Having Cantilever Element Patents (Class 438/52)
  • Patent number: 8859318
    Abstract: Methods of fabrication of electronic modules comprise, on the one hand, power electronic components fabricated on a substrate made of gallium nitride (GaN) and, on the other hand, micro-switches using electrostatic activation of the MEMS (Micro Electro Mechanical System) type. The electronic components and the micro-switches are fabricated on a single gallium nitride substrate and the fabrication method comprises at least the following steps: fabrication of the power components on the gallium nitride substrate; deposition of a first common passivation layer on said components and on the substrate; fabrication of the micro-switches on said substrate.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: October 14, 2014
    Assignee: Thales
    Inventors: Afshin Ziaei, Matthieu Le Baillif
  • Patent number: 8859317
    Abstract: A gas sensor manufacturing method comprises the following steps: providing a SOI substrate, including an oxide layer, a device layer, and a carrier, wherein the oxide layer is disposed between the device layer and the carrier; etching the device layer to form an integrated circuit region, an outer region, a trench and at least one conducting line; coating or imprinted a sensing material on the integrated circuit region; and etching the carrier and the oxide layer to form a cavity up to the gap so as to form a film structure which is suspended in the cavity by the cantilevered connecting arm.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: October 14, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Yu Sheng Hsieh, Jing Yuan Lin, Shang Chian Su
  • Patent number: 8853747
    Abstract: A package is made of a transparent substrate having an interferometric modulator and a back plate. A non-hermetic seal joins the back plate to the substrate to form a package, and a desiccant resides inside the package. A method of packaging an interferometric modulator includes providing a transparent substrate and manufacturing an interferometric modulator array on a backside of the substrate. A back plate includes a curved portion relative to the substrate. The curved portion is substantially throughout the back plate. The back plate is sealed to the backside of the substrate with a back seal in ambient conditions, thereby forming a package.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: October 7, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Lauren Palmateer, Brian J. Gally, William J. Cummings, Manish Kothari, Clarence Chui
  • Patent number: 8847339
    Abstract: Disclosed is an integrated circuit comprising a substrate (10) including semiconductor devices and a metallization stack (20) over said substrate for interconnecting said devices, the metallization stack comprising a cavity (36), and a thermal conductivity sensor comprising at least one conductive portion (16, 18) of said metallization stack suspended in said cavity. A method of manufacturing such an IC is also disclosed.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 30, 2014
    Assignee: NXP B.V.
    Inventors: Matthias Merz, Aurelie Humbert, David Tio Castro
  • Patent number: 8841155
    Abstract: A method for manufacturing a micro-electro-mechanical system (MEMS) device is provided. The method comprises: providing a semiconductor substrate, the semiconductor substrate having a metal interconnection structure (100) formed therein; forming a first sacrificial layer (201) on the surface of the semiconductor substrate, the material of the first sacrificial layer is amorphous carbon; etching the first sacrificial layer to form a first recess (301); covering and forming a first dielectric layer (401) on the surface of the first sacrificial layer; thinning the first dielectric layer by a chemical mechanical polishing (CMP) process, until exposing the first sacrificial layer; forming a micromechanical structure layer (500) on the surface of the first sacrificial layer and exposing the first sacrificial layer, wherein a part of the micromechanical structure layer is connected to the first dielectric layer.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: September 23, 2014
    Assignee: Lexvu Opto Microelectronics Technology (Shanghai) Ltd
    Inventors: Jianhong Mao, Deming Tang
  • Publication number: 20140264644
    Abstract: MEMS structures and methods utilizing a locker film are provided. In an embodiment a locker film is utilized to hold and support a moveable mass region during the release of the moveable mass region from a surrounding substrate. By providing additional support during the release of the moveable mass, the locker film can reduce the amount of undesired movement that can occur during the release of the moveable mass, and preventing undesired etching of the sidewalls of the moveable mass.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Patent number: 8836111
    Abstract: Described herein is a semiconductor integrated device assembly, which envisages: a package defining an internal space; a first die including semiconductor material; and a second die, distinct from the first die, also including semiconductor material; the first die and the second die are coupled to an inner surface of the package facing the internal space. The second die is shaped so as to partially overlap the first die, above the inner surface, with a portion suspended in cantilever fashion above the first die, by an overlapping distance.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: September 16, 2014
    Assignees: STMicroelectronics S.r.l., STMicroelectronics International N.V.
    Inventors: Sebastiano Conti, Benedetto Vigna
  • Publication number: 20140252510
    Abstract: A signal boosting apparatus and a method of boosting signals applied in the MEMS are disclosed. The signal boosting apparatus includes a substrate, an oxide layer, and a signal transmission layer. The substrate has a doped region. The doped region has a plurality of conductive carriers. These conductive carriers have the same polarity as an electronic signal. The oxide layer is located on the substrate, and the signal transmission layer is located on the oxide layer. The signal transmission layer can receive and boost the electronic signal.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: SenseTech Co., Ltd
    Inventors: Mao-Chen LIU, Po-Wei LU, Wen-Chieh CHOU, Shu-Yi WENG, Chun-Chieh WANG
  • Patent number: 8829627
    Abstract: A dynamic quantity sensor device includes: first and second dynamic quantity sensors having first and second dynamic quantity detecting units; and first and second substrates, which are bonded to each other to provide first and second spaces. The first and second units are air-tightly accommodated in the first and second spaces, respectively. A SOI layer of the first substrate is divided into multiple semiconductor regions by trenches. First and second parts of the semiconductor regions provide the first and second units, respectively. The second part includes: a second movable semiconductor region having a second movable electrode, which is provided by a sacrifice etching of the embedded oxide film; and a second fixed semiconductor region having a second fixed electrode. The second sensor detects the second dynamic quantity by measuring a capacitance between the second movable and fixed electrodes, which is changeable in accordance with the second dynamic quantity.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: September 9, 2014
    Assignee: DENSO CORPORATION
    Inventors: Tetsuo Fujii, Keisuke Gotoh, Kenichi Ao
  • Patent number: 8828772
    Abstract: An HF vapor etch etches high aspect ratio openings to form MEMS devices and other tightly-packed semiconductor devices with 0.2 um air gaps between structures. The HF vapor etch etches oxide plugs and gaps with void portions and oxide liner portions and further etches oxide layers that are buried beneath silicon and other structures and is ideally suited to release cantilevers and other MEMS devices. The HF vapor etches at room temperature and atmospheric pressure in one embodiment. A process sequence is provided that forms MEMS devices including cantilevers and lateral, in-plane electrodes that are stationary and vibration resistant.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: September 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Te-Hao Lee
  • Patent number: 8826529
    Abstract: A device includes a substrate (308) and a metallic layer (336) formed over the substrate (308) with a deposition process for which the metallic layer (336) is characterizable as having a pre-determinable as-deposited defect density. As a result of a fabrication process, the defect density of the metallic layer (336) is reduced relative to the pre-determinable as-deposited defect density of the same layer (336) or another layer having like composition and which is formed under like deposition conditions. In a related method, a substrate (308) is provided and a removable layer (330) is formed over the substrate (308). A metallic layer (336) is formed over the removable layer (330) and is patterned and etched to define a structure over the removable layer (330). The removable layer (330) is removed, and the metallic layer (336) is heated for a time beyond that necessary for bonding of a hermetic sealing cap (340) thereover.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Andrew Joseph Detor, Reed Corderman, Christopher Keimel, Marco Aimi
  • Patent number: 8822254
    Abstract: A MEMS manufacturing method and device in which a spacer layer is provided over a side wall of at least one opening in a structural layer which will define the movable MEMS element. The opening extends below the structural layer. The spacer layer forms a side wall portion over the side wall of the at least one opening and also extends below the level of the structural layer to form a contact area.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: September 2, 2014
    Assignee: NXP, B.V.
    Inventors: Jozef Thomas Martinus Van Beek, Klaus Reimann, Remco Henricus Wilhelmus Pijnenburg, Twan Van Lippen
  • Patent number: 8815626
    Abstract: A thermal printhead die is formed from an SOI structure as a MEMS device. The die has a printing surface, a buried oxide layer, and a mounting surface opposite the printing surface. A plurality of ink delivery sites are formed on the printing surface, each site having an ink-receiving and ink-dispensing structure. An ohmic heater is formed adjacent to each structure, and an under-bump metallization (UBM) pad is formed on the mounting surface and is electrically connected to the ohmic heater, so that ink received by the ink-delivery site and electrically heated by the ohmic heater may be delivered to a substrate by sublimation. A through-silicon-via (TSV) plug may be formed through the thickness of the die and electrically coupled through the buried oxide layer from the ohmic heater to the UBM pad. Layers of interconnect metal may connect the ohmic heater to the UBM pad and to the TSV plug.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: August 26, 2014
    Assignee: Kateeva, Inc.
    Inventors: Dariusz Golda, Hyeun-Su Kim, Valerie Gassend
  • Publication number: 20140227818
    Abstract: A method for fabricating a semiconductor structure includes etching a first opening into a substrate; etching a chip singulation trench into the substrate to define a lamella between the first opening and the chip singulation trench; fabricating a sense element for sensing a deflection of the lamella; and singulating the semiconductor structure at the chip singulation trench.
    Type: Application
    Filed: April 16, 2014
    Publication date: August 14, 2014
    Applicant: Infineon Technologies AG
    Inventors: Boris Binder, Bernd Foeste, Thoralf Kautzsch, Stefan Kolb, Marco Mueller
  • Patent number: 8803261
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: August 12, 2014
    Assignee: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk H. Hoekstra
  • Patent number: 8796058
    Abstract: Micro-Electro-Mechanical System (MEMS) structures, metrology structures and methods of manufacture are disclosed. The method includes forming one or metrology structure, during formation of a device in a chip area. The method further includes venting the one or more metrology structure after formation of the device.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Russell T. Herrin, Daniel R. Miga, Anthony K. Stamper
  • Publication number: 20140197502
    Abstract: A MEMS device and a method to manufacture a MEMS device are disclosed. An embodiment includes forming trenches in a first main surface of a substrate, forming conductive fingers by forming a conductive material in the trenches and forming an opening from a second main surface of the substrate thereby exposing the conductive fingers, the second main surface opposite the first main surface.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 17, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Alfons Dehe
  • Publication number: 20140183669
    Abstract: A resonant sensor is provided. The resonant sensor may have a structure including a base portion, a mass portion, and a mechanical beam connecting the base portion to the mass portion. In addition, the structure may include a first sensing beam formed from a sensing material responsive to mechanical strain where a gap is formed between the sensing beam and the mechanical beam.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 3, 2014
    Applicant: Wayne State University
    Inventors: Yong Xu, Qinglong Zeng, Yating Hu, Yefa Li, Hongen Tu
  • Patent number: 8765512
    Abstract: This invention discloses and claims a cost-effective, wafer-level package process for microelectromechanical devices (MEMS). Specifically, the movable part of MEMS device is encapsulated and protected while in wafer form so that commodity, lead-frame packaging can be used. An overcoat polymer, such as, epoxycyclohexyl polyhedral oligomeric silsesquioxanes (EPOSS) has been used as a mask material to pattern the sacrificial polymer as well as overcoat the air-cavity. The resulting air-cavities are clean, debris-free, and robust. The cavities have substantial strength to withstand molding pressures during lead-frame packaging of the MEMS devices. A wide range of cavities from 20 ?m×400 ?m to 300 ?m×400 ?m have been fabricated and shown to be mechanically stable. These could potentially house MEMS devices over a wide range of sizes. The strength of the cavities has been investigated using nano-indentation and modeled using analytical and finite element techniques.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: July 1, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Paul A Kohl, Rajarshi Saha, Nathan Fritz
  • Patent number: 8748207
    Abstract: Structures having a hybrid MEMS RF switch and method of fabricating such structures using existing wiring layers of a device is provided. The method of manufacturing a MEMS switch includes forming a forcing electrode from a lower wiring layer of a device and forming a lower electrode from an upper wiring layer of the device. The method further includes forming a flexible cantilever arm over the forcing electrode and the lower electrode such that upon application of a voltage to the forcing electrode, the flexible cantilever arm will contact the lower electrode to close the MEMS switch.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: June 10, 2014
    Assignee: International Business Machines Corporation
    Inventors: Peter J. Lindgren, Anthony K. Stamper
  • Publication number: 20140151821
    Abstract: A MEMS structure incorporating multiple joined substrates and a method for forming the MEMS structure are disclosed. An exemplary MEMS structure includes a first substrate having a bottom surface and a second substrate having a top surface substantially parallel to the bottom surface of the first substrate. The bottom surface of the first substrate is connected to the top surface of the second substrate by an anchor, such that the anchor does not extend through either the bottom surface of the first substrate or the top surface of the second substrate. The MEMS structure may include a bonding layer in contact with the bottom surface of the first substrate, and shaped to at least partially envelop the anchor.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Patent number: 8722445
    Abstract: A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a plurality of discrete wires on a substrate. The method further includes forming a sacrificial cavity layer on the discrete wires. The method further includes forming trenches in an upper surface of the sacrificial cavity layer. The method further includes filling the trenches with dielectric material. The method further includes depositing metal on the sacrificial cavity layer and on the dielectric material to form a beam with at least one dielectric bumper extending from a bottom surface thereof.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dinh Dang, Thai Doan, Jeffrey C. Maling, Anthony K. Stamper
  • Patent number: 8716051
    Abstract: The present disclosure provides a method of fabricating a micro-electro-mechanical systems (MEMS) device. In an embodiment, a method includes providing a substrate including a first sacrificial layer, forming a micro-electro-mechanical systems (MEMS) structure above the first sacrificial layer, and forming a release aperture at substantially a same level above the first sacrificial layer as the MEMS structure. The method further includes forming a second sacrificial layer above the MEMS structure and within the release aperture, and forming a first cap over the second sacrificial layer and the MEMS structure, wherein a leg of the first cap is disposed between the MEMS structure and the release aperture. The method further includes removing the first sacrificial layer, removing the second sacrificial layer through the release aperture, and plugging the release aperture. A MEMS device formed by such a method is also provided.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Hsien Lin, Chia-Hua Chu, Chun-Wen Cheng
  • Patent number: 8703516
    Abstract: Micro-electromechanical system (MEMS) substrates, devices, and methods of manufacture thereof are disclosed. In one embodiment, a MEMS device includes a workpiece having an isolation ring in a top portion thereof, and a moveable element disposed within the isolation ring.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: April 22, 2014
    Assignee: Infineon Technologies AG
    Inventor: Florian Schoen
  • Patent number: 8698256
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: April 15, 2014
    Assignee: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk Hans Hoekstra
  • Patent number: 8685778
    Abstract: A method of forming at least one Micro-Electro-Mechanical System (MEMS) cavity includes forming a first sacrificial cavity layer over a lower wiring layer. The method further includes forming a layer. The method further includes forming a second sacrificial cavity layer over the first sacrificial layer and in contact with the layer. The method further includes forming a lid on the second sacrificial cavity layer. The method further includes forming at least one vent hole in the lid, exposing a portion of the second sacrificial cavity layer. The method further includes venting or stripping the second sacrificial cavity layer such that a top surface of the second sacrificial cavity layer is no longer touching a bottom surface of the lid, before venting or stripping the first sacrificial cavity layer thereby forming a first cavity and second cavity, respectively.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Christopher V. Jahnes, Anthony K. Stamper
  • Publication number: 20140087509
    Abstract: The claimed invention is directed to integrated energy-harvesting piezoelectric cantilevers. The cantilevers are fabricated using sol-gel processing using a sacrificial poly-Si seeding layer. Improvements in film microstructure and electrical properties are realized by introducing a poly-Si seeding layer and by optimizing the poling process.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicants: Texas Micropower, Inc., The Board of Regents of the University of Texas System
    Inventors: Erika Fuentes-Fernandez, Pradeep Shah, Wardia Mechtaly-Debray, Bruce E. Gnade
  • Patent number: 8679887
    Abstract: A method for manufacturing a micro-electro-mechanical device, which has supporting parts and operative parts, includes providing a first semiconductor wafer, having a first layer of semiconductor material and a second layer of semiconductor material arranged on top of the first layer, forming first supporting parts and first operative parts of the device in the second layer, forming temporary anchors in the first layer, and bonding the first wafer to a second wafer, with the second layer facing the second wafer. After bonding the first wafer and the second wafer together, second supporting parts and second operative parts of said device are formed in the first layer. The temporary anchors are removed from the first layer to free the operative parts formed therein.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 25, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Simone Sassolini, Mauro Marchi, Marco Del Sarto, Lorenzo Baldo
  • Patent number: 8680631
    Abstract: A method that includes forming an opening between at least one first electrode and a second electrode by forming a recess in a first electrode layer, the recess having sidewalls that correspond to a surface of the at least one first electrode, forming a first sacrificial layer on the sidewalls of the recess, the first sacrificial layer having a first width that corresponds to a second width of the opening, forming a second electrode layer in the recess that corresponds to the second electrode, and removing the first sacrificial layer to form the opening between the second electrode and the at least one first electrode.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: March 25, 2014
    Assignee: STMicroelectronics, Inc.
    Inventors: Venkatesh Mohanakrishnaswamy, Loi N. Nguyen
  • Patent number: 8673670
    Abstract: Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes layering metal and insulator materials on a sacrificial material formed on a substrate. The method further includes masking the layered metal and insulator materials. The method further includes forming an opening in the masking which overlaps with the sacrificial material. The method further includes etching the layered metal and insulator materials in a single etching process to form the beam structure, such that edges of the layered metal and insulator material are aligned. The method further includes forming a cavity about the beam structure through a venting.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brian M. Czabaj, David A. DeMuynck, Anthony K. Stamper
  • Patent number: 8669822
    Abstract: A method of manufacturing a MEMS resonator formed from a first material having a first Young's modulus and a first temperature coefficient of the first Young's modulus, and a second material having a second Young's modulus and a second temperature coefficient of the second Young's modulus, a sign of the second temperature coefficient being opposite to a sign of the first temperature coefficient at least within operating conditions of the resonator. The method includes the steps of forming the resonator from the first material; applying the second material to the resonator; and controlling the quantity of the second material applied to the resonator by the geometry of the resonator.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: March 11, 2014
    Assignee: NXP, B.V.
    Inventor: Robert J. P. Lander
  • Patent number: 8664029
    Abstract: A process for fabricating a capacitance type tri-axial accelerometer comprises of preparing a wafer having an upper layer, an intermediate layer and a lower layer, etching the lower layer of the wafer to form an isolated proof mass having a core and four segments extending from the core, etching the upper layer of the wafer to form a suspension and four separating plates, etching away a portion of the intermediate layer located between the four segments of the proof mass and the plates of the upper layer, and disposing an electrical conducting means to pass through the intermediate layer from the suspension to the core of the proof mass.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: March 4, 2014
    Assignee: Domintech Co., Ltd.
    Inventor: Ming-Ching Wu
  • Publication number: 20140054728
    Abstract: Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming at least one Micro-Electro-Mechanical System (MEMS) cavity. The method for forming the cavity further includes forming at least one first vent hole of a first dimension which is sized to avoid or minimize material deposition on a beam structure during sealing processes. The method for forming the cavity further includes forming at least one second vent hole of a second dimension, larger than the first dimension.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 27, 2014
    Applicants: WISPRY, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey C. Maling, Anthony K. Stamper, Dana R. DeReus, Arthur S. Morris, III
  • Patent number: 8659167
    Abstract: A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure. The structure includes a sensor wafer (92) and a cap wafer (94). Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers. One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers to expose the bond pads, forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: February 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Patent number: 8652867
    Abstract: The present invention discloses a micrometer-scale grid structure based on single crystal silicon consists of periphery frame 1 and grid zone 2. The periphery frame 1 is rectangle, and grid zone 2 has a plurality of mesh-holes 3 distributing in the plane of grid zone 2. The present invention also provides a method for manufacturing a micrometer-scale grid structure based on single crystal silicon. According to the present invention thereof, the contradiction between demand of broad deformation space for sensor and actuator and the limit of the thickness of sacrifice layer is solved. Furthermore, the special requirement of double-side transparence for some optical sensor is met.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: February 18, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Binbin Jiao, Dapeng Chen
  • Patent number: 8648432
    Abstract: A fully embedded micromechanical device and a system on chip is manufactured on an SOI-substrate. The micromechanical device comprises a moveable component having a laterally extending upper and lower surface and vertical side surfaces. The upper surface is adjacent to an upper gap which laterally extends over at least a part of the upper surface and results from the removal of a shallow trench insulation material. The lower surface is adjacent to a lower gap which laterally extends over at least a part of the lower surface and results from the removal of the buried silicon oxide layer. The side surfaces of the movable component are adjacent to side gaps which surround at least a part of the vertical side surfaces of the moveable component and result from the removal of a deep trench insulation material.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: February 11, 2014
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Alfred Haeusler
  • Patent number: 8648433
    Abstract: A method for producing oblique surfaces in a substrate, comprising a formation of recesses on both surfaces of the substrate, until the recesses are so deep that the substrate is perforated by the two recesses. One recess is produced going out from a first main surface in the region of a first surface, and the other recess is produced going out from the second main surface in the region of a second surface, so that the first surface and the second surface do not coincide along a surface normal of the main surfaces of the substrate. Subsequently, flexible diaphragms are attached over the recesses on each of the main surfaces. If a vacuum pressure is then produced inside the recesses, the flexible diaphragms each curve in the direction of the recesses until their surfaces facing the substrate come into contact with one another, generally in the center of the recesses.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: February 11, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Stefan Pinter
  • Patent number: 8642370
    Abstract: A process of forming a MEMS device with a device cavity underlapping an overlying dielectric layer stack having an etchable sublayer over an etch-resistant lower portion, including: etching through at least the etchable sublayer of the overlying dielectric layer stack in an access hole to expose a lateral face of the etchable sublayer, covering exposed surfaces of the etchable sublayer by protective material, and subsequently performing a cavity etch. A cavity etch mask may cover the exposed surfaces of the etchable sublayer. Alternatively, protective sidewalls may be formed by an etchback process to cover the exposed surfaces of the etchable sublayer. Alternatively, the exposed lateral face of the etchable sublayer may be recessed by an isotropic etch, than isolated by a reflow operation which causes edges of an access hole etch mask to drop and cover the exposed lateral face of the etchable sublayer.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: February 4, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Ricky Alan Jackson, Karen Hildegard Ralston Kirmse, Kandis Meinel
  • Patent number: 8643125
    Abstract: A structure and a process for a microelectromechanical system (MEMS)-based sensor are provided. The structure for a MEMS-based sensor includes a substrate chip. A first insulating layer covers a top surface of the substrate chip. A device layer is disposed on a top surface of the first insulating layer. The device layer includes a periphery region and a sensor component region. The periphery region and a sensor component region have an air trench therebetween. The component region includes an anchor component and a moveable component. A second insulating layer is disposed on a top surface of the device layer, bridging the periphery region and a portion of the anchor component. A conductive pattern is disposed on the second insulating layer, electrically connecting to the anchor component.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 4, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Lung-Tai Chen, Shih-Chieh Lin, Yu-Wen Hsu
  • Patent number: 8643127
    Abstract: A sensor device and a method of forming comprises a die pad receives a sensor device, such as a MEMS device. The MEMS device has a first coefficient of thermal expansion (CTE). The die pad is made of a material having a second CTE compliant with the first CTE. The die pad includes a base and a support structure with a CTE compliant with the first and second CTE. The die pad has a support structure that protrudes from a base. The support structure has a height and wall thickness which minimize forces felt by the die pad and MEMS device when the base undergoes thermal expansion or contraction forces from a header.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: February 4, 2014
    Assignee: S3C, Inc.
    Inventors: John Dangtran, Roger Horton
  • Patent number: 8643128
    Abstract: The present invention discloses an MEMS sensor and a method for making the MEMS sensor. The MEMS sensor according to the present invention includes: a substrate including an opening; a suspended structure located above the opening; and an upper structure, a portion of which is at least partially separated from a portion of the suspended structure; wherein the suspended structure and the upper structure are separated from each other by a step including metal etch.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: February 4, 2014
    Assignee: Pixart Imaging Incorporation
    Inventor: Chuan Wei Wang
  • Patent number: 8643129
    Abstract: A micro-electrical-mechanical device comprises: a transducer arrangement having at least a membrane being mounted with respect to a substrate; and electrical interface means for relating electrical signals to movement of the membrane; in which the transducer arrangement comprises stress alleviating formations which at least partially decouple the membrane from expansion or contraction of the substrate.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: February 4, 2014
    Assignee: Wolfson Microelectronics plc
    Inventors: Richard Ian Laming, Mark Begbie
  • Patent number: 8633088
    Abstract: A bonded semiconductor device comprising a support substrate, a semiconductor device located with respect to one side of the support substrate, a cap substrate overlying the support substrate and the device, a glass frit bond ring between the support substrate and the cap substrate, an electrically conductive ring between the support substrate and the cap substrate. The electrically conductive ring forms an inner ring around the semiconductor device and the glass frit bond ring forms an outer bond ring around the semiconductor device.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: January 21, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ruben B Montez, Robert F Steimle
  • Patent number: 8633048
    Abstract: A fabrication method of a package structure having MEMS elements includes: disposing a plate on top of a wafer having MEMS elements and second alignment keys; cutting the plate to form therein a plurality of openings exposing the second alignment keys; performing a wire bonding process and disposing block bodies corresponding to the second alignment keys, respectively; forming an encapsulant and partially removing the encapsulant and the block bodies from the top of the encapsulant; and aligning through the second alignment keys so as to form on the encapsulant a plurality of metal traces. The present invention eliminates the need to form through holes in a silicon substrate as in the prior art so as to reduce the fabrication costs. Further, since the plate only covers the MEMS elements and the encapsulant is partially removed, the overall thickness and size of the package structure are reduced.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: January 21, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chen-Han Lin, Hong-Da Chang, Cheng-Hsiang Liu, Hsin-Yi Liao, Shih-Kuang Chiu
  • Publication number: 20140017844
    Abstract: Integrated MEMS switches, design structures and methods of fabricating such switches are provided. The method includes forming at least one tab of sacrificial material on a side of a switching device which is embedded in the sacrificial material. The method further includes stripping the sacrificial material through at least one opening formed on the at least one tab which is on the side of the switching device, and sealing the at least one opening with a capping material.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 16, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Felix P. ANDERSON, Thomas L. McDevitt, Anthony K. Stamper
  • Patent number: 8629517
    Abstract: A method of wafer level packaging includes providing a substrate including a buried oxide layer and a top oxide layer, and etching the substrate to form openings above the buried oxide layer and a micro-electro-mechanical systems (MEMS) resonator element between the openings, the MEMS resonator element enclosed within the buried oxide layer, the top oxide layer, and sidewall oxide layers. The method further includes filling the openings with polysilicon to form polysilicon electrodes adjacent the MEMS resonator element, removing the top oxide layer and the sidewall oxide layers adjacent the MEMS resonator element, bonding the polysilicon electrodes to one of a complementary metal-oxide semiconductor (CMOS) wafer or a carrier wafer, removing the buried oxide layer adjacent the MEMS resonator element, and bonding the substrate to a capping wafer to seal the MEMS resonator element between the capping wafer and one of the CMOS wafer or the carrier wafer.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Chung-Hsien Lin, Chia-Hua Chu
  • Patent number: 8627566
    Abstract: A ceramic header configured to form a portion of an electronic device package includes a mounting portion configured to provide a mounting surface for an electronic device. In addition, the ceramic header includes one or more conductive input-output connectors operable to provide electrical connections from a first surface of the ceramic header to a second surface of the ceramic header. The ceramic header also includes one or more thermally polished surfaces.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: January 14, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Moody K. Forgey, Mark A. Kressley
  • Patent number: 8629739
    Abstract: A method of forming a microelectromechanical systems (MEMS) device includes forming an electrode on a substrate. The method includes forming a structural layer on the substrate. The structural layer is disposed about a perimeter of the electrode and has a residual film stress gradient. The method includes releasing the structural layer to form a resonator coupled to the substrate. The residual film stress gradient deflects a first portion of the resonator out of a plane defined by a surface of the electrode.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: January 14, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Emmanuel P. Quevy, David H. Bernstein, Mehrnaz Motiee
  • Patent number: 8628993
    Abstract: Disclosed is a method for removing individual layers of a layer stack. The layer stack includes a semiconductor layer disposed onto an optically dense electrically conductive layer which in turn is disposed upon an optically transparent layer. A laser at a first power level is projected through the optically transparent layer and onto the optically dense electrically conductive layer. The semiconductor layer is removed through heat evaporation imparted by the laser at the first power level without removing the optically dense electrically conductive layer. Optionally, the laser at a second power level, which is greater than the first power level, is projected onto the optically dense electrically conductive layer through the optically transparent layer. The optically dense electrically conductive layer is removed through heat evaporation imparted by the laser at the second power level without removing the optically transparent layer.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: January 14, 2014
    Assignee: Manz AG
    Inventors: Vasile Raul Moldovan, Christoph Tobias Neugebauer
  • Publication number: 20140008741
    Abstract: Bulk acoustic wave filters and/or bulk acoustic resonators integrated with CMOS devices, methods of manufacture and design structure are provided. The method includes forming a single crystalline beam from a silicon layer on an insulator. The method further includes providing a coating of insulator material over the single crystalline beam. The method further includes forming a via through the insulator material. The method further includes providing a sacrificial material in the via and over the insulator material. The method further includes providing a lid on the sacrificial material. The method further includes providing further sacrificial material in a trench of a lower wafer. The method further includes bonding the lower wafer to the insulator, under the single crystalline beam. The method further includes venting the sacrificial material and the further sacrificial material to form an upper cavity above the single crystalline beam and a lower cavity, below the single crystalline beam.
    Type: Application
    Filed: September 11, 2013
    Publication date: January 9, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David L. HARAME, Stephen E. LUCE, Anthony K. STAMPER