions; optionally co-flowing an additional gas or series of gases with the carbon-containing dopant material; and implanting the ions into the target substrate. The carbon-containing dopant material is of the formula CwFxOyHz wherein if w=1, then x>0 and y and z can take any value, and wherein if w>1 then x or y is >0, and z can take any value. Such method significantly improves the efficiency of an ion implanter tool, in relation to the use of carbon source gases such as carbon monoxide or carbon dioxide.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 27, 2011
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Joseph D. SWEENEY, Oleg BYL, Robert KAIM
  • Patent number: 7855132
    Abstract: The present invention provides a method of manufacturing a bonded wafer. The method includes forming an oxygen ion implantation layer in an active layer wafer having a substrate resistivity of 1 to 100 m?cm by implanting oxygen ions in the active layer wafer, bonding a base wafer and the active layer wafer directly or through an insulating layer to form a bonded wafer, heat treating the bonded wafer to strengthen the bond and convert the oxygen ion implantation layer into a stop layer, grinding, polishing, and/or etching, from the active layer wafer surface side, the bonded wafer in which the bond has been strengthened to expose the stop layer on a surface of the bonded wafer, removing the stop layer, and subjecting the bonded wafer from which the stop layer has been removed to a heat treatment under a reducing atmosphere to diffuse an electrically conductive component comprised in the active layer wafer.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: December 21, 2010
    Assignee: Sumco Corporation
    Inventors: Akihiko Endo, Nobuyuki Morimoto
  • Patent number: 7816253
    Abstract: When an interconnect structure is built on porous ultra low k (ULK) material, the bottom of the trench and/or via is usually damaged by a following metallization process which may be suitable for dense higher dielectric materials. Embodiment of the present invention may provide a method of forming an interconnect structure on an inter-layer dielectric (ILD) material. The method includes steps of treating an exposed area of said ILD material to create a densified area, and metallizing said densified area.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: October 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Shyng-Tsong Chen, Qinghuang Lin, Kelly Malone, Sanjay Mehta, Terry A. Spooner, Chih-Chao Yang
  • Patent number: 7785978
    Abstract: A variable resistance memory cell structure and a method of forming it. The method includes forming a first electrode, forming an insulating material over the first electrode, forming a via in the insulating material to expose a surface of the first electrode, forming a heater material within the via using gas cluster ion beams, forming a variable resistance material within the via, and forming a second electrode such that the heater material and variable resistance material are provided between the first and second electrodes.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: August 31, 2010
    Assignee: Micron Technology, Inc.
    Inventor: John Smythe
  • Patent number: 7767583
    Abstract: Embodiments of this method improve the results of a chemical mechanical polishing (CMP) process. A surface is implanted with a species, such as, for example, Si, Ge, As, B, P, H, He, Ne, Ar, Kr, Xe, and C. The implant of this species will at least affect dishing, erosion, and polishing rates of the CMP process. The species may be selected in one embodiment to either accelerate or decelerate the CMP process. The dose of the species may be varied over the surface in one particular embodiment.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: August 3, 2010
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Deepak Ramappa, Thirumal Thanigaivelan
  • Patent number: 7759657
    Abstract: Methods for implanting an ionized polyhedral borane cluster or a selected ionized lower mass byproduct into a workpiece generally includes vaporizing and ionizing a polyhedral borane cluster molecule in an ion source to create a plasma and produce ionized polyhedral borane cluster molecules and its ionized lower mass byproducts. The ionized polyhedral borane cluster molecules and lower mass byproducts within the plasma are then extracted to form an ion beam. The ion beam is mass analyzed with a mass analyzer magnet to permit selected ionized polyhedral borane cluster molecules or selected ionized lower mass byproducts to pass therethrough and implant into a workpiece.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: July 20, 2010
    Assignee: Axcelis Technologies, Inc.
    Inventors: Daniel R. Tieger, Patrick R. Splinter
  • Patent number: 7732309
    Abstract: Methods for implanting ions into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, the method for implanting ions into a substrate by a plasma immersion ion implantation process includes providing a substrate into a processing chamber, supplying a gas mixture including a reacting gas and a reducing gas into the chamber, and implanting ions from the gas mixture into the substrate. In another embodiment, the method includes providing a substrate into a processing chamber, supplying a gas mixture including reacting gas and a hydrogen containing reducing gas into the chamber, and implanting ions from the gas mixture into the substrate.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: June 8, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Shijian Li, Kartik Ramaswamy, Biagio Gallo, Dong Hyung Lee, Majeed A. Foad
  • Patent number: 7723233
    Abstract: A method is proposed for the fabrication of the gate electrode of a semiconductor device such that the effects of gate depletion are minimized. The method is comprised of a dual deposition process wherein the first step is a very thin layer that is doped very heavily by ion implantation. The second deposition, with an associated ion implant for doping, completes the gate electrode. With the two-deposition process, it is possible to maximize the doping at the gate electrode/gate dielectric interface while minimizing risk of boron penetration of the gate dielectric. A further development of this method includes the patterning of both gate electrode layers with the advantage of utilizing the drain extension and source/drain implants as the gate doping implants and the option of offsetting the two patterns to create an asymmetric device.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: May 25, 2010
    Assignee: Semequip, Inc.
    Inventors: Wade A Krull, Dale C. Jacobson
  • Patent number: 7723219
    Abstract: In plasma immersion ion implantation of a polysilicon gate, a hydride of the dopant is employed as a process gas to avoid etching the polysilicon gate, and sufficient argon gas is added to reduce added particle count to below 50 and to reduce plasma impedance fluctuations to 5% or less.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: May 25, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Santhanam, Manoj Vallaikal, Peter I. Porshnev, Majeed A. Foad
  • Publication number: 20100112795
    Abstract: A first method for producing a doped region in a semiconductor substrate includes performing a first implant step in which a carborane cluster molecule is implanted into a semiconductor substrate to form a doped region. A second method for producing a semiconductor device having a shallow junction region includes providing a first gas and a second gas in a container. The first gas includes a first dopant and the second gas includes a second dopant. The second method also includes implanting the first and second dopants into a semiconductor substrate using an ion. The ion source is not turned off between the steps of implanting the first dopant and implanting the second dopant.
    Type: Application
    Filed: September 30, 2009
    Publication date: May 6, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Robert KAIM, Jose I. ARNO, James A. DIETZ
  • Patent number: 7709361
    Abstract: A method for manufacturing a semiconductor device includes forming an impurity diffusion layer in a surface of a semiconductor substrate, wherein the forming the impurity diffusion layer comprises irradiating material including M1x M2y (y/x?1.2, where x is a ratio of M1, y is a ratio of M2, M1 is material which serves as acceptor or donor in the semiconductor device, M2 is material which does not serve as neither donor nor acceptor in the semiconductor device (except semiconductor of the semiconductor substrate)) onto the semiconductor substrate, and heating the semiconductor substrate by light.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: May 4, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kyoichi Suguro
  • Patent number: 7696495
    Abstract: A method and device for adjusting a beam property, such as a beam size, a beam shape or a beam divergence angle, in a gas cluster beam prior to ionization of the gas cluster beam is described. A gas cluster ion beam (GCIB) source is provided, comprising a nozzle assembly having a gas source, a stagnation chamber and a nozzle that is configured to introduce under high pressure one or more gases through the nozzle to a vacuum vessel in order to produce a gas cluster beam. Additionally, the GCIB source comprises a gas skimmer positioned downstream from the nozzle assembly that is configured to reduce the number of energetic, smaller particles in the gas cluster beam. Furthermore, the GCIB source comprises a beam adjustment device positioned downstream from the gas skimmer that is configured to adjust at least one beam property of the gas cluster beam, and an ionizer positioned downstream from the beam adjustment device that is configured to ionize the gas cluster beam to produce a GCIB.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: April 13, 2010
    Assignee: TEL Epion Inc.
    Inventors: Michael E. Mack, Yan Shao
  • Patent number: 7678637
    Abstract: Ultra high temperature (UHT) anneals above 1200 C for less than 100 milliseconds for PMOS transistors reduce end of range dislocations, but are incompatible with stress memorization technique (SMT) layers used to enhance NMOS on-state current. This invention reverses the conventional order of forming the NMOS first by forming PSD using carbon co-implants and UHT annealing them before implanting the NSD and depositing the SMT layer. End of range dislocation densities in the PSD space charge region below 100 cm?2 are achieved. Tensile stress in the PMOS from the SMT layer is significantly reduced. The PLDD may also be UHT annealed to reduce end of range dislocations close to the PMOS channel.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: March 16, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Mahalingam Nandakumar, Song Zhao, Amitabh Jain
  • Publication number: 20090286367
    Abstract: A process is disclosed which incorporates implantation of a carbon cluster into a substrate to improve the characteristics of transistor junctions when the substrates are doped with Boron and Phosphorous in the manufacturing of PMOS transistor structures in integrated circuits. There are two processes which result from this novel approach: (1) diffusion control for USJ formation; and (2) high dose carbon implantation for stress engineering. Diffusion control for USJ formation is demonstrated in conjunction with a boron or shallow boron cluster implant of the source/drain structures in PMOS. More particularly, first, a cluster carbon ion, such as C16Hx+, is implanted into the source/drain region at approximately the same dose as the subsequent boron implant; followed by a shallow boron, boron cluster, phosphorous or phosphorous cluster ion implant to form the source/drain extensions, preferably using a borohydride cluster, such as B18Hx+ or B10Hx+.
    Type: Application
    Filed: July 24, 2009
    Publication date: November 19, 2009
    Inventors: Wade A. Krull, Thomas N. Horsky
  • Publication number: 20090166777
    Abstract: Embodiments relate to an image sensor and a method of manufacturing an image sensor. According to embodiments, an image sensor may include a gate over a semiconductor substrate, a first impurity region over the semiconductor substrate, a second impurity region over the semiconductor substrate, the second impurity region being shallower than the first impurity region, and a third impurity region formed in the first impurity region, and bent toward the gate at a predetermined angle. According to embodiments, the third impurity region may be an n-type impurity region. According to embodiments, an area of a photodiode may be increased and a transfer efficiency of electrons generated from a photodiode may be increased.
    Type: Application
    Filed: December 27, 2008
    Publication date: July 2, 2009
    Inventor: Joung-Ho Lee
  • Patent number: 7518124
    Abstract: Monotomic dopant ions for ion implantation are supplied from vapour of a species containing plural atoms of the desired dopant. The vapour is fed to a plasma chamber and a plasma produced in the chamber with sufficient energy density to disassociate the vapour species to produce monatomic dopant ions in the plasma for implantation.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Richard David Goldberg
  • Patent number: 7494905
    Abstract: The present invention provides, for use in a semiconductor manufacturing process, a method (100) of preparing an ion-implantation source material. The method includes providing (110) a deliquescent ion implantation source material and mixing (110) the deliquescent ion implantation source material with an organic liquid to form a paste.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: February 24, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Amitabh Jain
  • Patent number: 7491586
    Abstract: A method of fabricating a thyristor-based memory may include forming different opposite conductivity-type regions in silicon for defining a thyristor and an access device in series relationship. An activation anneal may activate dopants previously implanted for the different regions. A damaging implant of germanium or xenon or argon may be directed into select regions of the silicon including at least one p-n junction region for the access device and the thyristor. A re-crystallization anneal may then be performed to re-crystallize at least some of the damaged lattice structure resulting from the damaging implant. The re-crystallization anneal may use a temperature less than that of the previous activation anneal.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: February 17, 2009
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Andrew E Horch, Hyun-Jin Cho, Farid Nemati, Scott Robins, Rajesh N. Gupta, Kevin J. Yang
  • Patent number: 7485551
    Abstract: The present invention relates to a method of fabricating a semiconductor-on-insulator-type heterostructure that includes at least one insulating layer interposed between a receiver substrate of semiconductor material and an active layer derived from a donor substrate of semiconductor material. The method includes the steps of bonding and active layer transfer. Prior to bonding, an atomic species which is identical or isoelectric with the insulating layer material is implanted in the insulating layer. The implantation forms a trapping layer, which can retain gaseous species present in the various interfaces of the heterostructure, thereby limiting formation of defects on the surface of the active layer.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: February 3, 2009
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Xavier Hebras
  • Patent number: 7442631
    Abstract: A doping method comprising the steps of; obtaining a proportion X of ions of a compound including a donor or an acceptor impurity in total ions from mass spectrum by using a first source gas of a first concentration; analyzing a peak concentration Y of the compound in a first processing object which is doped by using a second source gas of a second concentration equal to or lower than the first concentration, referring to a dose amount of total ions as D0 and setting an acceleration voltage at a value, obtaining a dose amount D1 of total ions from a expression, Y=(D1/D0)(aX+b), and doping a second processing object with the donor or the acceptor impurity by a ion doping apparatus using a third source gas, wherein a dose amount of total ions is set at D1, and an acceleration voltage is set at the value.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: October 28, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Naoki Suzuki
  • Publication number: 20080248636
    Abstract: Methods of implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. A method of manufacturing a semiconductor device including implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. Also disclosed are a system for supplying a boron hydride precursor, and methods of forming a boron hydride precursor and methods for supplying a boron hydride precursor. In one implementation of the invention, the boron hydride precursors are generated for cluster boron implantation, for manufacturing semiconductor products such as integrated circuitry.
    Type: Application
    Filed: August 30, 2006
    Publication date: October 9, 2008
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: W. Karl Olander, Jose I. Arno, Robert Kaim
  • Patent number: 7410890
    Abstract: Method of forming one or more doped regions in a semiconductor substrate and semiconductor junctions formed thereby, using gas cluster ion beams.
    Type: Grant
    Filed: June 11, 2005
    Date of Patent: August 12, 2008
    Assignee: TEL Epion Inc.
    Inventors: Allen R. Kirkpatrick, Sean Kirkpatrick, Martin D. Tabat, Thomas G. Tetreault, John O. Borland, John J. Hautala, Wesley J. Skinner
  • Patent number: 7405111
    Abstract: The present invention is to carry out stable doping and to prevent the drastic pressure change in a treatment chamber by reducing degasification of resist during adding impurities. In the present invention, the stability of the impurity ion injection can be ensured by reducing degasification of resist by reducing the area (resist area proportion, that is, the ratio of the area of resist to the whole area of a substrate) of resist pattern which is used depending on the conditions such as acceleration voltage or current density of a doping process.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: July 29, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hitomi Ushitani, Shou Nagao, Tomoyuki Iwabuchi
  • Patent number: 7397048
    Abstract: A technique for boron implantation is disclosed. In one particular exemplary embodiment, the technique may be realized by an apparatus for boron implantation. The apparatus may comprise a reaction chamber. The apparatus may also comprise a source of pentaborane coupled to the reaction chamber, wherein the source is capable of supplying a substantially pure form of pentaborane into the reaction chamber. The apparatus may further comprise a power supply that is configured to energize the pentaborane in the reaction chamber sufficiently to produce a plasma discharge having boron-bearing ions.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: July 8, 2008
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Vikram Singh, Edmund J. Winder, Harold M. Persing, Timothy Jerome Miller, Ziwei Fang, Atul Gupta
  • Patent number: 7396746
    Abstract: A method for plasma ion implantation of a substrate includes providing a plasma ion implantation system having a process chamber, a source for producing a plasma in the process chamber, a platen for holding a substrate in the process chamber, an anode spaced from the platen, and a pulse source for generating implant pulses for accelerating ions from the plasma into the substrate. In one aspect, a parameter of an implant process is varied to at least partially compensate for undesired effects of interaction between ions being implanted and the substrate. For example, dose rate, ion energy, or both may be varied during the implant process. In another aspect, a pretreatment step includes accelerating ions from the plasma to the anode to cause emission of secondary electrons from the anode, and accelerating the secondary electrons from the anode to a substrate for pretreatment of the substrate.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: July 8, 2008
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Steven R. Walther, Ziwei Fang, Justin Tocco, Carleton F. Ellis, III
  • Patent number: 7396745
    Abstract: Method of forming one or more doped regions in a semiconductor substrate and semiconductor junctions formed thereby, using gas cluster ion beams.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: July 8, 2008
    Assignee: TEL Epion Inc.
    Inventors: John O. Borland, John J. Hautala, Wesley J. Skinner
  • Patent number: 7393765
    Abstract: Device-enhancing coatings are deposited on CMOS devices by successively masking with photoresist each one of the sets of N-channel and P-channel devices while unmasking or leaving unmasked the other set, and after each step of successively masking one of the sets of devices, carrying out low temperature CVD steps with a toroidal RF plasma current while applying an RF plasma bias voltage. The temperature of the workpiece is held below a threshold photoresist removal temperature. The RF bias voltage is held at a level at which the coating is deposited with a first stress when the unmasked set consists of the P-channel devices and with a second stress when the unmasked set consists of N-channel devices.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: July 1, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hiroji Hanawa, Kartik Ramaswamy, Kenneth S. Collins, Amir Al-Bayati, Biagio Gallo, Andrew Nguyen
  • Patent number: 7276431
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 2, 2007
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7268065
    Abstract: A method of manufacturing a microelectronic device including forming an opening in a dielectric layer located over a substrate, forming a semi-conductive layer substantially conforming to the opening, and forming a conductive layer substantially conforming to the semi-conductive layer. At least a portion of the semi-conductive layer is doped by implanting through the conductive layer. The semi-conductive layer and the conductive layer may then be annealed.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: September 11, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Tung Lin, Chih-Wei Chang, Chii-Ming Wu, Mei-Yun Wang, Chiang-Ming Chuang, Shau-Lin Shue
  • Publication number: 20070178679
    Abstract: A method of implanting ions comprising generating C2B10Hx, ions from C2B10H12 and implanting the C2B10Hx, ions in a material. In some embodiments, the molecular weight of the C2B10Hx, ions is greater than 100 amu. In other embodiments, the molecular weight of the C2B10Hx, ions is approximately 132 to 144 amu or approximately 136 to 138 amu. An ion source is also disclosed comprising a chamber housing defining a chamber and a source feed gas supply configured to introduce C2B10H12 into the chamber, wherein the ion source is configured to ionize the source feed gas within the chamber into C2B10Hxions.
    Type: Application
    Filed: August 15, 2006
    Publication date: August 2, 2007
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher Hatem, Anthony Renau, James E. White
  • Patent number: 7223676
    Abstract: A low temperature process for depositing a coating containing any of silicon, nitrogen, hydrogen or oxygen on a workpiece includes placing the workpiece in a reactor chamber facing a processing region of the chamber, introducing a process gas containing any of silicon, nitrogen, hydrogen or oxygen into the reactor chamber, generating a torroidal RF plasma current in a reentrant path through the processing region by applying RF plasma source power at an HF frequency on the order of about 10 MHz to a portion of a reentrant conduit external of the chamber and forming a portion of the reentrant path, applying RF plasma bias power at an LF frequency on the order of one or a few MHz to the workpiece, and maintaining the temperature of the workpiece under about 100 degrees C.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: May 29, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Hiroji Hanawa, Kartik Ramaswamy, Kenneth S. Collins, Amir Al-Bayati, Biagio Gallo, Andrew Nguyen
  • Patent number: 7205552
    Abstract: Monotomic boron ions for ion implantation are supplied from decaborane vapour. The vapour is fed to a plasma chamber and a plasma produced in the chamber with sufficient energy density to disassociate the decaborane molecules to produce monatomic boron ions in the plasma.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: April 17, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Richard David Goldberg
  • Patent number: 7186631
    Abstract: Provided is a method for manufacturing a semiconductor device comprising forming a device isolation layer on a semiconductor substrate; forming gate insulating layers on the upper part of the semiconductor substrate having the device isolation layers formed thereon; forming an undoped layer for a gate electrode; implanting mixed dopant ions consisting of at least two dopant ions containing 11B ions into the undoped layer, utilizing an ion-implantation mask; and heat-treating the mixed dopant ion-implanted layer.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: March 6, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventors: Seung Woo Jin, Min Yong Lee, Kyoung Bong Rouh
  • Patent number: 7176108
    Abstract: A method of detaching a thin film from a source substrate comprises the steps of implanting ions or gaseous species in the source substrate so as to form therein a buried zone weakened by the presence of defects; and splitting in the weakened zone leading to the detachment of the thin film from the source substrate. Two species are implanted of which one is adapted to form defects and the other is adapted to occupy those defects, the detachment being made at a temperature lower than that for which detachment could be obtained with solely the dose of the first species.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: February 13, 2007
    Inventors: Ian Cayrefourcq, Nadia Ben Mohamed, Christelle Lagahe-Blanchard, Nguyet-Phuong Nguyen
  • Patent number: 7144794
    Abstract: This ion source includes a chamber having an internal wall surface and an external wall surface, and also includes a cathode, which is provided to be insulated from the chamber, capable of emitting thermal electrons into the chamber, and has a cathode cap protruding into the chamber from an external side of an opening part which is formed to pass through from the external wall surface to the internal wall surface of the chamber and a filament disposed inside the cathode cap, the cathode cap and/or the filament being an alloy containing tungsten (W) as a major component and a predetermined metal element as a minor component.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: December 5, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kyoichi Suguro
  • Patent number: 7112501
    Abstract: A fabrication process for a silicon-on-insulator (SOI) device includes defining an active region in an SOI substrate, doping the entire active region with an impurity of a given conductive type, masking a main part of the active region, and doping the peripheral parts of the active region at least two additional times with an impurity of the same conductive type, preferably using different doping parameters each time. The additional doping creates a channel stop in the peripheral parts of the active region, counteracting the tendency of the transistor threshold voltage to be lowered in the peripheral parts of the active region, thereby mitigating or eliminating the unwanted subthreshold hump often found in the transistor operating characteristics of, for example, fully depleted SOI devices.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: September 26, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Masao Okihara
  • Patent number: 7067828
    Abstract: Methods and apparatus are disclosed for measuring controlling characteristics of clusters in a cluster ion beam, including average cluster ion velocity {overscore (v)}, average cluster ion mass {overscore (m)}, average cluster ion energy ?, average cluster ion charge state {overscore (q)}, average cluster ion mass per charge ( m q ) average , and average energy/charge ( E q ) average . The measurements are employed in gas cluster ion beam processing systems to monitor and control gas cluster ion beam characteristics that are critical for optimal processing of workpieces by gas cluster ion beam irradiation.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: June 27, 2006
    Assignee: Epion Corporation
    Inventor: David R. Swenson
  • Patent number: 7064049
    Abstract: The present invention provides an ion implantation method which can achieve sufficient throughput by increasing a beam current even in the case of ions with a small mass number or low-energy ions, an SOI wafer manufacturing method, and an ion implantation system. When ions are implanted by irradiating a semiconductor substrate with an ion beam, predetermined gas is excited in a pressure-reduced chamber to generate plasma containing predetermined ions, a magnetic field is formed by a solenoid coil or the like along an extraction direction when the ions are extracted to the outside of the chamber, and the ions are extracted from the chamber with predetermined extraction energy. The formation of the magnetic field promotes ion extraction, but this magnetic field has no influence on an advancing direction of the extracted ions. Therefore, the ion beam current can be kept at a high level-to contribute to the ion implantation.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: June 20, 2006
    Assignee: Applied Materials, Inv.
    Inventors: Hiroyuki Ito, Yasuhiko Matsunaga
  • Patent number: 7060598
    Abstract: An ion implantation method for implanting ions into a side wall of a protruded semiconductor layer from a semiconductor substrate, the method includes applying an electric field to accelerate the ions in one direction and applying a magnetic field parallel to a plane extending at a predetermined angle with respect to the one direction, thereby controlling a direction of the ion implantation to the side wall.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: June 13, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Fujio Masuoka, Shinji Horii, Takuji Tanigami, Takashi Yokoyama
  • Patent number: 6995079
    Abstract: An object of the present invention is to provide an ion implantation method for shortening a down time of an ion implantation apparatus after exposure of a chamber and for improving throughput and a method for manufacturing a semiconductor device. Specifically, the object of the invention is to provide an ion implantation method that can improve throughput during an ion implantation step of B and a method for manufacturing a semiconductor device. The ion implantation method comprises the steps of: introducing an impurity imparting p-type conductivity and H2O in an ion source; ionizing the impurity imparting p-type conductivity; and implanting into a semiconductor film.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: February 7, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Hiroto Shinoda
  • Patent number: 6878417
    Abstract: A method for mask-free molecular or atomic patterning of surfaces of reactive solids is disclosed. Molecules adsorb at surfaces in patterns, governed by the structure of the surface, the chemical nature of the adsorbate, and the adsorbate coverage at the surface. The surface is patterned and then imprinted with the pattern by inducing localized chemical reaction between adsorbate molecules and the surface of the solid, resulting in an imprint being formed in the vicinity of the adsorbate molecules. When the imprinted molecular patterns are conjugated chains containing ? bonds along which electrical charge can flow the molecular patterns constitute molecular wires or the imprinted molecules constitute a molecular-scale device. The surface of the substrate can be doped by including n- or p-type dopants in the adsorbate molecules. These molecular wires are anchored to the substrate by using conjugated chains which can be chemically bound at intervals along the chains to the substrates.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: April 12, 2005
    Inventors: John C. Polanyi, Duncan Rogers
  • Patent number: RE40138
    Abstract: A process for fabricating input/output, N channel, (I/O NMOS) devices, featuring an ion implanted nitrogen region, used to reduce hot carrier electron, (HEC), injection, has been developed. The process features implanting a nitorgen region, at the interface of an overlying silicon oxide layer, and an underlying lightly doped source/drain, (LDD), region. The implantation procedure can either be performed prior to, or after, the deposition of a silicon oxide liner layer, in both cases resulting in a desired nitrogen pile-up at the oxide-LDD interface, as well as resulting, in a more graded LDD profile. An increase in the time to fail, in regards to HCE injection, for these I/O NMOS devices, is realized, when compared to counterparts fabricated without the nitrogen implantation procedure.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: March 4, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mu-Chi Chiang, Hsien-Chin Lin, Jiaw-Ren Shih