Contact Formation (i.e., Metallization) Patents (Class 438/98)
  • Patent number: 12159759
    Abstract: A photoelectric conversion element including: first support; first electrode; electron-transporting layer; photoelectric conversion layer; hole-transporting layer; and second electrode, the hole-transporting layer including polymer including recurring unit of General Formula (1) below and compound of General Formula (2): where Ar1 represents aromatic hydrocarbon, which may have substituent; Ar2 and Ar3 each independently represent bivalent group of monocyclic aromatic hydrocarbon, non-condensed polycyclic aromatic hydrocarbon, or condensed polycyclic aromatic hydrocarbon, which may have substituent; Ar4 represents bivalent group of benzene, thiophene, biphenyl, anthracene, or naphthalene, which may have substituent; R1 to R4 each independently represent hydrogen, alkyl, or aryl; and n represents integer that is 2 or more and allows the polymer of General Formula (1) to have weight average molecular weight of 2,000 or more; and where R5 to R9, which may be identical or different, represent hydr
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: December 3, 2024
    Assignee: Ricoh Company, Ltd.
    Inventors: Tamotsu Horiuchi, Nozomu Tamoto, Yuuji Tanaka, Naomichi Kanei, Takahiro Ide
  • Patent number: 12148856
    Abstract: A solar cell, a manufacturing method therefor, and a photovoltaic module are provided. The solar cell includes a substrate having a front surface and a rear surface, a passivation stack disposed on the front surface, and a tunneling oxide layer and a doped conductive layer disposed on the rear surface. The passivation stack includes an oxygen-containing dielectric layer, a first passivation layer and a second passivation layer. The first passivation layer includes a first interface adjacent to the oxygen-containing dielectric layer and a second interface adjacent to the second passivation layer, the second passivation layer includes a third interface opposite to the second interface, a nitrogen content and a silicon content at the second interface are higher than those at the first interface and the third interface, respectively, and an oxygen content at the second interface is lower than that at the first interface and the third interface, respectively.
    Type: Grant
    Filed: October 2, 2021
    Date of Patent: November 19, 2024
    Assignees: Shanghai Jinko Green Energy Enterprise Management Co., Ltd., Zhejiang Jinko Solar Co., Ltd.
    Inventors: Jialei Chai, Ding Yu, Shijie Zhao, Xiaowen Zhang, Wenqi Li, Jie Yang, Xinyu Zhang, Hao Jin
  • Patent number: 12119218
    Abstract: A method for protecting a surface of a substrate during processing includes a) providing a solution forming a co-polymer having a ceiling temperature; b) dispensing the solution onto a surface of the substrate to form a sacrificial protective layer, wherein the co-polymer is kinetically trapped to allow storage at a temperature above the ceiling temperature; c) exposing the substrate to ambient conditions for a predetermined period; and d) de-polymerizing the sacrificial protective layer by using stimuli selected from a group consisting of ultraviolet (UV) light and heat.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: October 15, 2024
    Assignee: Lam Research Corporation
    Inventors: Stephen M. Sirard, Ratchana Limary, Yang Pan, Diane Hymes
  • Patent number: 12089485
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: September 10, 2024
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Vivek V. Dhas
  • Patent number: 12048161
    Abstract: A method for manufacturing an electronic device includes forming a first source layer including a trench, forming a first sacrificial layer in the trench, forming a first structure over the first source layer, wherein the first structure includes first material layers and second material layers which are alternately stacked over the each other, forming first openings passing through the first structure and extending to the first sacrificial layer, forming first channel layers in the first openings, forming a slit passing through the first structure and extending to the first sacrificial layer, forming a second opening by removing the first sacrificial layer through the slit, and forming a second source layer in the second opening, wherein the second source layer is coupled to the first channel layers.
    Type: Grant
    Filed: May 17, 2023
    Date of Patent: July 23, 2024
    Assignee: SK hynix Inc.
    Inventors: Ki Hong Lee, Ji Yeon Baek, Seung Ho Pyi
  • Patent number: 11973162
    Abstract: A manufacturing method for a flexible silicon-based cell module is provided. Specifically, cell units of a silicon-based solar cell structure are arranged and adhered to a connecting strip to form a cell string, wherein a gap is left between two adjacent cell units. The cell units in cell strings are connected in series and parallel by an interconnected bar, wherein a gap is left between two adjacent cell strings. Hard protection units adapted to the size and specification of the cell units are respectively attached to the cell units. A plurality of cell strings are connected to each other in series and parallel to form a cell assembly. A panel made of flexible material is selected to package the cell assembly to form the flexible cell module. The cell module has an excellent rollable performance and a flexible expansion, a light weight, and a small size.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: April 30, 2024
    Assignee: GOLDEN SOLAR (QUANZHOU) NEW ENERGY TECHNOLOGY CO., LTD.
    Inventor: Hsin-wang Chiu
  • Patent number: 11972988
    Abstract: A solar cell includes a layer stack that has at least one substrate, at least one doped region and at least one metallization structure. A sensor is integrated in this layer stack.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: April 30, 2024
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Andreas Beinert, Ulrich Eitner
  • Patent number: 11967554
    Abstract: Semiconductor devices includes a first interlayer insulating layer, a lower interconnection line in the first interlayer insulating layer, an etch stop layer on the first interlayer insulating layer and the lower interconnection line, a second interlayer insulating layer on the etch stop layer, and an upper interconnection line in the second interlayer insulating layer. The upper interconnection line includes a via portion extending through the etch stop layer and contacting the lower interconnection line. The via portion includes a barrier pattern and a conductive pattern. The barrier pattern includes a first barrier layer between the conductive pattern and the second interlayer insulating layer, and a second barrier layer between the conductive pattern and the lower interconnection line. A resistivity of the first barrier layer is greater than that of the second barrier layer. A nitrogen concentration of the first barrier layer is greater than that of the second barrier layer.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: April 23, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jongjin Lee, Kyungwook Kim, Rakhwan Kim, Seungyong Yoo, Eun-Ji Jung
  • Patent number: 11967657
    Abstract: Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. In an example, a solar cell includes a substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A conductive contact structure is disposed above the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal seed material regions providing a metal seed material region disposed on each of the alternating N-type and P-type semiconductor regions. A metal foil is disposed on the plurality of metal seed material regions, the metal foil having anodized portions isolating metal regions of the metal foil corresponding to the alternating N-type and P-type semiconductor regions.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: April 23, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Gabriel Harley, Taeseok Kim, Richard Hamilton Sewell, Michael Morse, David D. Smith, Matthieu Moors, Jens-Dirk Moschner
  • Patent number: 11965238
    Abstract: Methods for selective deposition of metal oxide films on metal or metallic surfaces relative to oxide surfaces are provided. An oxide surface of a substrate may be selectively passivated relative to the metal or metallic surface, such as by exposing the substrate to a silylating agent. A metal oxide is selectively deposited from vapor phase reactants on the metal or metallic surface relative to the passivated oxide surface.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: April 23, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Andrea Illiberi, Michael Eugene Givens, Shaoren Deng, Giuseppe Alessio Verni
  • Patent number: 11949037
    Abstract: Local patterning and metallization of semiconductor structures using a laser beam, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. For example, a method of fabricating a solar cell includes providing a substrate having an intervening layer thereon. The method also includes locating a metal foil over the intervening layer. The method also includes exposing the metal foil to a laser beam, wherein exposing the metal foil to the laser beam forms openings in the intervening layer and forms a plurality of conductive contact structures electrically connected to portions of the substrate exposed by the openings.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: April 2, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Pei Hsuan Lu, Benjamin I. Hsia, Taeseok Kim
  • Patent number: 11925038
    Abstract: A multi-junction photovoltaic device comprises a first sub-cell and a second sub-cell, the second sub-cell overlying the first sub-cell such that incident light passes through the second sub-cell before the first sub-cell. The light-receiving surface of the second sub-cell comprises a layer of a transparent conductive material and one or more metal tracks extending in a first direction and in contact with the layer of transparent conductive material. A layer of electrically insulating material is provided on the light receiving surface of the second sub-cell located under one end of the one or more metal tracks at an edge of the device, and an electrically conductive pad is provided over the layer of electrical insulator and in electrical contact with the one or more metal tracks to provide electrical contact to an external circuit.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: March 5, 2024
    Assignee: Oxford Photovoltaics Ltd.
    Inventors: Thomas Sebastien, James Leslie Best, James Denziel Watts
  • Patent number: 11791425
    Abstract: A preparation method for a solar cell back electrode and an application thereof are provided. The method comprises setting a back electrode barrier layer and using back-side silver paste in coordination. The back electrode barrier layer comprises the following components: 20 to 80 parts by weight of metal nitride powder, nitrogen-silicon compound powder, oxide powder or low-melting-point metal powder in total; 0.5 to 5 parts by weight of lead-free glass powder; 10 to 40 parts by weight of organic carrier; and 0.1 to 1 part by weight of organic additives. The back-side silver paste comprises the following components: 5 to 60 parts by weight of hollow spherical silver powder; 5 to 30 parts by weight of flaky silver powder; 0.5 to 5 parts by weight of lead-free glass powder; 10 to 50 part by weight of organic binder; and 0.1 to 1 part by weight of organic additives.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: October 17, 2023
    Assignee: NANTONG T-SUN NEW ENERGY CO., LTD.
    Inventor: Peng Zhu
  • Patent number: 11772136
    Abstract: A method for particle abatement in a wafer processing tool implements at least one cleaning-purposed mobile electrostatic carrier (MESC) including electrostatic field generating (EFG) circuits. Each EFG circuit is charged with the cleaning-purposed MESC. The cleaning-purposed MESC is then loaded into the wafer processing tool in a facedown orientation. A normal-purposed MESC is loaded into the wafer processing tool in a faceup orientation. Next, foreign materials are bonded to the cleaning-purposed MESC as the cleaning-purposed MESC is moved along a processing path through the wafer processing tool in the facedown orientation. The normal-purposed MESC travels the processing path during normal operation of the wafer processing tool in the faceup orientation. The cleaning-purposed MESC is then unloaded from the wafer processing tool. Next, the foreign materials are debonded from the cleaning-purposed MESC by discharging each EFG circuit with the cleaning-purposed MESC.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: October 3, 2023
    Inventor: Eryn Smith
  • Patent number: 11742440
    Abstract: The present disclosure relates to an all-back-contact photovoltaic device that includes, in order, a substrate, a first electrode having a first surface, an insulator, a second electrode having a second surface, and an active material, where the insulator and the second electrode form a cavity, the active material substantially fills the cavity and is in physical contact with the first surface and the second surface, the insulator includes a first layer and a second layer with the second layer positioned between the first layer and the second contact, and the first layer is constructed of a first material that is different than a second material used to construct the second layer.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: August 29, 2023
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Kevin Joseph Prince, Colin Andrew Wolden, Lance Michael Wheeler
  • Patent number: 11742441
    Abstract: A flexible and rollable back-contact solar cell module, wherein a length of it can be extended infinitely and the back-contact solar cell module includes a plurality of large cell blocks connected in series or in parallel. The large cell block includes a plurality of small cell strings connected in series or in parallel. The small cell string includes a plurality of small square cell pieces connected in series or in parallel. The series-connection or the parallel-connection between the large cell blocks, the small cell strings, or the small square cell pieces is achieved by welding a flexible interconnected bar in the horizontal or vertical direction. Electrodes of the small square cell pieces are all on a back side and the small square cell pieces are formed by cutting a back-contact solar cell. A protective layer is attached to a surface of a light-receiving side by using an adhesive layer.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: August 29, 2023
    Assignee: GOLDEN SOLAR (QUANZHOU) NEW ENERGY TECHNOLOGY CO., LTD.
    Inventor: Hsin-Wang Chiu
  • Patent number: 11676899
    Abstract: Embedded packaging for high voltage, high temperature operation of power semiconductor devices is disclosed, wherein a semiconductor die is embedded in a dielectric body comprising a dielectric polymer composition characterized by a conductivity transition temperature Tc, a first activation energy EaLow for conduction in a temperature range below Tc, and a second activation energy EaHigh for conduction in a temperature range above Tc. A test methodology is disclosed for selecting a dielectric epoxy composition having values of Tc, EaLow, and EaHigh that provide a conduction value below a required reliability threshold, e.g. ?5×10?13 S/cm, for a specified operating voltage and temperature. For example, the power semiconductor device comprises a GaN HEMT rated for operation at ?100V wherein the package body is formed from a laminated dielectric epoxy composition for operation at >150 C, wherein Tc is ?75 C, EaLow is ?0.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: June 13, 2023
    Assignee: GaN Systems Inc.
    Inventor: Thomas Macelwee
  • Patent number: 11678487
    Abstract: A method for manufacturing an electronic device includes forming a first source layer including a trench, forming a first sacrificial layer in the trench, forming a first structure over the first source layer, wherein the first structure includes first material layers and second material layers which are alternately stacked over the each other, forming first openings passing through the first structure and extending to the first sacrificial layer, forming first channel layers in the first openings, forming a slit passing through the first structure and extending to the first sacrificial layer, forming a second opening by removing the first sacrificial layer through the slit, and forming a second source layer in the second opening, wherein the second source layer is coupled to the first channel layers.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: June 13, 2023
    Assignee: SK hynix Inc.
    Inventors: Ki Hong Lee, Ji Yeon Baek, Seung Ho Pyi
  • Patent number: 11227995
    Abstract: A ReRAM device manufactured using 2-D Si2Te3 (silicon telluride) nanowires or nanoplates. The Si2Te3 nanowires exhibit a unique reversible resistance switching behavior driven by an applied electrical potential, which leads to switching of the NWs from a high-resistance state (HRS) to a low-resistance state (LRS). This switched LRS is highly stable unless the opposite potential is applied to switch the resistance back. This provides a new class of resistive switching based on semiconductor rather than dielectric materials. In several embodiments, the polarity of the initially applied potential along the Si2Te3 nanowires defines the switch “on” and “off” directions, which become permanent once set.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: January 18, 2022
    Inventors: Jingbiao Cui, Keyue Wu, Jiyang Chen, Xiao Shen
  • Patent number: 11205619
    Abstract: Embodiments of bonded semiconductor structures and fabrication methods thereof are disclosed. In an example, a semiconductor device includes a first and a second semiconductor structures. The first semiconductor structure includes a first interconnect layer including first interconnects. At least one first interconnect is a first dummy interconnect. The first semiconductor structure further includes a first bonding layer including first bonding contacts. Each first interconnect is in contact with a respective first bonding contact. The second semiconductor structure includes a second interconnect layer including second interconnects. At least one second interconnect is a second dummy interconnect. The second semiconductor structure further includes a second bonding layer including second bonding contacts. Each second interconnect is in contact with a respective second bonding contact. The semiconductor device further includes a bonding interface between the first and second bonding layers.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: December 21, 2021
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Tao Wang, Si Ping Hu, Jia Wen Wang, Shi Qi Huang, Jifeng Zhu, Jun Chen, Zi Qun Hua
  • Patent number: 11107942
    Abstract: A method is described that includes sputtering multiple layers on a back surface of the photovoltaic structure, the photovoltaic structure being made of at least one group III-V semiconductor material, and evaporating, over the multiple layers, one or more additional layers including a metal layer, the back metal structure being formed by the multiple layers and the additional layers. A photovoltaic device is also described that includes a back metal structure disposed over a back surface of a photovoltaic structure made of a group III-V semiconductor material, the back metal structure including one or more evaporated layers disposed over multiple sputtered layers, the one or more evaporated layers including a metal layer. By allowing evaporation along with sputtering, tool size and costs can be reduced, including minimizing a number of vacuum breaks. Moreover, good yield and reliability, such as reducing dark line defects (DLDs), can also be achieved.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: August 31, 2021
    Assignee: UTICA LEASECO, LLC
    Inventors: Octavi Santiago Escala Semonin, Reto Adrian Furler, Hasti Majidi, Kirsten Sydney Hessler
  • Patent number: 10741716
    Abstract: A wire processing apparatus for a tabbing apparatus is provided. The wire processing apparatus for a tabbing apparatus has: a wire supplying device cutting a wire to a predetermined length; a cell conveying device, on which the wire and a cell are placed, and which conveys the wire and the cell in a conveyance direction; and a wire transferring device receiving the wire from the wire supplying device and transferring the wire to the cell conveying device. The cell is placed on the wire in the state where the wire transferring device grips the wire placed on the cell conveying device.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: August 11, 2020
    Assignee: ZEUS CO., LTD.
    Inventors: Byeong Su Lee, Young Ik Park, Dong Jin Chung, Shin Il Oh
  • Patent number: 10686083
    Abstract: A method of manufacturing a finger electrode for a solar cell includes printing a conductive paste on a front surface of a substrate using a printing mask having an opening rate of 65% or more, and baking the printed conductive paste. The conductive paste may include a conductive powder, a glass frit, and an organic vehicle, and the conductive powder may include a first conductive powder having a particle diameter (D50) of about 0.1 ?m to about 1.5 ?m and a second conductive powder having a particle diameter (D50) of greater than 1.5 ?m to about 5 ?m, and the conductive powder as a whole has a particle diameter (D10) of about 0.5 ?m or less.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: June 16, 2020
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong Il Shin, Seok Hyun Jung
  • Patent number: 10580926
    Abstract: A multi-junction solar cell comprising a high-crystalline silicon solar cell and a high-crystalline germanium solar cell. The high-crystalline silicon solar including a first p-doped layer and a n+ layer and the high-crystalline germanium solar cell including a second p layer and a heavily doped layer. The multi-junction solar cell can also be comprised of a heavily doped silicon layer on a non-light receiving back surface of the high-crystalline germanium solar cell and a tunnel junction between the high-crystalline silicon solar cell and the high-crystalline germanium solar cell.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: March 3, 2020
    Assignee: International Business Machines Corporation
    Inventors: Anirban Basu, Bahman Hekmatshoartabari, Davood Shahrjerdi
  • Patent number: 10497819
    Abstract: An efficient back surface field paste for used crystalline silicon solar cells and its preparation method include Paste A and Paste B. Paste A comprises by weight: 50-60% aluminum powder, 2-6% inorganic binder, 10-20% organic binder, 16-26% organic solvent and 2-8% additives, and the sum of weight percentages of each component is 100%. Paste B comprises by weight: 85-90% aluminum powder, 0.1-1% inorganic binder, 1-5% organic binder, 2-8% organic solvent and 1-3% additives, and the sum of weight percentages of each component is 100%.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: December 3, 2019
    Assignee: NANTONG T-SUN NEW ENERGY CO., LTD.
    Inventor: Peng Zhu
  • Patent number: 10475946
    Abstract: A method of manufacturing a solar cell includes: forming a conductive thin film layer on a semiconductor substrate; forming an insulating film on the conductive thin film layer; forming a conductive thin film layer exposed portion by removing a part of the insulating film; forming a plating film in the conductive thin film layer exposed portion; and removing the insulating film and the conductive thin film layer in an area not overlapping the plating film, wherein the plating film formed in the forming of a plating film is formed to cover the insulating film.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: November 12, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Keiichiro Masuko, Yasufumi Tsunomura
  • Patent number: 10453975
    Abstract: Photovoltaic device includes a wafer, wherein it comprises a plurality of discontinuous first conductors oriented in a first direction, which conductors are interrupted in interconnection zones, and in that at least one second conductor electrically connects the first conductors to one another in the interconnection zones, and in that it includes at least one metal strip or braid fastened to at least one electrical conductor, this at least one metal strip or braid including fastening zones in which it is mechanically and electrically connected to an electrical conductor and non-connected zones in which the metal strip or braid is not mechanically fastened to an electrical conductor.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: October 22, 2019
    Assignee: Commissariat à l'Energie Atomique et aux Energies Alternatives
    Inventors: Armand Bettinelli, Eric Pilat
  • Patent number: 10439079
    Abstract: A method of manufacturing a finger electrode for a solar cell including printing a conductive paste on one surface of a substrate using a print mask having an aperture ratio of about 65% or more, and baking the printed conductive paste. The conductive paste includes a conductive powder, a glass frit, and an organic vehicle. The organic vehicle includes a solvent having a vapor pressure of about 0.1 Pa to about 500 Pa at room temperature and a flash point of about 90° C. to about 150° C.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: October 8, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang Hee Park, Sang Jin Kim, Jae Hwi Cho
  • Patent number: 10424685
    Abstract: A method for manufacturing a solar cell includes forming an emitter layer on a first surface of a substrate, forming a back surface field layer on a second surface opposite the first surface of the substrate, forming a first anti-reflection layer on the emitter layer, forming a second anti-reflection layer on the back surface field layer, and forming a plurality of first electrodes each including a first metal seed layer and a first conductive layer on a plurality of first contact regions of the first anti-reflection film and a plurality of second electrodes each including a second metal seed layer and a second conductive layer on a plurality of second contact regions of the second anti-reflection film, the plurality of first contact regions being partially formed at the first anti-reflection layer and each having a first width.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: September 24, 2019
    Assignee: LG ELECTRONICS INC.
    Inventors: Goohwan Shim, Changseo Park, Philwon Yoon, Yoonsil Jin, Jinsung Kim, Youngho Choe, Jaewon Chang
  • Patent number: 10411058
    Abstract: A semiconductor apparatus includes a silicon layer including first and second semiconductor regions; an insulator film, on the silicon layer, having first and second holes positioned on the first and second semiconductor regions; a first metal portion containing a first metal element in the first hole; a first conductor portion containing a second metal element between the first metal portion and the first semiconductor region; a first silicide region containing the second metal element between the first conductor portion and the first semiconductor region; a second metal portion containing the first metal element in the second hole; a second conductor portion containing the second metal element between the second metal portion and the second semiconductor region; and a second silicide region containing a third metal element between the second conductor portion and the second semiconductor region, wherein the first conductor portion thickness is greater than the second conductor portion thickness.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 10, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tsutomu Tange, Yukinobu Suzuki, Aiko Kato, Koji Hara, Takehito Okabe
  • Patent number: 10411152
    Abstract: A bonding apparatus includes a heat source, a first plate, a second plate, and an actuation mechanism. The first plate is coupled to the heat source. The first and second plates are thermally conductive and configured to cover an entire solar cell. The actuation mechanism moves the bonding apparatus between an open position and a closed position. In the closed position, the first plate and the second plate contact opposite surfaces of the solar cell. The second plate is configured to dissipate heat such that the second plate has a lower temperature than the first plate when in the closed position. The first plate and the second plate apply a force to the solar cell, the force at a first end of the solar cell being different than at a second end of the solar cell when the bonding apparatus is in or moving to the closed position.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 10, 2019
    Assignee: Merlin Solar Technologies, Inc.
    Inventors: Kent Riley Child, Jesse Dam, Arthur Rudin, Gopal Prabhu, Venkatesan Murali
  • Patent number: 10373726
    Abstract: A highly filled back surface field aluminum paste for point contacts in PERC cells and its preparation method include dissolving ethyl cellulose in organic solvent, stirring under a certain temperature to prepare a homogeneous and transparent organic carrier, adding aluminum powder, nanosized aluminum-boron-antimony alloy powder and auxiliary additive, and three-roller grinding, comprising 70-85 parts by weight of aluminum powder, 1-5 parts by weight of nanosized aluminum-boron-antimony alloy powder, 10-25 parts by weight of organic carrier, 0.1-6 parts by weight of inorganic binder and 0.01-1 part by weight of auxiliary additive.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: August 6, 2019
    Assignee: NANTONG T-SUN NEW ENERGY CO., LTD.
    Inventor: Peng Zhu
  • Patent number: 10312396
    Abstract: A method of manufacturing a solar cell includes: forming a conductive thin film layer on a semiconductor substrate; forming an insulating film on the conductive thin film layer; forming a conductive thin film layer exposed portion by removing a part of the insulating film; forming a plating film in the conductive thin film layer exposed portion; and removing the insulating film and the conductive thin film layer in an area not overlapping the plating film, wherein the plating film formed in the forming of a plating film is formed to cover the insulating film.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: June 4, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Keiichiro Masuko, Yasufumi Tsunomura
  • Patent number: 10304804
    Abstract: Embodiments include devices and methods, including a device including a substrate comprising a semiconductor, the substrate including a front side comprising active elements and a backside opposite the front side. The device includes a dielectric layer on the backside, and a passive component on the dielectric layer on the backside. In certain embodiments, the passive device is formed on a self-assembled monolayer (SAM). Other embodiments are described and claimed.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 28, 2019
    Assignee: INTEL CORPORATION
    Inventors: Fay Hua, Telesphor Kamgaing, Johanna M. Swan
  • Patent number: 10290601
    Abstract: A method of manufacturing a bonded body in which a first body and a second body are bonded using a glass paste. The glass paste includes a crystallized glass frit (A) and a solvent (B). A remelting temperature of the crystallized glass frit (A) is higher than a crystallization temperature thereof which is higher than a glass transition temperature thereof. The method includes: applying the glass paste on at least one of the first and second bodies, bonding the first and second bodies by interposing the glass paste therebetween, heating the bonded first and second bodies to a temperature that is not lower than the crystallization temperature and lower than the remelting temperature of the crystallized glass frit (A), and obtaining the bonded body by cooling the bonded first and second bodies to a temperature that is not higher than the glass transition temperature of the crystallized glass frit.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: May 14, 2019
    Assignee: NAMICS CORPORATION
    Inventors: Raymond Dietz, Cathy Shaw Trumble, Maciej Patelka, Akito Yoshii, Noriyuki Sakai, Hiroshi Yamaguchi
  • Patent number: 10276738
    Abstract: A heterojunction photovoltaic cell includes at least one crystalline silicon oxide film directly placed onto one of the front or rear faces of a crystalline silicon substrate, between said substrate and a layer of amorphous or microcrystalline silicon. The thin film is intended to enable the passivation of said face of the substrate. The thin film is more particularly obtained by radically oxidizing a surface portion of the substrate, before depositing the layer of amorphous silicon. Moreover, a thin layer of intrinsic or microdoped amorphous silicon can be placed between said think film and the layer of amorphous or microcrystalline silicon.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: April 30, 2019
    Assignee: COMMISSARIAT À L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Pierre Mur, Hubert Moriceau, Pierre-Jean Ribeyron
  • Patent number: 10263029
    Abstract: A manufacturing method includes a first process for forming a first gate electrode for a first MOS transistor and a second gate electrode for a second MOS transistor on a substrate including a semiconductor region defined by an insulator region for element isolation, a second process for masking a portion located above the semiconductor region of the first gate electrode to introduce an impurity to a source-drain region of the first MOS transistor, and a third process for forming a first conductor member being in contact with the portion of the first gate electrode through a first hole disposed on an insulator member covering the substrate and a second conductor member being in contact with the second gate electrode through a second hole disposed on the insulator member.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 16, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Mineo Shimotsusa, Masatsugu Itahashi, Yusuke Onuki, Nobuaki Kakinuma, Masato Fujita
  • Patent number: 10224438
    Abstract: The invention provides an electroconductive paste comprising metallic particles, an inorganic reaction system, and an organic vehicle. The inorganic reaction system includes a lead-tellurium-magnesium composition of Formula (II): Pba—Teb—(Mgw—Cax—Sry—Baz)-Md-Oe, wherein 0<a, b, or d?1, 0?w, x, y, z?1, w+x+y+z=c, at least one of w, x, y and z is greater than zero, the sum of a, b, c and d is 1, 0<c?0.2, 0?d?0.5, a:b is between about 10:90 and about 90:10, (a+c+d):b is between about 10:90 and about 90:10, M is one or more elements, and e is a number sufficient to balance the Pb, Te, Mg—Ca—Sr—Ba and M components.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: March 5, 2019
    Assignee: HERAEUS PRECIOUS METALS NORTH AMERICA CONSHOHOCKEN, LLC
    Inventors: Cuiwen Guo, Li Yan, Lei Wang
  • Patent number: 10211350
    Abstract: A composition for solar cell electrodes and a solar cell electrode fabricated using the composition, the composition including a conductive powder; a glass frit; and an organic vehicle, wherein the glass frit has an initial crystallization temperature of about 300° C. to about 540° C., wherein the glass frit has an A value of about 0.0001 ?V/mg·° C. to about 0.2 ?V/mg·° C., as calculated by Equation 1: A = ? ? ? H ? ? ? T .
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: February 19, 2019
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Young Ki Park, Min Young Lee
  • Patent number: 10170213
    Abstract: There is provided a silver powder, which is able to obtain a conductive paste having a high thixotropic ratio and a high Casson yield value and which is able to form a conductive pattern having a low resistance, and a method for producing the same. An aliphatic amine such as hexadecylamine is added to a silver powder, the surface of which is coated with a fatty acid such as stearic acid, to be stirred and mixed to form the aliphatic amine on the outermost surface of the silver powder while allowing the fatty acid to react with the aliphatic amine to form an aliphatic amide such as hexadecanamide between the fatty acid and the aliphatic amine.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: January 1, 2019
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yoshiyuki Michiaki, Hiroshi Kamiga
  • Patent number: 10014420
    Abstract: A solar cell includes: a semiconductor substrate having a light-receiving surface and a back surface; a first-conductivity-type first semiconductor layer on the back surface; a second-conductivity-type second semiconductor layer on the back surface; a first electrode electrically connected to the first semiconductor layer; a second electrode electrically connected to the second semiconductor layer; and an insulating layer in a boundary region between a first-conductivity-type region of the first semiconductor layer and a second-conductivity-type region of the second semiconductor layer. The insulating layer has an inclined side surface adjacent the second-conductivity-type region inclined such that the thickness of the insulating layer decreases with decreasing distance from the second-conductivity-type region.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: July 3, 2018
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masato Shigematsu, Naofumi Hayashi
  • Patent number: 9929299
    Abstract: Screen-printable metallization pastes for forming thin oxide tunnel junctions on the back-side surface of solar cells are disclosed. Interdigitated metal contacts can be deposited on the oxide tunnel junctions to provide all-back metal contact to a solar cell.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 27, 2018
    Assignee: Zhejiang Kaiying New Materials Co., Ltd.
    Inventor: Mohamed M. Hilali
  • Patent number: 9893229
    Abstract: A method for creating a photovoltaic cell, includes forming a first doped region in a semiconductor substrate having a first concentration of doping elements; forming, by ion implantation, alignment units, the largest size of which is smaller than one millimeter, and a second doped region, adjacent to the first region with a second concentration of doping elements; heat-treating the substrate to activate the doping elements and to form an oxide layer at the surface of the substrate, the second concentration and the heat treatment conditions being selected such that the oxide layer has a thickness above the alignment units that is larger, by at least 10 nm, than the thickness of the oxide layer above an area of the substrate adjacent to the alignment units; depositing an antireflection layer onto the oxide layer; and depositing an electrode onto the antireflection coating, through a screen, opposite the second region.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: February 13, 2018
    Assignee: COMMISSARIAT À L'ÉNERGIE ATOMIQUIE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Jérôme Le Perchec, Rémi Monna
  • Patent number: 9812477
    Abstract: The present disclosure relates to a method the present disclosure relates to an integrated chip having an active pixel sensor with a gate dielectric protection layer that reduces damage to an underlying gate dielectric layer during fabrication, and an associated method of formation. In some embodiments, the integrated chip has a photodetector disposed within a substrate, and a gate structure located over the substrate. A gate dielectric protection layer is disposed over the substrate and extends from along a sidewall of the gate structure to a location overlying the photodetector. The gate dielectric protection layer has an upper surface that is vertically below an upper surface of the gate structure.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: November 7, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hsien Chou, Wen-I Hsu, Tsun-Kai Tsao, Chih-Yu Lai, Jiech-Fun Lu, Yeur-Luen Tu
  • Patent number: 9796052
    Abstract: The present invention addresses the problem of providing a composite nanometal paste which is relatively low in price and is excellent in terms of bonding characteristics, thermal conductivity, and electrical property. The present invention is a copper-filler-containing composite nanometal paste that contains composite nanometal particles each comprising a metal core and an organic coating layer formed thereon. The metal paste contains a copper filler and contains, as binders, first composite nanometal particles and second composite nanometal particles which differ from the first composite nanometal particles in the thermal decomposition temperature of the organic coating layer, wherein the mass proportion W1 of the organic coating layer in the first composite nanometal particles is in the range of 2-13 mass %, the mass proportion W2 of the organic coating layer in the second composite nanometal particles is in the range of 5-25 mass %, and these particles satisfy the relationships W1.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 24, 2017
    Assignees: APPLIED NANOPARTICLE LABORATORY CORPORATION, SHINDENGEN ELECTRIC MANUFACTURING CO., LTD.
    Inventors: Teruo Komatsu, Ryo Matsubayashi
  • Patent number: 9601648
    Abstract: The present disclosure provides a method of manufacturing a pattern including: forming a trench structure on a substrate using an inkjet method; filling an interior portion of the trench structure with a filler; and removing the trench structure, and a pattern manufactured using the same, and a method of manufacturing a solar battery using the method of manufacturing a pattern and a solar battery manufactured using the same.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: March 21, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Yong-Sung Goo, Joon-Hyung Kim
  • Patent number: 9570206
    Abstract: A solar cell can include a substrate and a semiconductor region disposed in or above the substrate. The solar cell can also include a conductive contact disposed on the semiconductor region with the conductive contact including a paste, a first metal, and a first conductive portion that includes a conductive alloy formed from the first metal at an interface of the substrate and the semiconductor region.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 14, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Richard Hamilton Sewell, Paul Loscutoff, Michel Arsène Olivier Ngamo Toko
  • Patent number: 9515203
    Abstract: A method of manufacturing a solar cell includes: forming a dopant layer by doping a dopant to a semiconductor substrate; and forming an electrode electrically connected to the dopant layer. The forming of the electrode includes forming a metal layer on the dopant layer; and heat-treating the metal layer to form a first layer and a second layer. In the heat-treating of the metal layer, a portion of the metal layer adjacent to the semiconductor substrate forms the first layer including a compound formed by a reaction of the metal layer and the semiconductor substrate, and a remaining portion of the metal layer forms the second layer that covers the first layer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 6, 2016
    Assignee: LG ELECTRONICS INC.
    Inventors: Kisu Kim, Younghyun Lee, Sangwook Park
  • Patent number: 9401441
    Abstract: A fabricating method of a back-illuminated image sensor includes the following steps. First, a silicon wafer having a first surface and a second surface is provided, wherein a number of trench isolations are formed in the first surface, and at least one image sensing member is formed between the trench isolations. Then, a first chemical mechanical polishing (CMP) process is performed to the second surface using the trench isolations as a polishing stop layer to thin the silicon wafer. Because the polishing rate of the silicon material in the silicon wafer is different with that of the isolation material of the trench isolations in the first CMP process, at least one dishing depression is formed in the second surface of the silicon wafer. Finally, a microlens is formed above the dishing depression, and a surface of the microlens facing the dishing depression is a curved surface.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: July 26, 2016
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventor: Tseng-Fei Wen
  • Patent number: 9379258
    Abstract: Fabrication methods for making back contact back junction solar cells. A base dopant source, a field emitter dopant source, and an emitter dopant source are deposited on the back surface of a solar cell substrate. The solar cell substrate is annealed forming emitter contact regions corresponding to the emitter dopant source, field emitter regions corresponding to the field emitter dopant, and base contact regions corresponding to the base dopant source. The base dopant source, field emitter dopant source, and the emitter dopant source are etched. A backside passivation layer is deposited on the back surface of the solar cell. Contacts are opened to the emitter contact regions and the base contact regions through the backside passivation layer. Patterned base metallization and patterned emitter metallization is formed on the back surface of the solar cell with electrical interconnections to the base contact regions and the emitter contact regions.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: June 28, 2016
    Assignee: Solexel, Inc.
    Inventors: Pawan Kapur, Anand Deshpande, Virendra V. Rana, Mehrdad M. Moslehi, Sean M. Seutter