Ion Implantation Of Dopant Into Semiconductor Region Patents (Class 438/514)
-
Patent number: 12197131Abstract: A method includes forming a resist pattern over a structure, the resist pattern having a trench surrounded by first resist walls extending lengthwise along a first direction and second resist walls extending lengthwise along a second direction perpendicular to the first direction. The method includes loading the structure and the resist pattern into an ion implanter so that a top surface of the resist pattern faces an ion travel direction of the ion implanter. The method includes tilting the structure and the resist pattern so that the ion travel direction forms a tilt angle with respect to an axis perpendicular to the top surface of the resist pattern. The method includes first rotating the structure and the resist pattern around the axis to a first position. The method includes first implanting ions into the resist pattern with the structure and the resist pattern at the first position.Type: GrantFiled: April 24, 2023Date of Patent: January 14, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Jing-Huei Huang, Ya-Wen Chiu, Lun-Kuang Tan
-
Patent number: 12176213Abstract: Embodiments of the present disclosure provide a semiconductor structure and a manufacturing method thereof. The method includes: providing a substrate, wherein the substrate includes a word line region, a bit line region, and a capacitive region arranged adjacently; forming a first stacked structure that covers a surface of the substrate, wherein the first stacked structure includes a first sacrificial layer located on the surface of the substrate and a first semiconductor layer located on a surface of the first sacrificial layer; forming a second stacked structure that covers a surface of the first stacked structure, wherein the second stacked structure includes a second sacrificial layer located on the surface of the first stacked structure and a second semiconductor layer located on a surface of the second sacrificial layer; and performing an ion implantation on the first semiconductor layer and the second semiconductor layer.Type: GrantFiled: July 28, 2022Date of Patent: December 24, 2024Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.Inventor: Yi Tang
-
Patent number: 12159901Abstract: Gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, and methods of fabricating gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires and a second vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures includes vertically discrete portions aligned with the first vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures includes vertically discrete portions aligned with the second vertical arrangement of horizontal nanowires. A conductive contact structure is laterally between and in contact with the one of the first pair of epitaxial source or drain structures and the one of the second pair of epitaxial source or drain structures.Type: GrantFiled: November 7, 2022Date of Patent: December 3, 2024Assignee: Intel CorporationInventors: Cory Bomberger, Anand Murthy, Mark T. Bohr, Tahir Ghani, Biswajeet Guha
-
Patent number: 12136627Abstract: In some embodiments, the present disclosure relates to a device that includes a silicon-on-insulator (SOI) substrate. A first semiconductor device is disposed on a frontside of the SOI substrate. An interconnect structure is arranged over the frontside of the SOI substrate and coupled to the first semiconductor device. A shallow trench isolation (STI) structure is arranged within the frontside of the SOI substrate and surrounds the first semiconductor device. First and second deep trench isolation (DTI) structures extend from the STI structure to an insulator layer of the SOI substrate. Portions of the first and second DTI structures are spaced apart from one another by an active layer of the SOI substrate. A backside through substrate via (BTSV) extends completely through the SOI substrate from a backside to the frontside of the SOI substrate. The BTSV is arranged directly between the first and second DTI structures.Type: GrantFiled: January 11, 2022Date of Patent: November 5, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry-Hak-Lay Chuang, Wen-Tuo Huang, Hsin Fu Lin, Wei Cheng Wu
-
Patent number: 11889704Abstract: A device includes gate-all-around transistors and method for manufacturing such a device. A method for manufacturing a microelectronic device includes at least two transistors each comprising a channel in the shape of a wire extending in a first direction x, a gate surrounding said channel, a source and a drain, said transistors being stacked in a third direction z and each occupying a level nz (z=1 . . . 4) of given altitude in the third direction z.Type: GrantFiled: December 23, 2020Date of Patent: January 30, 2024Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVESInventors: Sylvain Barraud, François Andrieu
-
Patent number: 11705369Abstract: A semiconductor device includes conductive structures formed in a first dielectric layer, a conductive cap layer selectively positioned over the conductive structures and the first dielectric layer with a top surface and sidewalls, a second dielectric layer selectively positioned over the first dielectric layer and disposed between the sidewalls of the conductive cap layer, a third dielectric layer selectively positioned over the second dielectric layer and disposed between the sidewalls of the conductive cap layer, a fourth dielectric layer arranged over the conductive structures and the third dielectric layer, and an interconnect structure formed in the fourth dielectric layer. The interconnect structure includes a trench structure and a via structure that is positioned below the trench structure and connected to the trench structure. The via structure includes a first portion positioned over the conductive cap layer and a second portion disposed over the first portion and the third dielectric layer.Type: GrantFiled: April 6, 2021Date of Patent: July 18, 2023Assignee: Tokyo Electron LimitedInventors: Kandabara Tapily, Jeffrey Smith
-
Patent number: 11652133Abstract: In a method for forming a semiconductor device photo-sensing regions are formed over a frontside of a substrate. A first layer is formed over a backside of the substrate and is patterned to form a plurality of grid lines. The grid lines can define a plurality of first areas and a plurality of second areas. A second layer may be formed over exposed portions of the backside, the gridlines, the first areas, and the second areas and a third layer may be formed over the second layer. The second and third layer may have different etch rates and the third layer is pattern so as to remove the third layer from over the plurality of first areas.Type: GrantFiled: July 19, 2021Date of Patent: May 16, 2023Assignee: Taiwan Semiconductor Manufacturing CO.Inventors: H. L. Chen, Huai-jen Tung, Keng-Ying Liao, Po-Zen Chen, Su-Yu Yeh, Chih Wei Sung
-
Patent number: 11637116Abstract: According to one embodiment, a semiconductor memory device includes a first conductive layer, a first semiconductor body, a second semiconductor body, a first memory layer, and a second memory layer. The first conductive layer includes first to fourth extension regions, and a first connection region. The first extension region extends in a first direction. The second extension region extends in the first direction and is arranged with the first extension region in the first direction. The third extension region extends in the first direction and is arranged with the first extension region in a second direction crossing the first direction. The fourth extension region extends in the first direction, is arranged with the third extension region in the first direction, and is arranged with the second extension region in the second direction.Type: GrantFiled: August 18, 2021Date of Patent: April 25, 2023Assignee: Kioxia CorporationInventors: Takuya Inatsuka, Tadashi Iguchi, Murato Kawai, Hisashi Kato, Megumi Ishiduki
-
Patent number: 11588025Abstract: The present disclosure provides a semiconductor device and a manufacturing method thereof. The manufacturing method comprises: providing a substrate comprising a storage region, forming stacked gates of storage transistors on the substrate; forming side walls on two sides of each stacked gate wherein the top surfaces of side walls are arranged to be lower than the top surfaces of the stacked gates; performing ion implantation in the storage region defined by the side walls; and performing an ashing process and a wet cleaning process using the side walls as protective layers of the stacked gates to remove a photoresist remaining after the ion implantation. The present disclosure further provides a semiconductor device formed according to the manufacturing method. According to the semiconductor device and the manufacturing method thereof, the problem of stacked gate collapse from the ion implantation process can be solved, thereby improving the yield.Type: GrantFiled: July 29, 2021Date of Patent: February 21, 2023Assignee: SHANGHAI HUALI MICROELECTRONICS CORPORATIONInventors: Pengkai Xu, Fulong Qiao, Jia Ren
-
Patent number: 11437476Abstract: An electrode having an embedded charge contains a substrate, a first electronic charge trap defined at the interface of a first insulating layer and a second insulating layer; and a first conductive layer disposed on the first electronic charge trap; wherein the first conductive layer contains a conductive material configured to permit an external electric field to penetrate the electrode from the first electronic charge trap; and wherein the first insulating layer is not the same as the second insulating layer.Type: GrantFiled: January 26, 2022Date of Patent: September 6, 2022Assignee: BECSIS, LLCInventors: Nicholas Boruta, Michael Boruta
-
Patent number: 11373897Abstract: A method for manufacturing a film on a support having a non-flat surface comprises: providing a donor substrate having a non-flat surface, forming an embrittlement zone in the donor substrate so as to delimit the film to be transferred, forming the support by deposition on the non-flat surface of the film to be transferred, and detaching the donor substrate along the embrittlement zone, so as to transfer the film onto the support.Type: GrantFiled: October 31, 2018Date of Patent: June 28, 2022Assignee: SoitecInventors: Bruno Ghyselen, Jean-Marc Bethoux
-
Patent number: 11295926Abstract: The current disclosure is directed to a repellent electrode used in a source arc chamber of an ion implanter. The repellent electrode includes a shaft and a repellent body having a repellent surface. The repellent surface has a surface shape that substantially fits the shape of the inner chamber space of the source arc chamber where the repellent body is positioned. A gap between the edge of the repellent body and the inner sidewall of the source arc chamber is minimized to a threshold level that is maintained to avoid a short between the conductive repellent body and the conductive inner sidewall of the source arc chamber.Type: GrantFiled: November 27, 2019Date of Patent: April 5, 2022Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ching-Heng Yen, Jen-Chung Chiu, Tai-Kun Kao, Lu-Hsun Lin, Tsung-Min Lin
-
Patent number: 11264454Abstract: An integrated circuit device includes a substrate having a first region and a second region separated from each other along a direction parallel to an upper surface of the substrate. An interface device isolation layer fills an interface trench in an interface region between the first region and the second region and defines a portion of a first active area positioned in the first region and a portion of a second active area positioned in the second region. An insulation pattern extends from the first region to an upper portion of the interface device isolation layer. The insulation pattern covers the first active area and at least a portion of the interface device isolation layer. The insulation pattern defines an undercut area on an upper surface of the interface device isolation layer. A buried pattern substantially fills the undercut region.Type: GrantFiled: December 18, 2019Date of Patent: March 1, 2022Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Chan-sic Yoon, Ho-in Lee, Ki-seok Lee, Je-min Park
-
Patent number: 11205575Abstract: A method of forming an integrated circuit includes forming a first layer having a first material type over a first side of a semiconductor wafer. A second layer having a second different material type is removed from a second opposing side of the semiconductor wafer using a first process that removes the second material type at a greater rate than the first material type. Subsequent to removing the second layer, the first layer is removed using a second different process.Type: GrantFiled: August 27, 2019Date of Patent: December 21, 2021Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Byron Joseph Palla, Stephen Alan Keller, Brian Edward Hornung, Brian K. Kirkpatrick, Douglas Ticknor Grider
-
Patent number: 11152389Abstract: A method for reducing an epitaxial growth loading effect in a patterned device includes forming a first trench and a second trench in a substrate and in a first insulating layer over the substrate to form a low pattern density region and a high pattern density region. The first trench has a larger cross-sectional area than the second trench. The method further includes isolating the first trench from the second trench by using a first mask. The method further include disposing a second insulating layer in the first trench. The method further includes removing a portion of the first mask in order to expose the second trench. The method further includes growing an epitaxial layer in the second trench.Type: GrantFiled: April 16, 2020Date of Patent: October 19, 2021Assignee: Yangtze Memory Technologies Co., Ltd.Inventors: Zhen Fang, Haihui Huang, Er Jiang Xu, Meng Wang
-
Patent number: 11069740Abstract: In a method for forming a semiconductor device photo-sensing regions are formed over a frontside of a substrate. A first layer is formed over a backside of the substrate and is patterned to form a plurality of grid lines. The grid lines can define a plurality of first areas and a plurality of second areas. A second layer maybe formed over exposed portions of the backside, the gridlines, the first areas, and the second areas and a third layer may be formed over the second layer. The second and third layer may have different etch rates and the third layer is pattern so as to remove the third layer from over the plurality of first areas.Type: GrantFiled: February 28, 2019Date of Patent: July 20, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: H. L. Chen, Huai-jen Tung, Keng-Ying Liao, Po-Zen Chen, Su-Yu Yeh, Chih Wei Sung
-
Patent number: 10804075Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.Type: GrantFiled: November 14, 2016Date of Patent: October 13, 2020Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas P T Bateman, Timothy J. Miller, Vikram M. Bhosle
-
Patent number: 10804156Abstract: A method of forming a three-dimensional transistor device. The method may include providing a transistor structure, where the transistor structure includes a fin assembly, a gate assembly, the gate assembly disposed over the fin assembly and comprising a plurality of gates, a liner layer, disposed over the plurality of gates, and an isolation layer, disposed subjacent the liner layer. The method may also include directing first angled ions at the transistor device, wherein a first altered liner layer is created in the liner layer, wherein, in the presence of a liner-removal etchant, the liner layer exhibits a first etch rate, the first altered liner layer exhibits a second etch rate, greater than the first etch rate.Type: GrantFiled: June 22, 2018Date of Patent: October 13, 2020Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Min Gyu Sung, Rajesh Prasad
-
Patent number: 10796945Abstract: A multilayer composite structure and a method of preparing a multilayer composite structure are provided. The multilayer composite structure comprises a semiconductor handle substrate having a minimum bulk region resistivity of at least about 500 ohm-cm and comprises a region of nitrogen-reacted nanovoids in the front surface region; a silicon dioxide layer on the surface of the semiconductor handle substrate; a dielectric layer in contact with the silicon dioxide layer; and a semiconductor device layer in contact with the dielectric layer.Type: GrantFiled: July 17, 2019Date of Patent: October 6, 2020Assignee: GlobalWafers Co., Ltd.Inventors: Qingmin Liu, Robert Wendell Standley
-
Patent number: 10790377Abstract: A method for manufacturing a polysilicon semiconductor layer, a thin film transistor, and a manufacturing method are provided. The method for manufacturing a polysilicon semiconductor layer includes the following steps. A predetermined gas is dissociated, and a low amount of first ions and a high amount of second ions are screened out. A heavily doped region is doped with the second ions. A lightly doped region is doped with the first ions. Annealing is further performed, so that a polysilicon semiconductor layer is formed from an amorphous silicon layer.Type: GrantFiled: August 3, 2018Date of Patent: September 29, 2020Assignee: Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd.Inventor: Ming-jen Lu
-
Patent number: 10777395Abstract: A processing apparatus according to an embodiment includes an object placement unit, a source placement unit, a flow rectifying member, and a power supply. The object placement unit is configured to have an object placed thereon. The source placement unit is disposed apart from the object placement unit and configured to have a particle source capable of ejecting a particle toward the object placed thereon. The flow rectifying member is disposed between the object placement unit and the source placement unit in a first direction from the source placement unit to the object placement unit. The power supply is configured to apply, to the flow rectifying member, a voltage having the same polarity as that of an electric charge in the particle.Type: GrantFiled: December 19, 2016Date of Patent: September 15, 2020Assignee: Kabushiki Kaisha ToshibaInventors: Masakatsu Takeuchi, Shiguma Kato, Yasuhiro Aoyama, Takahiro Terada, Yoshinori Tokuda
-
Patent number: 10699871Abstract: Provided herein are systems and methods for spatially resolved optical metrology of an ion beam. In some embodiments, a system includes a chamber containing a plasma/ion source operable to deliver an ion beam to a wafer, and an optical collection module operable with the chamber, wherein the optical collection module includes an optical device for measuring a light signal from a volume of the ion beam. The system may further include a detection module operable with the optical collection module, the detection module comprising a detector for receiving the measured light signal and outputting an electric signal corresponding to the measured light signal, thus corresponding to the property of the sampled plasma volume.Type: GrantFiled: November 9, 2018Date of Patent: June 30, 2020Assignee: Applied Materials, Inc.Inventors: Gang Shu, Glen Gilchrist, Shurong Liang
-
Patent number: 10600872Abstract: A silicon carbide semiconductor device includes a silicon carbide semiconductor substrate of a first conductivity type, a first silicon carbide layer of the first conductivity type, and an insulating film. In the silicon carbide semiconductor device, no fluorine or chlorine is detectable in the insulating film, at a boundary layer of the insulating film and the first silicon carbide layer, or at the surface of first silicon carbide layer where the insulating film is provided.Type: GrantFiled: March 28, 2018Date of Patent: March 24, 2020Assignee: FUJI ELECTRIC CO., LTD.Inventors: Makoto Utsumi, Yasuhiko Oonishi, Fumikazu Imai
-
Patent number: 10593735Abstract: The present disclosure provides a diode device comprising a first electrode, a hole transport layer, a functional layer, an electron transport layer and a second electrode that are stacked, wherein the functional layer comprises at least one sub-functional layer each comprising a photo-detection layer and an electroluminescent layer which are stacked and a difference of energy barriers between the photo-detection layer and the electroluminescent layer is not more than 1.5 eV; the photo-detection layer comprises a nanocrystalline derived from a copper indium sulfide system compound, and the electroluminescent layer comprises an oil-soluble nanocrystalline. The present disclosure further provides a method for manufacturing a diode device, and a diode apparatus having both electro-luminescence and photoelectric response properties, and higher material universal applicability.Type: GrantFiled: June 19, 2019Date of Patent: March 17, 2020Assignee: BOE TECHNOLOGY GROUP CO., LTD.Inventors: Shuai Chang, Haizheng Zhong, Dengbao Han
-
Patent number: 10580693Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a barrier layer is formed along a sidewall. A portion of the barrier layer along the sidewall is etched back by a wet etching process. After etching back the portion of the barrier layer, an underlying dielectric welding layer is exposed. A conductive material is formed along the barrier layer.Type: GrantFiled: July 11, 2018Date of Patent: March 3, 2020Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ken-Yu Chang, Chun-I Tsai, Ming-Hsing Tsai, Wei-Jung Lin
-
Patent number: 10541144Abstract: A method for etching features into a silicon containing layer comprising performing a plurality of cycles in a plasma processing chamber is provided. Each cycle comprises a deposition phase and an activation phase. The deposition phase comprises flowing a precursor into the plasma processing chamber to form a self-limiting monolayer, wherein the precursor comprises a head group component and a tail group component, wherein the tail group component comprises fluorine and carbon, and stopping the flow of the precursor into the plasma processing chamber. The activation phase comprises flowing an activation gas comprising an ion bombardment gas, into the plasma processing chamber, creating a plasma from the activation gas, providing an activation bias to cause ion bombardment of the self-limiting monolayer, wherein the ion bombardment activates the fluorine from the tail group component to etch the silicon containing layer, and stopping the flow of the activation gas.Type: GrantFiled: December 18, 2017Date of Patent: January 21, 2020Assignee: Lam Research CorporationInventor: Eric Hudson
-
Patent number: 10541301Abstract: A method of producing a semiconductor device includes providing a semiconductor body including a semiconductor body material having a dopant diffusion coefficient that is smaller than the corresponding dopant diffusion coefficient of silicon. At least one first semiconductor region doped with dopants of a first conductivity type is produced in the semiconductor body, including by applying a first implantation of first implantation ions. At least one second semiconductor region adjacent to the at least one first semiconductor region and doped with dopants of a second conductivity type complementary to the first conductivity type is produced in the semiconductor body, including by applying a second implantation of second implantation ions.Type: GrantFiled: December 26, 2017Date of Patent: January 21, 2020Assignee: Infineon Technologies AGInventors: Hans-Joachim Schulze, Wolfgang Jantscher, Roland Rupp, Werner Schustereder, Hans Weber
-
Patent number: 10522364Abstract: A method including forming hard mask patterns on a substrate; forming etch stop patterns surrounding the hard mask patterns; forming spacer patterns covering sidewalls of the etch stop patterns; removing the etch stop patterns; etching the substrate to form active and dummy fins; forming a block mask pattern layer surrounding the active and dummy fins and forming mask etch patterns on a top surface of the block mask pattern layer; etching the block mask pattern layer to form block mask patterns surrounding the active fins; etching the dummy fins; removing the block mask patterns surrounding the active fins; and depositing a device isolation film on the substrate such that the device isolation film is not in contact with the upper portions of the active fins, wherein a spacing distance between the active fin and the dummy fin is greater than an active fin spacing distance between the active fins.Type: GrantFiled: August 1, 2018Date of Patent: December 31, 2019Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Sung Min Kim, Dong Won Kim
-
Patent number: 10522656Abstract: A method of forming source/drain features in a FinFET device includes providing a fin formed over a substrate and a gate structure formed over a fin, forming a recess in the fin adjacent to the gate structure, forming a first epitaxial layer in the recess, forming a second epitaxial layer over the first epitaxial layer, and forming a third epitaxial layer over the second epitaxial layer. The second epitaxial layer may be doped with a first element, while one or both of the first and the third epitaxial layer includes a second element different from the first element. One or both of the first and the third epitaxial layer may be formed by a plasma deposition process.Type: GrantFiled: February 28, 2018Date of Patent: December 31, 2019Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Chia-Ling Chan, Derek Chen, Liang-Yin Chen, Chien-I Kuo
-
Patent number: 10439025Abstract: A first part of a semiconductor body is provided. Impurities are introduced into the first part of the semiconductor body, The impurities act as recombination centers in the semiconductor body and form a recombination Zone, and the impurities include at least a heavy metal. A second part of the semiconductor body is epitaxially produced on the first part after introducing the impurities in the first part. During epitaxially producing the second part of the semiconductor body on the first part of the semiconductor body, impurities in the first part of the semiconductor body are diffused to the second part of the semiconductor body.Type: GrantFiled: November 6, 2018Date of Patent: October 8, 2019Assignee: Infineon Technologies Austria AGInventors: Frank Pfirsch, Hans-Joachim Schulze
-
Patent number: 10395890Abstract: An ion implantation apparatus includes: a multistage linear acceleration unit including a plurality of stages of high-frequency resonators and a plurality of stages of focusing lenses; a first beam measuring unit disposed in the middle of the multistage linear acceleration unit and configured to allow passage of a beam portion adjacent to a center of a beam trajectory and measure a current intensity of another beam portion blocked by an electrode body outside a vicinity of the center of the beam trajectory; a second beam measuring unit disposed downstream of the multistage linear acceleration unit and configured to measure a current intensity of an ion beam exiting from the multistage linear acceleration unit; and a control device configured to adjust a control parameter of the plurality of stages of focusing lenses based on measurement results of the first and second beam measuring units.Type: GrantFiled: January 4, 2018Date of Patent: August 27, 2019Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.Inventor: Haruka Sasaki
-
Patent number: 10347489Abstract: A method of manufacturing a semiconductor device is presented. The method includes providing a semiconductor layer comprising silicon carbide, wherein the semiconductor layer comprises a first region doped with a first dopant type. The method further includes implanting the semiconductor layer with a second dopant type using a single implantation mask and a substantially similar implantation dose to form a second region and a junction termination extension (JTE) in the semiconductor layer, wherein the implantation dose is in a range from about 2×1013 cm?2 to about 12×1013 cm?2. Semiconductor devices are also presented.Type: GrantFiled: July 2, 2013Date of Patent: July 9, 2019Assignee: GENERAL ELECTRIC COMPANYInventors: Peter Almern Losee, Alexander Viktorovich Bolotnikov, Stacey Joy Kennerly
-
Patent number: 10338466Abstract: Techniques include providing selective or differential planarization such that different regions of a substrate can have different amounts of material removed. In general, methods herein use photo-reactive generator compounds to generate solubility-changing agents. A specific pattern of light is projected onto a substrate containing such photo-reactive generator compounds to create different concentrations of solubility-changing agent(s) at specific locations across a substrate. As generated solubility-changing agents are diffused into an underlying layer, these concentration differences then control an amount (height or depth) of material removed from a given film or layer at specific spatial locations on the substrate.Type: GrantFiled: April 8, 2016Date of Patent: July 2, 2019Assignee: Tokyo Electron LimitedInventor: Anton J. deVilliers
-
Patent number: 10319717Abstract: A method is presented for forming a semiconductor structure. The method includes forming a plurality of fins on a first region of the semiconductor substrate, forming a bi-polymer structure, selectively removing the first polymer of the bi-polymer structure and forming deep trenches in the semiconductor substrate resulting in pillars in a second region of the semiconductor structure. The method further includes selectively removing the second polymer of the bi-polymer structure, doping the pillars, and depositing a high-k metal gate (HKMG) over the first and second regions to form the MIS capacitor in the second region of the semiconductor substrate.Type: GrantFiled: August 4, 2017Date of Patent: June 11, 2019Assignee: International Business Machines CorporationInventors: Zhenxing Bi, Kangguo Cheng, Peng Xu, Chen Zhang
-
Patent number: 10319810Abstract: A semiconductor device of an embodiment includes transistor cells in a transistor cell area of a semiconductor body. A super junction structure in the semiconductor body includes a plurality of drift sub-regions and compensation sub-regions of opposite first and second conductivity types, respectively, and alternately arranged along a lateral direction. A termination area outside the transistor cell area between an edge of the semiconductor body and the transistor cell area includes first and third termination sub-regions of the first conductivity type, respectively. A second termination sub-region of the second conductivity type is sandwiched between the first and the third termination sub-regions along a vertical direction perpendicular to a first surface of the semiconductor body.Type: GrantFiled: August 24, 2017Date of Patent: June 11, 2019Assignee: Infineon Technologies Austria AGInventors: Franz Hirler, Hans Weber
-
Patent number: 10261415Abstract: A chemically amplified positive-type photosensitive resin composition capable of forming a resist pattern having a nonresist portion with a favorable rectangular sectional shape, a method of manufacturing a resist pattern using the composition, a method of manufacturing a substrate with a template using the composition, and a method of manufacturing a plated article using the substrate with a template manufactured by the method. In a chemically amplified positive-type photosensitive resin composition including an acid generator, a resin whose solubility in alkali increases under the action of acid, and an organic solvent, an acrylic resin is used that includes a constituent unit derived from an acrylic acid ester including an —SO2-containing cyclic group or a lactone-containing cyclic group, and a constituent unit derived from an acrylic acid ester containing an organic group including an aromatic group and an alcoholic hydroxyl group.Type: GrantFiled: April 24, 2017Date of Patent: April 16, 2019Assignee: TOKYO OHKA KOGYO CO., LTD.Inventors: Makiko Irie, Aya Momozawa
-
Patent number: 10161062Abstract: A composition comprising an engineered defect concentration comprises a metal oxide single crystal having a polar surface and a bulk concentration of interstitial oxygen (Oi) of at least about 1014 atoms/cm3. The polar surface comprises a concentration of impurity species of about 5% or less of a monolayer. A method of engineering a defect concentration in a single crystal comprises exposing a metal oxide single crystal having a polar surface to molecular oxygen at a temperature of about 850° C. or less, and injecting atomic oxygen into the single crystal at an effective diffusion rate Deff of at least about 10?16 cm2/s.Type: GrantFiled: April 21, 2016Date of Patent: December 25, 2018Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISInventors: Edmund G. Seebauer, Prashun Gorai
-
Patent number: 10128133Abstract: An etching tool that includes an interior chamber is provided. A plurality of type III-V semiconductor wafers is provided. A process cycle is performed for each one of the type III-V semiconductor wafers in the plurality. The process cycle includes performing a preliminary contamination control process. The process cycle further includes inserting one of the type III-V semiconductor wafers into the interior chamber. The process cycle further includes etching type III-V semiconductor material away from the type III-V semiconductor wafer that is present in the interior chamber. The process cycle further includes removing the type III-V semiconductor wafer that is present in the interior chamber. The preliminary contamination control process includes forming a carbon containing protective material that completely covers exposed surfaces of the interior chamber.Type: GrantFiled: June 30, 2017Date of Patent: November 13, 2018Assignee: Infineon Technologies Austria AGInventors: Andreas Haghofer, Clemens Ostermaier
-
Patent number: 10115723Abstract: Complementary metal oxide semiconductor (CMOS) devices employing plasma-doped source/drain structures and related methods are disclosed. In certain aspects, a source and drain of a CMOS device are formed at end portions of a channel structure by plasma doping end portions of the channel structure above solid state solubility of the channel structure, and annealing the end portions for liquid phase epitaxy and activation (e.g., superactivation). In this manner, the source and drain can be integrally formed in the end portions of the channel structure to provide coextensive surface area contact between the source and drain and the channel structure for lower channel contact resistance. This is opposed to forming the source/drain using epitaxial growth that provides an overgrowth beyond the end portion surface area of the channel structure to reduce channel contact resistance, which may short adjacent channels structures.Type: GrantFiled: May 23, 2017Date of Patent: October 30, 2018Assignee: QUALCOMM IncorporatedInventor: Jeffrey Junhao Xu
-
Patent number: 9837487Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a gate stack over the semiconductor substrate. The gate stack includes a gate dielectric layer and a work function layer. The gate dielectric layer is between the semiconductor substrate and the work function layer. The semiconductor device structure also includes a halogen source layer. The gate dielectric layer is between the semiconductor substrate and the halogen source layer.Type: GrantFiled: November 30, 2015Date of Patent: December 5, 2017Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chih-Wei Lin, Chih-Lin Wang, Kang-Min Kuo
-
Patent number: 9831091Abstract: Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.Type: GrantFiled: June 2, 2016Date of Patent: November 28, 2017Assignee: APPLIED MATERIALS, INC.Inventors: Wei Liu, Theresa Kramer Guarini, Huy Q. Nguyen, Malcolm Bevan, Houda Graoui, Philip A. Bottini, Bernard L. Hwang, Lara Hawrylchak, Rene George
-
Patent number: 9805912Abstract: A system, apparatus and method for increasing ion source lifetime in an ion implanter are provided. Oxidation of the ion source and ion source chamber poisoning resulting from a carbon and oxygen-containing source gas is controlled by utilizing a hydrogen co-gas, which reacts with free oxygen atoms to form hydroxide and water.Type: GrantFiled: November 17, 2010Date of Patent: October 31, 2017Assignee: Axcelis Technologies, Inc.Inventors: Neil K. Colvin, Tseh-Jen Hsieh
-
Patent number: 9735110Abstract: A semiconductor device according to the present invention includes a semiconductor substrate, and an interlayer dielectric film, formed on the semiconductor substrate, having a multilayer structure of a compressive stress film and a tensile stress film.Type: GrantFiled: September 25, 2009Date of Patent: August 15, 2017Assignee: ROHM CO., LTD.Inventors: Ryosuke Nakagawa, Yuichi Nakao
-
Patent number: 9659784Abstract: Provided herein are approaches for patterning a semiconductor device. Exemplary approaches include providing a set of photoresist patterning features atop a substrate, the set of patterning features having a surface roughness characterized by a set of protrusions and a set of indentations. The approaches further include implanting first ions into a sidewall surface of the set of photoresist patterning features to form a film layer having a non-uniform thickness along the sidewall surface, wherein a thickness of the film layer formed over the indentations is greater than a thickness of the film layer formed over the protrusions. The approaches further include sputtering the sidewall surface of the photoresist patterning features following the formation of the film layer to modify a portion of the film layer and/or the set of protrusions, wherein the sputtering includes directing second ions to photoresist patterning features at an angle with the sidewall surface.Type: GrantFiled: December 22, 2015Date of Patent: May 23, 2017Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Maureen K. Petterson, Tristan Ma, John Hautala
-
Patent number: 9606532Abstract: A method for transporting a group of semiconductor wafers and a manufacturing system are provided. A semiconductor processing facility is provided. The semiconductor processing facility includes a first destination, a second destination, and a transport system configured to transport a group of semiconductor wafers from the first destination to the second destination. Real time information is collected, where the real time information includes information on a current process executing in the semiconductor processing facility and information on a transfer time. The information on the transfer time includes data that indicates an amount of time required to transport the group of semiconductor wafers from the first destination to the second destination. A request is issued to the transport system to effect the transportation of the group of semiconductor wafers from the first destination to the second destination. A timing of the request is based on the first and second data.Type: GrantFiled: January 29, 2014Date of Patent: March 28, 2017Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Wei-Pin Huang, Wen-Chi Chien, Yuh-Dean Tsai, Bing-Yuan Cheng, Wei-Cheng Wang
-
Patent number: 9589768Abstract: The invention relates to an apparatus (1) for producing a reflection-reducing layer on a surface (21) of a plastics substrate (20). The apparatus comprises a first sputtering device (3) for applying a base layer (22) to the surface (21) of the plastics substrate (20), a plasma source (4) for plasma-etching the coated substrate surface (21), and a second sputtering device (5) for applying a protective layer (24) to the substrate surface (21). These processing devices (3, 4, 5) are arranged jointly in a vacuum chamber (2), which has inlets (8) for processing gases. In order to move the substrate (20) between the processing devices (3, 4, 5) in the interior of the vacuum chamber (2), a conveying apparatus (10) is provided which is preferably in the form of a rotary table (11). Furthermore, the invention relates to a method for producing such a reflection-reducing layer on the surface (21) of the plastics substrate (20).Type: GrantFiled: September 28, 2012Date of Patent: March 7, 2017Assignee: Leybold Optics GmbHInventors: Michael Scherer, Jurgen Pistner, Harro Hagedorn, Michael Klosch-Trageser
-
Patent number: 9583661Abstract: A grid for minimizing effects of ion divergence in plasma ion implant. The plasma grid is made of a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns thereby forming beamlets of ions that diverge in one direction. A mask is used to form the implanted shapes on the wafer, wherein the holes in the mask are oriented orthogonally to the direction of beamlet divergence.Type: GrantFiled: March 17, 2016Date of Patent: February 28, 2017Assignee: INTEVAC, INC.Inventors: Vinay Prabhakar, Babak Adibi
-
Patent number: 9425081Abstract: The disclosure relates to a method for implantation of atomic or ionic species into a batch of substrates made of semiconductor material, in which: each substrate made of semiconductor material is positioned on a respective support of a batch implanter, each substrate comprising a thin layer of electrical insulator on its surface; and a dose of at least one ionic or atomic species is implanted over the whole surface of the substrates, through their layer of insulator, so as to form a fragilization region within each substrate and to bound there a thin layer of semiconductor material between the thin layer of insulator and the fragilization region of the substrate, the implantation method being characterized in that, during the method, each support on which a substrate is positioned has at least two separate inclinations with respect to the plane orthogonal to the direction of implantation of the species in order to improve the implantation depth of the species in the substrate.Type: GrantFiled: March 14, 2013Date of Patent: August 23, 2016Assignee: SOITECInventors: Nadia Ben Mohamed, Carole David, Camille Rigal
-
Patent number: 9425265Abstract: Embodiments of a semiconductor die having a semiconductor device implemented on the semiconductor die and an edge termination structure around a periphery of the semiconductor device and methods of fabricating the same are disclosed. In one embodiment, a semiconductor die includes a semiconductor device and an edge termination structure around a periphery of the semiconductor device, where the edge termination structure includes negative features (e.g., trenches and/or divots) that vary dose in a corresponding edge termination region to approximate a desired dose profile. In one embodiment, the desired dose profile is a substantially decreasing or substantially linearly decreasing dose from an edge of a main junction of the semiconductor device to an edge of the edge termination region. In this manner, electric field crowding at the edge of the main junction of the semiconductor device is substantially reduced, which in turn substantially improves a break-down voltage of the semiconductor device.Type: GrantFiled: August 16, 2013Date of Patent: August 23, 2016Assignee: Cree, Inc.Inventors: Edward Robert Van Brunt, Vipindas Pala, Lin Cheng, Anant Kumar Agarwal
-
Patent number: 9390883Abstract: An ion implantation apparatus includes an ion beam directing unit, a substrate support, and a controller. The controller is configured to effect a relative movement between an ion beam passing the ion beam directing unit and the substrate support. A beam track of the ion beam on a substrate mounted on the substrate support includes circles or a spiral.Type: GrantFiled: February 11, 2014Date of Patent: July 12, 2016Assignee: Infineon Technologies AGInventors: Alexander Breymesser, Stephan Voss, Hans-Joachim Schulze, Werner Schustereder