Roughened Surface Patents (Class 438/964)
  • Patent number: 6855596
    Abstract: A method for manufacturing a trench capacitor includes the step of etching a shallow isolation trench in a two-step process flow. During a first etching step, an etch chemistry based on chlorine or bromine performs a highly selective etch for silicon. During a second step, the etch chemistry is based on SiF4 and O2 which rather equally etches polysilicon and the collar isolation. On top of the wafer, the deposition of silicon oxide on the hard mask predominates and avoids an erosion of the hard mask. On the bottom of the trench the conformal etching of polysilicon and collar isolation predominates. The method provides an economic process flow and is suitable for small feature sizes.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: February 15, 2005
    Assignee: Infineon Technologies AG
    Inventors: Gabriele Fichtl, Jana Haensel, Thomas Metzdorf, Thomas Morgenstern
  • Publication number: 20040222493
    Abstract: The present invention relates to a capacitor element and its manufacturing method. The invention presents a capacitor element comprising a lower electrode, a dielectric film, and an upper electrode, and its manufacturing method, in which the surface of at least one layer of the lower electrode in a single layer structure or laminated structure, for example, the surface of the lower electrode contacting with the dielectric film, is flattened by processing the material itself which composes this surface. For example, it is flattened by filling the recesses at the crystal grain boundary of the surface with the material itself shaved from the surface. As a result, undulations of the surface of the lower electrode of the capacitor element are lessened, and the film thickness of the dielectric film is made uniform, and capacity drop and increase of leak current can be prevented.
    Type: Application
    Filed: October 3, 2002
    Publication date: November 11, 2004
    Inventors: Susumu Sato, Hiroshi Yoshida
  • Patent number: 6815309
    Abstract: Processes that may be used in producing electronic, opotoelectronic, or optical components may be provided. The processes may involve preparing a reusable donor wafer for donating a thin layer of semiconductor material by assembling a donor layer of a semiconductor material having a thickness of plural thin layers onto a support layer of. The semiconductor material for the support layer may be selected to be less precious or to have a lower quality than the donor layer. The support layer may have sufficient mechanical characteristics for supporting the donor layer during desired semiconductor processing treatments.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 9, 2004
    Assignee: S.O.I.TEC Silicon on Insulator Technologies S.A.
    Inventors: Fabrice Letertre, Thibaut Maurice
  • Patent number: 6808983
    Abstract: A storage capacitor plate for a semiconductor assembly comprising a substantially continuous porous conductive storage plate comprising silicon nanocrystals residing along a surface of a conductive material and along a surface of a coplanar insulative material adjacent the conductive material, a capacitor cell dielectric overlying the silicon nanocrystals and an overlying conductive top plate. The conductive storage plate is formed by a semiconductor fabrication method comprising forming silicon nanocrystals on a surface of a conductive material and on a surface of an insulative material adjacent the conductive material, wherein silicon nanocrystals contain conductive impurities and are adjoined to formed a substantially continuous porous conductive layer.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: October 26, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Christopher W. Hill
  • Publication number: 20040198064
    Abstract: A process cycles between etching and passivating chemistries to create rough sidewalls that are converted into small structures. In one embodiment, a mask is used to define lines in a single crystal silicon wafer. The process creates ripples on sidewalls of the lines corresponding to the cycles. The lines are oxidized in one embodiment to form a silicon wire corresponding to each ripple. The oxide is removed in a further embodiment to form structures ranging from micro sharp tips to photonic arrays of wires. Fluidic channels are formed by oxidizing adjacent rippled sidewalls. The same mask is also used to form other structures for MEMS devices.
    Type: Application
    Filed: June 26, 2003
    Publication date: October 7, 2004
    Inventors: Kanakasabapathi Subramanian, Noel C. MacDonald
  • Patent number: 6790779
    Abstract: A method for creating deep features in a Si-containing substrate for use in fabricating MEMS type devices is provided. The method includes first forming a thin Ni hardmask on a surface of a Si-containing substrate. The Ni hardmask is patterned using conventional photolithography and wet etching so as to expose at least one portion of the underlying Si-containing substrate. The at least one exposed portion of the Si-containing substrate, not containing the patterned hardmask, is then etched in a plasma that includes free radicals generated from a gaseous mixture of chlorine (Cl2), sulfur hexafluoride (SF6) and oxygen (O2). The interaction of the gas species in the plasma yields a rapid silicon etch rate that is highly selective to the Ni hardmask. The etch rate ratio of Si to Ni using the inventive method is greater than 250:1.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: September 14, 2004
    Assignee: Lockheed Martin Corporation
    Inventors: James H. Schermerhorn, Matthew C. Nielsen, Richard J. Saia, Jeffrey B. Fortin
  • Patent number: 6774040
    Abstract: A method of treating a silicon surface of a substrate that includes heating the substrate in a process chamber to a temperature, exposing a first area adjacent to the silicon surface to a first gas mixture comprising an etchant, a silicon source gas, and a carrier, exposing a second area adjacent to the silicon surface to a second gas mixture, wherein the second gas mixture is different from the first gas mixture.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: August 10, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Paul B. Comita, Karin Anna Lena Thilderkvist, Lance Scudder
  • Patent number: 6756267
    Abstract: A method of manufacturing a semiconductor device is provided. A polysilicon film and a rough-surfaced polysilicon film are formed on inter-layer insulating film including side and bottom surfaces of openings formed in inter-layer insulating film. A photoresist is formed on the rough-surfaced polysilicon film. The photoresist, the rough-surfaced polysilicon film and the polysilicon film that are located on the top surface of inter-layer insulating film are removed by the CMP method. The polysilicon film and rough-surfaced polysilicon film are etched in a predetermined atmosphere to make the position of the top end of storage nodes lower than the top surface of inter-layer insulating film.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: June 29, 2004
    Assignee: Renesas Technology, Inc.
    Inventors: Masahiro Shimizu, Takashi Miyajima, Toshinori Morihara
  • Patent number: 6709947
    Abstract: A method and structure for increasing the area and capacitance of both trench and planar integrated circuit capacitors uses Si nodules deposited on a thin dielectric seeding layer that is absorbed during subsequent thermal processing, thereby avoiding a high resistance layer in the capacitor.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: March 23, 2004
    Assignees: International Business Machines Corporation, Infineon Technologies AG
    Inventors: Porshia S. Wrschka, Irene McStay
  • Publication number: 20040048466
    Abstract: The present invention discloses a method and apparatus for producing high surface area material films and membranes on substrates. In one application, patterns of spikes or bristles are produced on wafers and transferred to films, such as conductive polymer or metal films, by using repetitive and inexpensive processes, such as electroplating and embossing. Such a technique provides low cost, high surface area materials and allows reuse of expensive patterned silicon. Membranes with high surface area are extremely valuable in fuel cells since the power density is generally proportional to the surface area and the patterns may be used to cast inexpensive fuel cell electrodes.
    Type: Application
    Filed: September 6, 2002
    Publication date: March 11, 2004
    Inventors: Makarand P. Gore, John Stephen Dunfield
  • Patent number: 6699752
    Abstract: The present invention provides methods of forming in situ doped rugged silicon and semiconductor devices incorporating conductive rugged silicon. In one aspect, the methods involve forming a layer of amorphous silicon on a substrate at a substantially constant deposition temperature; and converting the layer of amorphous silicon into hemispherical grain silicon by subjecting the layer of amorphous silicon to substantially the deposition temperature while varying pressure.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: March 2, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Er-Xuan Ping, Randhir Thakur
  • Patent number: 6699745
    Abstract: A rugged polysilicon electrode for a capacitor has high surface area enhancement with a thin layer by high nucleation density plus gas phase doping which also enhances grain shape and oxygen-free dielectric formation.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: March 2, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Aditi Banerjee, Rick L. Wise, Darius L. Crenshaw
  • Patent number: 6686225
    Abstract: Methods are disclosed for manufacturing semiconductor device dies and for separating dies from a semiconductor wafer, wherein one or more channels are etched in the top of the wafer between individual die areas. Material is then removed from the bottom side of the wafer in order to separate the individual dies. Methods are also disclosed for removing material from the bottom side of the wafer dies, wherein a contoured surface is provided on the die bottom, such as through an etching process. In addition, methods are disclosed for removing material from the bottom side of a wafer, and for securing a semiconductor device to a surface. Semiconductor wafers and dies are also disclosed having contoured bottom surfaces.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: February 3, 2004
    Assignee: Texas Instruments Incorporated
    Inventor: Kurt P. Wachtler
  • Patent number: 6673673
    Abstract: An apparatus and method for forming a HSG silicon layer on a capacitor lower electrode of a semiconductor memory device. The apparatus includes a processing chamber having a plurality of source gas supply nozzles, the lengths of the nozzles being different from one another so as to uniformly supply a source gas. A loadlock chamber is placed under the processing chamber. A boat loaded with wafers is moved from the loadlock chamber to the processing chamber, with the boat being rotated while the source gas is supplied. The processing chamber and loadlock chambers are connected to a vacuum system having two vacuum pumps for maintaining a vacuum in the chambers. A third vacuum pump, connected to the processing chamber, is operated when the vacuum in the processing chamber reaches a predetermined value.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: January 6, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-jip Yang, Chan-hee Han, Young-kyou Park, Jae-wook Kim
  • Patent number: 6649440
    Abstract: A light-emitting diode (LED) and a method of making the device utilize a thick multi-layered epitaxial structure that increases the light extraction efficiency of the device. The LED is an aluminum-gallium-indium-nitride (AlGaInN)-based LED. The thick multi-layered epitaxial structure increases the light extraction efficiency of the device by increasing the amount of emitted light that escapes the device through the sides of the thick multi-layered epitaxial structure. The LED includes a substrate, a buffer layer, and the thick multi-layered epitaxial structure. In the preferred embodiment, the substrate is a sapphire substrate having a textured surface. The textured surface of the substrate randomized light impinges the textured surface, so that an increased amount of emitted light may escape the LED as output light. The multi-layered epitaxial structure includes an upper AlGaInN region, an active region, and a lower AlGaInN region.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: November 18, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Michael Ragan Krames, Paul Scott Martin, Tun Sein Tan
  • Patent number: 6649478
    Abstract: A semiconductor device including an N-type semiconductor substrate which includes arsenic as an impurity, a first electrode formed on a main surface of the N-type semiconductor substrate, a ground surface formed on another surface of the N-type semiconductor substrate, a second electrode formed on the ground surface and ohmically-contacted with the N-type semiconductor substrate, a semiconductor element formed in the N-type semiconductor substrate and flowing current between the first electrode and the second electrode during ON-state thereof. The device has a reduced ON-resistance thereof.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: November 18, 2003
    Assignee: Denso Corporation
    Inventors: Yoshifumi Okabe, Masami Yamaoka, Akira Kuroyanagi
  • Patent number: 6624069
    Abstract: Methods of forming integrated circuit capacitors include the steps of forming a lower electrode of a capacitor by forming a conductive layer pattern (e.g., silicon layer) on a semiconductor substrate and then forming a hemispherical grain (HSG) silicon surface layer of first conductivity type on the conductive layer pattern. The inclusion of a HSG silicon surface layer on an outer surface of the conductive layer pattern increases the effective surface area of the lower electrode for a given lateral dimension. The HSG silicon surface layer is also preferably sufficiently doped with first conductivity type dopants (e.g., N-type) to minimize the size of any depletion layer which may be formed in the lower electrode when the capacitor is reverse biased and thereby improve the capacitor's characteristic Cmin/Cmax ratio. A diffusion barrier layer (e.g., silicon nitride) is also formed on the lower electrode and then a dielectric layer is formed on the diffusion barrier layer.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: September 23, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Hwan Lee, Sang-Hyeop Lee, Young-Sun Kim, Se-Jin Shim, You-Chan Jin, Ju-Tae Moon, Jin-Seok Choi, Young-Min Kim, Kyung-Hoon Kim, Kab-Jin Nam, Young-Wook Park, Seok-Jun Won, Young-Dae Kim
  • Patent number: 6620675
    Abstract: Disclosed is a method of increasing the capacitance of a trench capacitor by increasing sidewall area, comprising: forming a trench in a silicon substrate, the trench having a sidewall; forming islands on the sidewall of the trench; and etching pits into the sidewall using the islands as a mask. The capacitor is completed by forming a node insulator on the pits and the sidewall; and filling said trench with a trench conductor.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: September 16, 2003
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, William H. Ma
  • Publication number: 20030162409
    Abstract: A method for utilizing a rough insulator to enhance metal-insulator-semiconductor reliability is provided. The method includes steps of: (a) providing a semiconductor substrate; (b) prebaking the semiconductor substrate under a relatively high vacuum to form a rough surface on the semiconductor substrate; and (c) growing an insulator on the semiconductor substrate to form a rough insulator and increase the metal-insulator-semiconductor reliability when the insulator is applied.
    Type: Application
    Filed: April 15, 2002
    Publication date: August 28, 2003
    Applicant: National Taiwan University
    Inventors: Chee-Wee Liu, Fon Yuan, Chung-Hsun Lin
  • Patent number: 6608343
    Abstract: A technique for forming a high surface area electrode or storage node for a capacitor and devices formed thereby, including depositing a first layer of conductive material on a substrate, such that a discontinuous layer is formed. A second conductive material layer is deposited over the discontinuous first conductive material layer, such that the second conductive material layer grows or accumulates on the discontinuous first conductive material layer at a faster rate than on the exposed areas of the substrate in the discontinuous first conductive material layer to form a rough conductive material layer.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: August 19, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Gurtej S. Sandhu
  • Patent number: 6605520
    Abstract: A method of forming a silicon-germanium (SiGe) film for a gate electrode. In a metal gate manufacture process, as the content of germanium (Ge) is increased, the surface roughness of the silicon-germanium (SiGe) film is increased, which makes difficult to secure an acceptable electrical characteristic as well as a set-up. In order to solve these problems, a method includes the spraying with a high density silicon micro-crystallite capable of increasing the nucleus creation efficiency on a gate oxide using a plasma or a tungsten (W) filament before depositing a silicon-germanium (SiGe) film. Thus, as micro-crystalline grains are formed during a preliminary stage of the silicon-germanium (SiGe) film deposition, a silicon-germanium (SiGe) film can be deposited with a reduced surface roughness.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: August 12, 2003
    Assignee: Hynix Semiconductor Inc
    Inventor: Woo Seock Cheong
  • Patent number: 6602762
    Abstract: A laser sintering system is provided for sintering a die having a serrate edge. The laser sintering system comprises a laser generator for generating a laser beam and a movable carriage for carrying said die. The laser beam sinters the serrate edge of said die into a smooth edge. A method of sintering a die, the die having a serrate edge, comprises the following steps of providing a die and using a laser beam sintering the serrate edge of said die into a smooth edge. A die has a smooth edge sintered by a laser beam.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: August 5, 2003
    Assignee: Chipbond Technology Corporation
    Inventors: Lu-Chen Hwan, Dang-Cheng Yiu
  • Patent number: 6583022
    Abstract: In one aspect, the invention includes a method of forming a roughened layer of platinum, comprising: a) providing a substrate within a reaction chamber; b) flowing an oxidizing gas into the reaction chamber; c) flowing a platinum precursor into the reaction chamber and depositing platinum from the platinum precursor over the substrate in the presence of the oxidizing gas; and d) maintaining a temperature within the reaction chamber at from about 0° C. to less than 300° C. during the depositing. In another aspect, the invention includes a platinum-containing material, comprising: a) a substrate; and b) a roughened platinum layer over the substrate, the roughened platinum layer having a continuous surface characterized by columnar pedestals having heights greater than or equal to about one-third of a total thickness of the platinum layer.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: June 24, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Eugene P. Marsh
  • Patent number: 6562684
    Abstract: The invention encompasses a method of forming a dielectric material. A nitrogen-comprising layer is formed on at least some of the surface of a rugged polysilicon substrate to form a first portion of a dielectric material. After the nitrogen-comprising layer is formed, at least some of the substrate is subjected to dry oxidation with one or both of NO and N2O to form a second portion of the dielectric material. The invention also encompasses a method of forming a capacitor. A layer of rugged silicon is formed over a substrate, and a nitrogen-comprising layer is formed on the layer of rugged silicon. Some of the rugged silicon is exposed through the nitrogen-comprising layer. After the nitrogen-comprising layer is formed, at least some of the exposed rugged silicon is subjected to dry oxidation conditions with one or both of NO and N2O. Subsequently, a conductive material layer is formed over the nitrogen-comprising layer. Additionally, the invention encompasses a capacitor structure.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: May 13, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Behnam Moradi, Er-Xuan Ping, Lingyi A. Zheng, John Packard
  • Patent number: 6559002
    Abstract: In a process for making a DT DRAM structure, the improvement of providing a surface area enhanced DT below the collar region and node capacitance that does not shrink with decreasing groundrule/cell size, comprising: a) providing a semiconductor substrate having a collar region and an adjacent region below the collar region, the collar region having SiO deposited thereon; b) depositing a SiN liner on said collar region and on the region below the collar; c) depositing a layer of a-Si on the SiN liner to form a micromask; d) subjecting the structure from step c) to an anneal/oxidation step under a wet environment at a sufficient temperature to form a plurality of oxide dot hardmasks; e) subjecting the SiN liner to an etch selective to SiO; f) subjecting the structure from step e) to a Si transfer etch using a chemical dry etch (CDE) selective to SiO to create rough Si surface; g) stripping SiO and the SiN; and forming a node and collar deposition.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: May 6, 2003
    Assignee: Infineon Technologies North America Corp.
    Inventors: Stephan Kudelka, Helmut Horst Tews, Stephen Rahn, Irene McStay, Uwe Schroeder
  • Patent number: 6555430
    Abstract: Methods forming a trench region of a trench capacitor structure having increase surface area are provided. One method includes the steps of forming a discontinuous polysilicon layer on exposed walls of a lower trench region, the discontinuous polysilicon layer having gaps therein which expose portions of said substrate; oxidizing the lower trench region such that the exposed portions of said substrate provided by the gaps in the discontinuous polysilicon layer are oxidized into oxide material which forms a smooth and wavy layer with the discontinuous polysilicon layer; and etching said oxide material so as to form smooth hemispherical grooves on the walls of the trench region.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: April 29, 2003
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Chudzik, Johnathan Faltermeier, Rajarao Jammy, Stephan Kudelka, Irene McStay, Kenneth T. Settlemyer, Jr., Helmut Horst Tews
  • Patent number: 6541352
    Abstract: Methods are disclosed for manufacturing semiconductor device dies and for removing material from the bottom side of the wafer dies, wherein a contoured surface is provided on the die bottom, such as through an etching process. In addition, methods are disclosed for securing a semiconductor device to a surface. Semiconductor wafers and die are also disclosed having contoured bottom surfaces.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: April 1, 2003
    Assignee: Texas Instruments Incorporated
    Inventor: Kurt P. Wachtler
  • Patent number: 6537876
    Abstract: A method of manufacturing a semiconductor device having a hemispherical grain (HSG) layer employs a dry cleaning process. A polysilicon layer is formed on a specific material layer on a semiconductor substrate. Next, a polysilicon pattern, at least a portion of which is exposed, is formed by etching the polysilicon layer. The exposed surface of the polysilicon pattern is then dry cleaned by supplying hydrogen in a plasma state and a fluorine-based gas toward the exposed surface. The exposed surface of the polysilicon pattern may also be wet cleaned before being dry cleaned to wash away pollutants which may have been left thereon. An HSG layer is then formed on the cleaned surface of the polysilicon pattern. After the HSG layer is formed, the surface of the HSG layer may be dry cleaned again by supplying hydrogen in a plasma state and a fluorine-based gas toward the surface of the HSG layer. The surface of the HSG layer may also be further wet cleaned before being dry cleaned.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: March 25, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-pil Chung, Kyu-hwan Chang, Young-min Kwon, Sang-lock Hah
  • Patent number: 6521507
    Abstract: A polysilicon film is formed with enhanced selectivity by flowing chlorine during the formation of the film. The chlorine acts as an etchant to insulative areas adjacent polysilicon structures on which the film is desired to be formed. Bottom electrodes for capacitors are formed using this process, followed by an anneal to create hemishperical grain (HSG) polysilicon. Multilayer capacitor containers are formed in a non-oxidizing ambient so that no oxide is formed between the layers. The structure formed is planarized to form separate containers made from doped and undoped amorphous silicon layers. Selected ones of undoped layers are seeded in a chlorine containing environment and annealed to form HSG. A dielectric layer and second electrode are formed to complete the cell capacitor.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: February 18, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Randhir P. S. Thakur, James Pan
  • Patent number: 6514800
    Abstract: In a method of manufacturing a thin-film transistor, when channel etching for removing predetermined portions of an ohmic layer and a diffusion layer thereof by plasma etching is to be performed, a surface of a semiconductor layer of a channel portion is formed to have predetermined steps.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: February 4, 2003
    Assignee: NEC Corporation
    Inventor: Shingo Saigo
  • Patent number: 6512261
    Abstract: A method of producing a semiconductor memory having a memory cell structure in which a storage node, which consists of a capacitor electrode film having a rugged surface formed inside holes of an interlayer insulating film that is deposited on a substrate, constitutes a capacitor together with a cell plate through a dielectric film.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: January 28, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Akinori Kinugasa
  • Patent number: 6509227
    Abstract: The present invention provides methods of forming in situ doped rugged silicon and semiconductor devices incorporating conductive rugged silicon. In one aspect, the methods involve forming a layer of doped amorphous silicon on a substrate at a substantially constant deposition temperature; and converting the amorphous silicon layer into hemispherical grain silicon by annealing the amorphous silicon layer at substantially the deposition temperature while varying pressure. In another aspect, the methods involve forming a discontinuous first layer of doped silicon on a substrate; forming a second layer of amorphous silicon on the first layer of doped silicon and the substrate not covered by the first layer of doped silicon; and annealing the first and second layers. In yet another aspect, the methods involve forming a discontinuous first layer of silicon on a substrate and forming a second conformal layer of doped amorphous silicon on the first layer of doped silicon.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: January 21, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Er-Xuan Ping, Randhir Thakur
  • Publication number: 20020190343
    Abstract: Both a non-volatile memory (NVM) and a dynamic nanocrystal memory (DNM) are integrated on a semiconductor substrate. Control gates and control dielectrics with embedded nanocrystals or discrete storage elements are formed over differing thicknesses of tunnel dielectrics to form the two memories. Source and drain regions are formed within the semiconductor substrate adjacent to the tunnel dielectrics. Various methods can be used to form a thin tunnel oxide and a thick tunnel oxide by adding minimum processing steps.
    Type: Application
    Filed: June 15, 2001
    Publication date: December 19, 2002
    Inventors: Robert E. Jones, Bruce E. White
  • Publication number: 20020192851
    Abstract: A fabricating method of a thin film transistor substrate according to the present invention includes the steps of forming on a substrate material a thin film transistor array including a plurality of signal lines; forming an organic insulating film on the substrate material on which the thin film transistor array has formed; patterning the organic insulating film; performing a surface treatment on a surface of the organic insulating film using helium plasma; and forming a transparent electrode layer on the organic insulating film.
    Type: Application
    Filed: April 3, 2002
    Publication date: December 19, 2002
    Applicant: LG. Philips LCD Co., Ltd.
    Inventor: Byung Yong Ahn
  • Patent number: 6495411
    Abstract: A method for fabricating deep-submicron DRAMs containing a deep trench capacitor with enlarged sidewall surface for improved storage capacitance. It includes the main steps of: (a) forming a silicon substrate having a (110) crystalline plane and a (111) crystalline plane; (b) forming a vertically extending deep trench into a crystalline silicon substrate; (c) filling the deep trench with a first dielectric material to form a first dielectric filler layer; (d) etching back the first dielectric filler layer to a first depth; (e) forming a dielectric collar from a second dielectric material which hangs on the sidewall of the deep trench extending from the opening of the trench to the first depth; (f) removing the first dielectric filler layer with a selective etching process; and (g) under a carefully timed exposure, using an isotropic etching solution which has high etching rate in the (110) plane and low etching rate in the (111) plane to form a roughened surface on the bottom surface of the deep trench.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: December 17, 2002
    Assignees: ProMos Technology Inc., Mosel Vitelic Inc., Siemens AG
    Inventor: Len Mei
  • Patent number: 6489241
    Abstract: A method of smoothing a silicon surface formed on a substrate. According to the present invention a substrate having a silicon surface is placed into a chamber and heated to a temperature of between 1000°-1300° C. While the substrate is heated to a temperature between 1000°-1300° C., the silicon surface is exposed to a gas mix comprising H2 and HCl in the chamber to smooth the silicon surface.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: December 3, 2002
    Assignees: Applied Materials, Inc., Silicon Genesis Corporation
    Inventors: Anna Lena Thilderkvist, Paul Comita, Lance Scudder, Norma Riley
  • Patent number: 6475931
    Abstract: A method for achieving improved piezoelectric films for use in a resonator device is disclosed. The method is based on applicant's recognition that the texture of a piezoelectric film (e.g., as used in a piezoelectric resonator) is directly affected by the surface morphology of the underlying electrode, and additionally, the surface morphology of the electrode is affected by the surface morphology of the underlying oxide layer or Bragg stack. Accordingly, the invention includes a method of making a device having a piezoelectric film and electrode including controlling the deposition and surface roughness of the electrode and optionally, the Bragg stack.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: November 5, 2002
    Assignee: Agere Systems Inc.
    Inventors: John Eric Bower, John Z. Pastalan, George E. Rittenhouse
  • Patent number: 6472335
    Abstract: The present invention provides a method improving the adhesion between inter metal dielectric (IMD) layers by performing a HF dip etch to treat the surface of an oxide, silicon nitride or Silicon oxynitride insulating layer before an overlying low-K layer is formed. The present invention provides a method of fabricating a low-K IMD layer 20 over an oxide, Silicon oxynitride (SiON), or nitride IMD layer 14 with improved adhesion. First, a 1st inter metal dielectric (IMD) layer 14 is formed over a substrate. Next, the invention's novel HF dip etch is performed on the 1st IMD layer 14 to form a treated surface 16. Next, a 2nd BMD layer composed of a low-K material is formed over the rough surface 16 of the 1st IMD layer 14. The treated surface 16 improves the adhesion between a 1st IMD layer oxide (oxide, SiN or SiON) and a low k layer. Subsequent photoresist strip steps do not cause the 1st IMI layer 14 and the 2nd IMD layer 20 (low-K dielectric) to peel.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: October 29, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chia-Shiung Tsai, Yao-Yi Cheng, Hun-Jan Tao
  • Patent number: 6468859
    Abstract: A stress buffer and dopant barrier in the form of a TetraEthylOrthoSilicate (TEOS) film is deposited after the capacitor cell plate has been etched and cleaned to thereby eliminate electrical shorts from the bit line to the cell plate.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: October 22, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Kunal R. Parekh, Charles H. Dennison, Jeffrey W. Honeycutt
  • Patent number: 6465301
    Abstract: A method for fabricating a capacitor of a semiconductor device, includes providing a semiconductor substrate, forming a polysilicon layer pattern on the semiconductor substrate, forming a first HSG structure on an inner surface of the polysilicon layer pattern, forming a second HSG structure on the first HSG structure and an outer surface of the polysilicon layer pattern to produce a lower electrode of the capacitor, forming a dielectric film on the second HSG structure, and forming an upper electrode on the dielectric film.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: October 15, 2002
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yeon Woo Cheong
  • Patent number: 6455369
    Abstract: A method for fabricating a trench capacitor, that includes steps of: providing a silicon substrate; forming a trench, having a lower region and a surface, in the silicon substrate; and forming a doped layer in the silicon substrate in the lower region of the trench. In addition, a roughened silicon layer that has silicon grains with a diameter ranging from essentially 10 to 100 nm is produced in the lower region of the trench. A dielectric intermediate layer is applied on the roughened silicon layer, and the trench is filled with a doped layer.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: September 24, 2002
    Assignee: Infineon Technologies AG
    Inventors: Matthias Förster, Jörn Lützen, Martin Gutsche, Anja Morgenschweis
  • Patent number: 6448184
    Abstract: Rough, conductive diamond film regions are formed on a substrate for establishing electrical contact with a surface mount semiconductor package, or the like. The substrate base is heated in a diamond film gas phase deposition reactor. Molecular hydrogen, a carbon-bearing gas and a dopant source are introduced into the reactor at a temperature conducive to producing a conductive polycrystalline diamond film with sharp facets extending from the film. The diamond film is patterned by etching to remove regions where no electrical contact with the surface mount package is desired.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: September 10, 2002
    Assignees: Pacific Western Systems, SP
    Inventors: Jerry W. Zimmer, Daniel A. Worsham
  • Patent number: 6448131
    Abstract: A method for increasing the trench capacitor surface area is provided. The method, which utilizes a metal silicide to roughen the trench walls, increases capacitance due to the increase in the trench surface area after the silicide has been removed. The roughening of the trench walls can be controlled by varying one or more of the following parameters: the density of the metal, the metal film thickness, the silicide phase, and the choice of the metal. Once the metal is deposited in the trench, the method is self-limited. Shrinking the trench to its original width can be obtained by subsequent silicon deposition or by diffusion of silicon from a cap layer through the silicide.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: September 10, 2002
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Kevin K. Chan, Guy M. Cohen, Ramachandra Divakaruni, Christian Lavoie, Fenton R. McFeely
  • Patent number: 6444482
    Abstract: Methods for monitoring power supplied to a substrate to form a doped or undoped crystalline semiconductor material are disclosed. The methods include providing a layer of an amorphous semiconductor material, doped or undoped, on a substrate and heating the substrate while monitoring the power applied to a heating element to heat the substrate so as to maintain a desired temperature. A decrease in the power supplied to the substrate is indicative of a conversion of the amorphous semiconductor material to a crystalline form thereof, at which time the power supplied to the heating element is terminated. By selecting the degree of crystallinity of the layer of doped or undoped amorphous semiconductor material on a substrate, the grain size of the resulting crystalline material can be controlled.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: September 3, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Avishai Kepten, Michael Sendler
  • Patent number: 6432772
    Abstract: An isolation layer is formed on a substrate of a semiconductor wafer. At least one recess is formed in the isolation layer by way of a photo-etching-process. A two stage in-situ doped deposition process is then performed to form a first doped amorphous silicon (&agr;-Si) layer and a second doped amorphous silicon (&agr;-Si) layer doping concentration of the second doped amorphous silicon (&agr;-Si) layer being less than that of the first doped amorphous silicon layer. A dielectric layer is formed to fill the recess, and a planarization process removes portions of the second doped amorphous silicon layer, the first doped amorphous silicon layer and the dielectric layer on the surface of the isolation layer. Finally, the dielectric layer and the isolation layer are removed, and a hemi-spherical grain (HSG) process is performed to form a rough surface with a plurality of hemi-spherical grains on the surface of the second doped amorphous silicon layer.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: August 13, 2002
    Assignee: United Microelectronics Corp.
    Inventors: King-Lung Wu, Kun-Chi Lin
  • Publication number: 20020106894
    Abstract: An HSG-Si layer is formed on a wafer under a uniform temperature condition. An apparatus for forming the HSG-Si layer includes a housing forming a process chamber, a first heater on which the wafer is positioned fixed in place at the bottom of the process chamber, a second heater at the top of the process chamber, and a thermal insulator which prevents the heat generated by the first heater from being transferred to the outside of the process chamber. A temperature control system regulates the temperature of the heaters. A method of forming the HSG layer includes steps of placing the wafer on the first heater, using the heaters to remove moisture from the wafer, injecting a source gas of the HSG-Si toward the upper surface of the wafer to form amorphous silicon on the wafer, and annealing the wafer for a predetermined period of time to transform the amorphous silicon into an HSG-Si layer.
    Type: Application
    Filed: March 28, 2002
    Publication date: August 8, 2002
    Inventor: Jong Young Yun
  • Patent number: 6429071
    Abstract: Disclosed is a method of increasing capacitance of a memory cell capacitor. A bottom electrode, comprising a hemispherical grained (HSG) silicon layer, is subjected to a dry etch process. The etch tends to separate the individual grains of the HSG silicon, thereby facilitating formation of a uniformly thick capacitor dielectric over the HSG silicon surface. Average thickness of the dielectric may therefore be reduced while maintaining reliability of the memory cell. The described embodiments include HCl/HF vapor etch, and NF3 plasma etch. Both of the preferred embodiments are configured to operate isotropically. Due to precisely controllable etch rates, the dry etch of the present invention is viable for separating grains of HSG silicon layers incorporated into extremely dense circuits (e.g., 64 Mbit DRAM) and correspondingly scaled down circuit dimensions.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: August 6, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Sujit Sharan, Thomas A. Figura, Anand Srinivasan, Gurtej S. Sandhu
  • Patent number: 6426527
    Abstract: In a semiconductor memory having a number of stacked capacitor memory cells each having a cylindrical lower electrode which is in the form of a cylinder having an open top and a closed bottom, an upper end of a partition, which is formed of an insulating material between adjacent cylindrical lower electrodes, has an sharpened tip end and an inclined surface descending from the sharpened tip end toward each adjacent cylindrical lower electrode. With this arrangement, it is possible to prevent silicon grains of a hemi-spherical grain silicon from nidating on the partition, thereby prevent a short-circuiting between the adjacent cylindrical lower electrodes, without reducing the capacitance of the memory cell.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: July 30, 2002
    Assignee: NEC Corporation
    Inventor: Tomohiko Higashino
  • Patent number: 6423650
    Abstract: In one embodiment, the present invention relates to a method of processing a semiconductor substrate, involving the steps of providing the semiconductor substrate having an upper surface; roughening the upper surface of the semiconductor substrate so that the upper surface of the semiconductor substrate has an Rtm of about 10 Å or more; and depositing an ultra-thin photoresist on the upper surface of the semiconductor substrate, the ultra-thin photoresist having a thickness of about 2,000 Å or less.
    Type: Grant
    Filed: August 9, 1999
    Date of Patent: July 23, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Marina V. Plat, Christopher F. Lyons, Michael K. Templeton, Bhanwar Singh
  • Patent number: 6414369
    Abstract: A thin film capacitor is provided with a thin film protection element to protect the capacitor from damage that can result due to the occurrence of an electrostatic discharge event. The thin film capacitor includes two conductive film portions forming capacitor plates and a dielectric film forming the capacitor dielectric. The protection element may take the form of a thin film diode or a series of thin film diodes connected electrically in parallel with the thin film capacitor. The whole device can be fabricated using a stoichiometric silicon nitride layer to produce the capacitor dielectric and a non-stoichiometric silicon rich silicon nitride layer to provide the diode semiconductor material. One diode is formed by one capacitor plate, the semiconductor layer and an upper diode contact.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: July 2, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Stephen J. Battersby, Darren T. Murley, John M. Shannon