Abstract: A method for the production of a workpiece having a corrected gear tooth geometry and/or a modified surface structure by a diagonal generating method by a modified tool, wherein a modification of the surface geometry of the tool is produced in that the position of the tool dresser is varied during dressing in dependence on the angle of rotation of the tool and/or on the tool width position and/or wherein a modification of the surface geometry is produced which has a constant value at least locally in the generating pattern in a first direction of the tool and is given by a function in a second direction of the tool which extends perpendicular to the first direction, wherein the modification of the tool produces a corresponding modification on the surface of the workpiece, and wherein the modification on the surface of the workpiece is a directed crowning without shape deviations.
Abstract: Machine tool for the production of profiles, such as gearing systems on a workpiece, by means of a rotoncally driven machining tool by generating grinding, profile grinding, generating milling and/or profile milling, having at least one workpiece receiving device, a workpiece machining device and an optional machining tool profiling device. According to the invention, the workpiece machining device is borne by a machine base that has a tangential carriage, a radial carriage, a lifting carriage and a rotational carriage. With this specific construction, the workpiece machining device is guided moveably in all spatial directions with respect to the workpiece receiving device and also, if available, with respect to the machining tool profiling device.
Abstract: An automatic grinding machine for end mills for wood, programmable with optical reading of geometric features and for computerized sharpening, has a compact structure, which includes a computerized control panel actuating various assemblies adapted for automated sharpening. A first optical reading assembly has an arm for automatic movement from an inactive position to a position suited for detecting the geometric features of the end mill. A second assembly for holding the end mill is configured to move on command forward and backward and/or simultaneously rotate the mill about its own axis. A third assembly for supporting a cup grinding wheel is mounted on the vertical frame, which rests on a rotatable circular and horizontal base. The grinding wheel can move above and below, longitudinally along the mill and/or in front of it, on the right and left side to sharpen end mills for wood with a left-handed or right-handed helix.
Abstract: A fixture for selectively locating and retaining hydraulic gerotor rotors in position in respect to a grinding wheel, the fixture clamping the rotor between two oversized positioning rolls located in rotor lobe valleys on opposite sides of the rotor.
Abstract: A fixture for selectively locating and retaining hydraulic gerotor rotors in position in respect to a grinding wheel, the fixture clamping the rotor between two oversized positioning rolls located in rotor lobe valleys on opposite sides of the rotor.
Abstract: Desired crown width and offset can be obtained on the workpiece in a simple manner and with geometrically simple tools, by adjustment of tool lead modification, the axial spacing between tool and workpiece, or the angle of rotation. Tooth flanks modified to be broad-crowned can be produced with virtually any offsets in the one-flank or two-flank process. Theoretically exact results are obtained even after shifting of the tool, and the active tool length required for machining a workpiece may be freely selected over a wide range.
Abstract: A gear shaper effects a gear shaper cutting method by dry cutting, using a pinion cutter made of high-speed tool steel at a high efficiency. The pinion cutter of the gear shaper is coated, at least on the flank thereof, with at least one layer of film having a composition comprising: (Ti.sub.(1-x) Al.sub.x)(N.sub.y C.sub.(1-y) ), wherein 0.2.ltoreq.x.ltoreq.0.9 and 0.2.ltoreq.y.ltoreq.1.0. Gear shaper cutting is performed at a cutting speed of 300 m/min or less.