Chalcogen (i.e., Oxygen (o), Sulfur (s), Selenium (se), Tellurium (te)) Containing Patents (Class 438/95)
  • Patent number: 8642881
    Abstract: A thin film solar cell and a method of manufacturing the same are discussed. The method of manufacturing the thin film solar cell includes forming a masking jig in a first region of a substrate, forming a first electrode in a second region of the substrate, forming a photoelectric conversion unit on the first electrode formed in the second region of the substrate to produce electricity using light incident on the photoelectric conversion unit, and forming a second electrode on the photoelectric conversion unit formed in the second region of the substrate.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: February 4, 2014
    Assignee: LG Electronics Inc.
    Inventors: Sungeun Lee, Jinhyung Ahn, Jeonghun Son
  • Publication number: 20140030843
    Abstract: A chalcogen-resistant material including at least one of a carbon nanotube layer and a high work function material layer is deposited on a transition metal layer on a substrate. A semiconductor chalcogenide/kesterite material layer is deposited over the chalcogen-resistant material. The carbon nanotubes, if present, can reduce contact resistance by providing direct electrically conductive paths from the transition metal layer through the chalcogen-resistant material and to the semiconductor chalcogenide material. The high work function material layer, if present, can reduce contact resistance by reducing chalcogenization of the transition metal in the transition metal layer. Reduction of the contact resistance can enhance efficiency of a solar cell including the chalcogenide semiconductor material.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Lubomyr T. Romankiw
  • Publication number: 20140026956
    Abstract: A method to fabricate thin-film photovoltaic devices (100) comprising a photovoltaic Cu(In,Ga)Se2 or equivalent ABC absorber layer (130), such as an ABC2 layer, deposited onto a back-contact layer (120) characterized in that said method comprises at least five deposition steps, wherein the pair of third and fourth steps are sequentially repeatable, in the presence of at least one C element over one or more steps. In the first step at least one B element is deposited, followed in the second by deposition of A and B elements at a deposition rate ratio Ar/Br, in the third at a ratio Ar/Br lower than the previous, in the fourth at a ratio Ar/Br higher than the previous, and in the fifth depositing only B elements to achieve a final ratio A/B of total deposited elements.
    Type: Application
    Filed: April 17, 2012
    Publication date: January 30, 2014
    Applicants: EMPA, FLISOM AG
    Inventors: Adrian Chirila, Ayodhya Nath Tiwari, Patrick Bloesch, Shiro Nishiwaki, David Bremaud
  • Publication number: 20140027775
    Abstract: Accordingly, a method of forming a metal chalcogenide material may comprise introducing at least one metal precursor and at least one chalcogen precursor into a chamber comprising a substrate, the at least one metal precursor comprising an amine or imine compound of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid, and the at least one chalcogen precursor comprising a hydride, alkyl, or aryl compound of sulfur, selenium, or tellurium. The at least one metal precursor and the at least one chalcogen precursor may be reacted to form a metal chalcogenide material over the substrate. A method of forming a metal telluride material, a method of forming a semiconductor device structure, and a semiconductor device structure are also described.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Timothy A. Quick, Stefan Uhlenbrock, Eugene P. Marsh
  • Patent number: 8637342
    Abstract: An ovonic threshold switch may be formed of a continuous chalcogenide layer. That layer spans multiple cells, forming a phase change memory. In other words, the ovonic threshold switch may be formed of a chalcogenide layer which extends, uninterrupted, over numerous cells of a phase change memory.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: January 28, 2014
    Assignee: Ovonyx, Inc.
    Inventors: Ilya V. Karpov, Sean Jong Lee, Yudong Kim, Gregory E. Atwood
  • Patent number: 8637897
    Abstract: A semiconductor light emitting device includes a substrate and a plurality of light emitting cells arranged on the substrate. Each of the light emitting cells includes a first-conductivity-type semiconductor layer, a second-conductivity-type semiconductor layer, and an active layer disposed therebetween to emit blue light. An interconnection structure electrically connects the first-conductivity-type and the second-conductivity-type semiconductor layers of one light emitting cell to the first-conductivity-type and the second-conductivity-type semiconductor layers of another light emitting cell. A light conversion part is formed in a light emitting region defined by the light emitting cells and includes a red and/or a green light conversion part respectively having a red and/or a green light conversion material.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je Won Kim, Tae Sung Jang, Jong Gun Woo, Jong Ho Lee
  • Patent number: 8637765
    Abstract: Provided is a single junction type CIGS thin film solar cell, which includes a CIGS light absorption layer manufactured using a single junction. The single junction type CIGS thin film solar cell includes a substrate, a back contact deposited on the substrate, a light absorption layer deposited on the back contact and including a P type CIGS layer and an N type CIGS layer coupled to the P type CIGS layer using a single junction, and a reflection prevention film deposited on the light absorption layer.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: January 28, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong-Duck Chung, Won Seok Han
  • Publication number: 20140020736
    Abstract: Disclosed is a method for producing a CIS-based thin film based on self-accelerated photoelectrochemical deposition. The method includes 1) mixing precursors of elements constituting a CIS-based compound with a solvent to prepare an electrolyte solution, 2) connecting an electrochemical cell including a working electrode, the electrolyte solution and a counter electrode to a voltage or current applying device to construct an electro-deposition circuit, 3) irradiating light onto the working electrode while at the same time applying a cathodic voltage or current to the working electrode to induce self-accelerated photoelectrochemical deposition, thereby electro-depositing a CIS-based thin film, and 4) annealing the electro-deposited CIS-based thin film under a gas atmosphere including sulfur or selenium.
    Type: Application
    Filed: November 7, 2012
    Publication date: January 23, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Doh-Kwon LEE, Hong Gon KIM, Min Jae KO, Jin Young KIM, Da Woon JEONG, Bong Soo KIM
  • Patent number: 8633476
    Abstract: An organic light-emitting device including: an anode; a hole charging layer (HCL) comprising an oxide semiconductor and formed on the anode; at least one organic layer formed on the HCL; and a cathode formed on the organic layer. The HCL may be an oxide semiconductor including indium (In), gallium (Ga), and zinc (Zn), or an oxide semiconductor including In, Zn, and hafnium (Hf).
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: January 21, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Mu-Gyeom Kim, Chang-Mo Park
  • Patent number: 8634236
    Abstract: Provided are a phase change memory device and a fabricating method thereof. The phase change memory device includes a substrate, an interlayer dielectric layer formed on the substrate, first and second contact holes formed in the interlayer dielectric layer, and a memory cell formed in the first and second contact holes and including a diode, a first electrode on the diode, a phase change material layer on the first electrode, and a second electrode on the phase change material layer, wherein the first contact hole and the second contact hole are spaced apart from and separated from each other.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Young Park, Jeong-Hee Park, Hyun-Suk Kwon
  • Patent number: 8632851
    Abstract: A method of forming an compound semiconductor thin film of chalcopyrite structure includes the steps of heating up elemental VI powder in a first chamber to produce VI vapor flux. The VI vapor flow is introduced into a second chamber and an Argon plasma is utilized to crack large molecular VI fractions to generate small VI species. The small molecule VI species are homogeneously deposited on the metallic I-III precursor layers and the precursor film is sealed into a graphite box and transferred to an annealing chamber to create an absorber layer with a large grain size and good crystalline structure.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: January 21, 2014
    Assignee: Sun Harmonics Ltd
    Inventors: Yuhang Ren, Zhi Huang, Paifeng Luo, Kai Shum
  • Publication number: 20140014176
    Abstract: A photovoltaic device manufacturing method is disclosed. Methods include manufacturing a photovoltaic cell using nanoimprint technology to define individual cell units of the photovoltaic device. The methods can include providing a substrate; forming a first conductive layer over the substrate; forming first grooves in the first conductive layer using a nanoimprint and etching process; forming an absorption layer over the first conductive layer, the absorption layer filling in the first grooves; forming second grooves in the absorption layer using a nanoimprint process; forming a second conductive layer over the absorption layer, the second conductive layer filling in the second grooves; and forming third grooves in the second conductive layer and the absorption layer, thereby defining a photovoltaic cell unit.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 16, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chiang TU, Chun-Lang CHEN
  • Patent number: 8628997
    Abstract: A method for fabricating a thin film photovoltaic device is provided. The method includes providing a substrate comprising a thin film photovoltaic absorber which has a surface including copper, indium, gallium, selenium, and sulfur. The method further includes subjecting the surface to a material containing at least a zinc species substantially free of any cadmium. The surface is heated to cause formation of a zinc doped material. The zinc doped material is free from cadmium. Furthermore the method includes forming a zinc oxide material overlying the zinc doped material and forming a transparent conductive material overlying the zinc oxide material.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: January 14, 2014
    Assignee: Stion Corporation
    Inventors: Kannan Ramanathan, Robert D. Wieting
  • Patent number: 8629347
    Abstract: Novel structures of photovoltaic cells (also known as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: January 14, 2014
    Assignee: Banpil Photonics, Inc.
    Inventors: Nobuhiko P. Kobayashi, Achyut K. Dutta
  • Patent number: 8628696
    Abstract: This invention relates to compounds and compositions used to prepare semiconductor and optoelectronic materials and devices. This invention provides a range of compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to molecular precursor compounds and precursor materials for preparing photovoltaic layers.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: January 14, 2014
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta
  • Patent number: 8629034
    Abstract: A nonvolatile memory element and associated production methods and memory element arrangements are presented. The nonvolatile memory element has a changeover material and a first and second electrically conductive electrode present at the changeover material. To reduce a forming voltage, a first electrode has a field amplifier structure for amplifying a field strength of an electric field generated by a second electrode in a changeover material. The field amplifier structure is a projection of the electrodes which projects into the changeover material. The memory element arrangement has multiple nonvolatile memory elements which are arranged in matrix form and can be addressed via bit lines arranged in column form and word lines arranged in row form.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: January 14, 2014
    Assignee: Infineon Technologies AG
    Inventors: Laurent Breuil, Franz Schuler, Georg Tempel
  • Publication number: 20140011317
    Abstract: A method of preparing Group XIII selenide nanoparticles comprises reacting a Group XIII ion source with a selenol compound. The nanoparticles have an MxSey semiconductor core (where M is In or Ga) and an organic capping ligand attached to the core via a carbon-selenium bond. The selenol provides a source of selenium for incorporation into the semiconductor core and also provides the organic capping ligand. The nanoparticles are particularly suitable for solution-based methods of preparing semiconductor films.
    Type: Application
    Filed: July 5, 2013
    Publication date: January 9, 2014
    Inventors: Nathalie Gresty, Ombretta Masala, Christopher Newman, Stephen Whitelegg, Nigel Pickett
  • Patent number: 8623694
    Abstract: Non-volatile, resistance variable memory devices, integrated circuit elements, and methods of forming such devices are provided. According to one embodiment of a method of the invention, a memory device can be fabricated by depositing a chalcogenide material onto a first (lower) electrode, sputter depositing a thin diffusion layer of a conductive material over the chalcogenide material, diffusing metal from the diffusion layer into the chalcogenide material, resulting in a metal-comprising resistance variable material, and then plating a conductive material to a desired thickness to form a second (upper) electrode.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 7, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Rita J. Klein
  • Patent number: 8624107
    Abstract: Novel structures of photovoltaic cells (also known as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: January 7, 2014
    Assignee: Banpil Photonics, Inc.
    Inventors: Nobuhiko P. Kobayashi, Achyut K. Dutta
  • Patent number: 8624108
    Abstract: Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: January 7, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut K. Dutta
  • Patent number: 8624214
    Abstract: A semiconductor device (100) of the present invention has a structure in which an interlayer insulating layer (115) is formed on an uppermost wire (114), contacts (116, 117) penetrate the interlayer insulating layer (115), a lower electrode (118a) of the resistance variable element is formed on the interlayer insulating layer (115) to cover the contact (116), and resistance variable layer (119) is formed on the interlayer insulating layer (115) to cover the lower electrode (118a) and the contact (117). The contact (116) and the lower electrode (118a) serve as a first terminal, while the contact (117) serves as a second terminal.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: January 7, 2014
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Kazuhiko Shimakawa
  • Publication number: 20140004655
    Abstract: Embodiments of the present invention include a method. The method includes heating a layer stack. The layer stack includes a first layer comprising cadmium and tin, a metal layer disposed over the first layer, and a window layer disposed over the metal layer. Heating the stack includes transforming at least a portion of the first layer from an amorphous phase to a crystalline phase. Heating may be performed using any of various configurations, such as, for example, heating an individual stack, or using a face-to-face configuration of multiple stacks. The stack may be used for fabricating a photovoltaic device.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hongying Peng, Bastiaan Arie Korevaar, Jinbo Cao, Stephen Lorenco Araujo, Scott Daniel Feldman-Peabody, Robert Dwayne Gossman
  • Patent number: 8618411
    Abstract: A photovoltaic cell is made by coating a metal foil substrate with cadmium telluride powder, moving the powder coated foil across a cold plate or series of cooled rollers to prevent the substrate from melting, while melting the cadmium telluride powder by passing the powder coated foil under a microwave energy source. This forms a thin film of cadmium telluride on the foil. The cadmium telluride coated foil is then coated with cadmium sulfide powder, which is melted by passing the powder coated foil under a microwave energy source, thereby creating a P-N junction, and the cadmium sulfide layer is coated with indium, which is fused to the cadmium sulfide layer by microwave heating.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: December 31, 2013
    Inventor: David M. Schwartz
  • Patent number: 8617642
    Abstract: A preparation method of a CIS-based or CIGS-based thin film for a light absorption layer of a solar cell, which uses a paste prepared by mixing precursors of Cu, In, Se, and optional Ga in a solvent, minimizes the raw material loss, does not produce a toxic gas during the process, and is suitable for producing a large scale film at a low production cost.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: December 31, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Oh-shim Joo, Byoung Koun Min, Kwang Deog Jung, Jun-haeng Lee
  • Patent number: 8618410
    Abstract: A method of manufacturing improved thin-film solar cells entirely by sputtering includes a high efficiency back contact/reflecting multi-layer containing at least one barrier layer consisting of a transition metal nitride. A copper indium gallium diselenide (Cu(InXGa1-X)Se2) absorber layer (X ranging from 1 to approximately 0.7) is co-sputtered from specially prepared electrically conductive targets using dual cylindrical rotary magnetron technology. The band gap of the absorber layer can be graded by varying the gallium content, and by replacing the gallium partially or totally with aluminum. Alternately the absorber layer is reactively sputtered from metal alloy targets in the presence of hydrogen selenide gas. RF sputtering is used to deposit a non-cadmium containing window layer of ZnS. The top transparent electrode is reactively sputtered aluminum doped ZnO. A unique modular vacuum roll-to-roll sputtering machine is described.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 31, 2013
    Assignee: MiaSole
    Inventor: Dennis R. Hollars
  • Patent number: 8617918
    Abstract: A thermoelectric converter is made of a first thermoelectric conversion material in which at least one type of second thermoelectric conversion material particles having an average size of 1 to 100 nm is dispersed. At least a part of the second thermoelectric conversion material particles is dispersed at a distance not more than the mean free path of the phonons of the first thermoelectric conversion material.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: December 31, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junya Murai, Takuji Kita
  • Publication number: 20130344646
    Abstract: Methods are described for forming CIGS absorber layers in TFPV devices with graded compositions and graded band gaps. Methods are described for utilizing Ag to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing Al to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing at least one of Na, Mg, K, or Ca to increase the band gap at the front surface of the absorber layer.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 26, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Haifan Liang, Jeroen Van Duren
  • Patent number: 8614114
    Abstract: A treatment object containing any one of Cu/Ga, Cu/In and Cu—Ga/In is held in a heated state at a temperature T1 for a time ?t1 in such a state that a selenium source is introduced, thereby forming a selenide. Thereafter, a sulfur source is introduced to replace the atmosphere in the system with a sulfur atmosphere. In this state, the treatment object is held in a heated state at a temperature T2 for a time ?t2. The temperature of the treatment object is then decreased to T3, and, at that temperature, the treatment object is held in a heated state for a time ?t3.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: December 24, 2013
    Assignee: Showa Shell Sekiyu K.K.
    Inventors: Hideki Hakuma, Yuri Yamaguchi, Katsuya Tabuchi, Katsumi Kushiya
  • Publication number: 20130337602
    Abstract: A sputtering target has a cylindrical backing tube having two edges and a sidewall comprising a middle portion located between two end portions. The sputtering material is on the backing tube. The sputtering material does not cover at least one end portion of the backing tube. The sputtering target also has a feature which prevents or reduces at least one of chalcogen buildup and arcing at the at least one end portion of the backing tube not covered by the sputtering material.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: MiaSole
    Inventors: Robert Martinson, Heinrich Von Bunau, Mark Campello, Ron Rulkens, Tom Heckel, Johannes Vlcek
  • Publication number: 20130333757
    Abstract: The present invention relates to a method for preparing titanium dioxide paste for dye sensitized solar cell, and more specifically a method for preparing titanium dioxide paste fir dye sensitized solar cell, which is curable at a low temperature and is able to form a uniform coating layer and exhibits relatively high energy conversion efficiency. The present invention also relates to a method for preparing low temperature curable paste which requires no separate dye adsorption process or can improve energy conversion efficiency by adding dye or metal precursor in advance.
    Type: Application
    Filed: March 7, 2013
    Publication date: December 19, 2013
    Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Tae Jin Hwang, Ho Hyeong Kim, Jae Young Park
  • Patent number: 8611146
    Abstract: Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus “activating” the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 17, 2013
    Assignee: Boise State University
    Inventor: Kristy A Campbell
  • Patent number: 8610129
    Abstract: A stack-type image sensor using a compound semiconductor. The stack-type image sensor includes a stack of photoelectric conversion units which are sequentially arranged in a light incident direction and which absorb light in ascending order of a wavelength from shortest to longest.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: December 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-gyu Nam, Sang-cheol Park, Kyu-sik Kim, Young-jun Park
  • Publication number: 20130327385
    Abstract: The present invention relates to a solar cell having nanostructures on both surfaces of a transparent substrate, and to a method for manufacturing same. The nano-structures, which face each other with respect to the substrate and which transport electrons, are formed using zinc-oxide nanowires. Also, a hole-transport layer using CIS nanoparticles is formed in order to absorb light having a short wavelength and to transport generated holes. A hole-transport layer including CIGS nanoparticles for absorbing light having a relatively long wavelength is formed on the side facing the hole-transport layer including the CIS nanoparticles.
    Type: Application
    Filed: February 17, 2012
    Publication date: December 12, 2013
    Applicant: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY
    Inventors: Tae Whan Kim, Qifeng Han, Jae Hun Jung
  • Publication number: 20130327391
    Abstract: A method for producing apparatus for producing and photovoltaic device including semiconductor layers with halide heat treated surfaces that increase grain growth within at least one of the semiconductor layers and improve the interface between the semiconductor layers. The halide heat treatment includes applying and heating multiple coatings of a halide compound on surfaces adjacent to or part of the semiconductor layers.
    Type: Application
    Filed: May 21, 2013
    Publication date: December 12, 2013
    Applicant: FIRST SOLAR, INC
    Inventors: Markus Gloeckler, Akhlesh Gupta, Xilin Peng, Rick C. Powell, Jigish Trivedi, Jianjun Wang, Zhibo Zhao
  • Publication number: 20130327377
    Abstract: A thin film chalcogenide photovoltaic device and method for forming the same are disclosed. The thin film chalcogenide photovoltaic device includes a first electrode, a second electrode and an active layer disposed between the first electrode and the second electrode, wherein the active layer includes a p-type chalcogenide semiconductor layer, an n-type inorganic semiconductor layer, and an n-type carbon-containing material layer formed between the p-type chalcogenide semiconductor layer and the n-type inorganic semiconductor layer.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Inventors: Ching Ting, Feng-Yu Yang
  • Publication number: 20130327387
    Abstract: The present disclosure relates to a Se or S based thin film solar cell and a method for fabricating the same, which may improve crystallinity and electric characteristics of an upper transparent electrode layer (6) by controlling a structure of a lower transparent electrode layer (5?) in a thin film solar cell having a Se or S based light absorption layer. In the Se or S based thin film solar cell according to the present disclosure, the front transparent electrode layer comprises a lower transparent electrode layer (5?) and an upper transparent electrode layer (6), and the lower transparent electrode layer (5?) comprises an amorphous oxide-based thin film.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 12, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Won Mok KIM, Jin Soo KIM, Jeung Hyun JEONG, Young Joon BAIK, Jong Keuk PARK
  • Publication number: 20130327398
    Abstract: Improved thin-film photovoltaic devices and methods of manufacturing such devices are described. Embodiments include a substrate-configured thin-film PV device (200) having a photo-absorbing semiconductor layer (230) and a window layer (240). Embodiments include devices having a CdTe photo-absorbing semiconductor layer, a CdS or CdS:In window layer, and an n-p junction residing at or proximate an interface of the photo-absorbing semiconductor and window layers. Variations include methods of manufacture wherein i) O2 is excluded from an ambient environment during deposition of the CdTe layer (102), ii) O2 is included in an ambient environment during CdCl2 treatment (103), iii) O2 is included in an ambient environment during deposition of a CdS or CdS:In layer (104), or iv) a medium-temperature anneal (MTA) having an anneal temperature of 300° C. or less is performed (105) after deposition of the CdS layer.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 12, 2013
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Ramesh Dhere, Joel Duenow, Timothy A. Gessert
  • Patent number: 8603854
    Abstract: Disclosed are methods for preparing a resistive random-access memory (ReRAM) based on resistive switching using a resistance-switchable conductive filler. When a resistance-switchable conductive filler prepared by coating a conductive filler with a material whose resistance is changeable is mixed with a dielectric material, the dielectric material is given the resistive switching characteristics without losing its inherent properties. Therefore, various resistance-switchable materials having various properties can be prepared by mixing the resistance-switchable conductive filler with different dielectric materials. The resulting resistance-switchable material shows resistive switching characteristics comparable to those of the existing metal oxide film-based resistance-switchable materials. Accordingly, a ReRAM device having the inherent properties of a dielectric material can be prepared using the resistance-switchable conductive filler.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: December 10, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Sang-Soo Lee, Woojin Jeon
  • Patent number: 8604336
    Abstract: The present invention provides strategies for providing photovoltaic devices that are more resistant to moisture and/or oxygen degradation and the accompanying migration of key elements such as Na, Li, and the lanthanoid series of elements from the absorber layer and that have enhanced service life and improved performance. These strategies are particularly useful in the fabrication of chalcogenide-based photovoltaic devices such as chalcogenide-based solar cells. These strategies incorporate a barrier region between the photovoltaic absorber region and the front side collection grid. The barrier region keeps moisture and/or oxygen from the absorber layer and contains key elements such as Na, Li, and Ln in the absorber layer. As a result, the absorber layer retains its performance capabilities for an extended period of time.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: December 10, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Rebekah K. Feist, Marty W. DeGroot, Todd R. Bryden, Joseph George
  • Publication number: 20130323878
    Abstract: An ink includes a solution of selenium in ethylene diamine solvent and a solution of at least one metal salt selected from the group consisting of an indium salt or a gallium salt in at least one solvent including an organic amide. The organic amide can include dimethylformamide. The organic amide can include N-methylpyrrolidone.
    Type: Application
    Filed: September 4, 2012
    Publication date: December 5, 2013
    Inventors: Calvin J. Curtis, Peter A. Hersh, Alexander Miedaner, Susan Habas, Meikel van Hest, David S. Ginley
  • Patent number: 8597974
    Abstract: Methods, devices, and systems associated with resistance variable memory device structures are described herein. In one or more embodiments, a method of forming a confined resistance variable memory cell structure includes forming a resistance variable material such that a first unmodified portion of the resistance variable material contacts a bottom electrode and a second unmodified portion of the resistance variable material contacts a top electrode.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: December 3, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Zailong Bian
  • Patent number: 8597975
    Abstract: A method is provided for fabricating a microelectronic device with programmable memory that includes: i) depositing an intermediate layer of a material having a chalcogenide on a first electrode; ii) irradiating the intermediate layer of step i with ultraviolet radiation; iii) depositing an ionizable metallic layer on the intermediate layer obtained in step ii; iv) diffusing the metal ions originating from the ionizable metallic layer of step iii into the intermediate layer to form a chalcogenide material containing metal ions; and v) depositing a second electrode on the layer of chalcogenide material containing metal ions obtained in step iv to form the microelectronic device.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: December 3, 2013
    Assignee: Altis Semiconductor
    Inventor: Faiz Dahmani
  • Patent number: 8597976
    Abstract: The present invention provides multilevel-cell memory structures with multiple memory layer structures where each memory layer structure includes a tungsten oxide region that defines different read current levels for a plurality of logic states. Each memory layer structure can provide two bits of information, which constitutes four logic states, by the use of the tungsten oxide region that provides multilevel-cell function in which the four logic states equate to four different read current levels. A memory structure with two memory layer structures would provide four bits of storage sites and 16 logic states. In one embodiment, each of the first and second memory layer structures includes a tungsten oxide region extending into a principle surface of a tungsten plug member where the outer surface of the tungsten plug is surrounded by a barrier member.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: December 3, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: ChiaHua Ho, Erh-Kun Lai
  • Publication number: 20130316490
    Abstract: A solar cell according to the present invention includes as a light absorption layer a p-type semiconductor layer having a gradient of X/(In+X) ratios in a film thickness direction and containing an Ib group element, In, an element X, and a VIb group element, wherein a ratio C between values of an X/(In+X) ratio A of an uppermost surface of an p-type semiconductor layer and an X/(In+X) ratio B at a depth at which a smallest X/(In+X) ratio in a film is exhibited is represented by Expressions (1) and (2): C=A/B??(1); and 1.1<C<1.8??(2).
    Type: Application
    Filed: December 28, 2011
    Publication date: November 28, 2013
    Applicants: UNIVERSITE DU LUXEMBOURG, TDK CORPORATION
    Inventors: Yasuhiro Aida, Susanne Siebentritt
  • Publication number: 20130316482
    Abstract: Nanoparticles may be formed on a substrate by mixing precursor solutions deposited by an inkjet printer. A first solution is deposited on a substrate from a first inkjet print cartridge. Then, a second solution is deposited on the substrate from a second inkjet print cartridge. The solutions may be printed in an array of droplets on the substrate. Nanoparticles form when droplets of the first solution overlap with droplets of the second solution. In one example, the nanoparticles may be gold nanoparticles formed from mixing a first solution of 1,2-dichlorobenze (DCB) and oleylamine and a second solution of gold chloride trihydrite and dimethyl sulfoxide (DMSO). The nanoparticles may be incorporated into optoelectronic devices.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 28, 2013
    Applicant: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Mutalifu Abulikemu, Ghassan Jabbour
  • Publication number: 20130312831
    Abstract: Techniques for enhancing energy conversion efficiency in chalcogenide-based photovoltaic devices by improved grain structure and film morphology through addition of urea into a liquid-based precursor are provided. In one aspect, a method of forming a chalcogenide film includes the following steps. Metal chalcogenides are contacted in a liquid medium to form a solution or a dispersion, wherein the metal chalcogenides include a Cu chalcogenide, an M1 and an M2 chalcogenide, and wherein M1 and M2 each include an element selected from the group consisting of: Ag, Mn, Mg, Fe, Co, Cd, Ni, Cr, Zn, Sn, In, Ga, Al, and Ge. At least one organic additive is contacted with the metal chalcogenides in the liquid medium. The solution or the dispersion is deposited onto a substrate to form a layer. The layer is annealed at a temperature, pressure and for a duration sufficient to form the chalcogenide film.
    Type: Application
    Filed: June 1, 2012
    Publication date: November 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: David Brian Mitzi, Xiaofeng Qiu
  • Patent number: 8592790
    Abstract: A phase-change random access memory (PCRAM) device includes a semiconductor substrate; switching elements formed on the semiconductor substrate; a plurality of phase-change structures formed on the switching elements; and heat absorption layers buried between the plurality of phase-change structures, wherein the plurality of phase-change structures are insulated from the heat absorption layers.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: November 26, 2013
    Assignee: SK hynix Inc.
    Inventor: Nam Kyun Park
  • Publication number: 20130309806
    Abstract: Provided are a method for manufacturing a light-absorbing layer with excellent flatness of a surface thereof and high density and a method for manufacturing a solar cell using the same. A single target formed of a metallic compound is provided, and a metallic precursor thin film, which is a single layer, is formed on a substrate using the single target. The light-absorbing layer is formed by performing a selenization process on the metallic precursor thin film.
    Type: Application
    Filed: February 1, 2013
    Publication date: November 21, 2013
    Applicant: Electronics and Telecommunications Research Institute
    Inventor: Electronics and Telecommunications Research Institute
  • Publication number: 20130306150
    Abstract: A method for manufacturing a thin-film photovoltaic device includes providing a glass substrate contained sodium species. The glass substrate comprising a surface region and a peripheral edge region surround the surface region. The method further includes forming a barrier material overlying the surface region and partially overlying the peripheral edge region and forming a conductor material overlying the barrier material. Additionally, the method includes forming at least a first trench in a vicinity of the peripheral edge region to remove substantially the conductor material therein and forming precursor materials overlying the patterned conductor material. Furthermore, the method includes thermally treating the precursor materials to transform the precursor materials into a film of photovoltaic absorber. The first trench is configured to maintain the film of photovoltaic absorber substantially free from peeling off the conductor material.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 21, 2013
    Applicant: Stion Corporation
    Inventors: Laila Dounas, Robert D. Wieting, Chester A. Farris, III
  • Patent number: 8585933
    Abstract: This invention relates to methods for making materials using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to methods for making AIGS, AIS or AGS materials by providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang