Spinel Or Other Aluminate Patents (Class 501/120)
  • Publication number: 20100144510
    Abstract: A freeze-forging method for producing sintered three-dimensional ceramic bodies, particularly magnesium aluminate spinel domes. The method comprises forming a ceramic mix of a ready-to-sinter ceramic powder and a nonaqueous liquefied sublimable vehicle having a solidification temperature from room temperature to below 200° C.; reducing the temperature of the ceramic mix to below the vehicle's solidification temperature to freeze the mix; crushing the frozen mix into powdered form; cold forging the frozen powder in a mold to form a solidified green body of the desired three-dimensional shape; and densifying the green body into a sintered three-dimensional ceramic body.
    Type: Application
    Filed: July 16, 2009
    Publication date: June 10, 2010
    Inventors: Juan L. Sepulveda, Raouf O. Loutfy, Sekyung Chang, Ricardo Ramos, Sharly Ibrahim
  • Publication number: 20100130346
    Abstract: Methods of making and compositions of dense sintered ceramic nano- and micro-composite materials that are highly stable in a variety of conditions and exhibit superior toughness and strength. Liquid feed flame spray pyrolysis techniques form a plurality of nanoparticles (e.g., powder), each having a core region including a first metal oxide composition comprising Ce and/or Zr or other metals and a shell region including a second metal oxide composition comprising Al or other metals. In certain aspects, the core region comprises a partially stabilized tetragonal ZrO2 and the shell region comprises an ?-Al2O3 phase. The average actual density of the ceramic after sintering is greater than 50% and up to or exceeding 90% of a theoretical density of the ceramic.
    Type: Application
    Filed: July 23, 2009
    Publication date: May 27, 2010
    Inventors: Richard M. Laine, Min Kim
  • Publication number: 20100108953
    Abstract: The invention relates to a material for the formation of protective layers resistant to high temperatures on chromium oxide forming substrates, to a manufacturing method and to a use of these materials. It is suitable for a use as a chromium evaporation layer for metallic alloys containing chromium in the high temperature range. It is the object of the invention to provide a material for applications as a protective layer for chromium oxide forming alloys of high temperature resistance which is thermally and mechanically permanently stable and ensures a high electrical conductivity at the operating temperature of the fuel cell. In accordance with the invention, the material is formed from a spinel phase and an oxidic secondary phase which is preferably formed with an oxidic compound containing manganese.
    Type: Application
    Filed: April 11, 2008
    Publication date: May 6, 2010
    Applicant: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung e.V.
    Inventors: Mihails Kusnezoff, Viktar Sauchuk, Nikolai Trofimenko
  • Publication number: 20100103356
    Abstract: A spinel sintered body has a composition of MgO·nAl2O3 (1.05?n?1.30) containing 20 ppm or less of Si element. A production method thereof includes the steps of: forming a compacted body from a spinel powder containing 50 ppm or less of Si element and having a purity of not less than 99.5 mass %; a first sintering step of forming a sintered body having a density of not less than 95% by sintering the compacted body at 1500° C. to 1700° C. in a vacuum; and a second sintering step of subjecting the sintered body to pressurized sintering at 1600° C. to 1800° C.
    Type: Application
    Filed: February 28, 2008
    Publication date: April 29, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masashi Yoshimura, Takenori Yoshikane, Shigeru Nakayama, Akihito Fujii
  • Patent number: 7704296
    Abstract: Disclosed are high-porosity cordierite honeycomb substrates having fine pore size, narrow pore size distribution, little or no microcracking, and a high thermal shock resistance. The porous ceramic honeycomb substrates generally include a primary cordierite ceramic phase as defined herein. Also disclosed are methods for making and using the cordierite substrates.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: April 27, 2010
    Assignee: Corning Incorporated
    Inventor: Gregory Albert Merkel
  • Patent number: 7679806
    Abstract: The optical elements for ultraviolet radiation, especially for microlithography, are made from cubic granet, cubic spinel, cubic perovskite and/or cubic M(II)- as well as M(IV)-oxides. The optical elements are made from suitable crystals of Y3Al5O12, Lu3Al5O12, Ca3Al2Si3O12, K2NaAlF6, K2NaScF6, K2LiAlF6 and/or Na3Al2Li3F12, (Mg, Zn)Al2O4, CaAl2O4, CaB2O4 and/or LiAl5O8, BaZrO3 and/or CaCeO3. A front lens used in immersion optics for microlithography at wavelengths under 200 nm is an example of a preferred optical element of the present invention.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: March 16, 2010
    Assignee: Schott AG
    Inventors: Gunther Wehrhan, Regina Martin, Lutz Parthier, Joerg Staeblein, Martin Letz, Jochen Alkemper, Konrad Knapp, Klaus Petermann
  • Publication number: 20100062386
    Abstract: The present invention relates to a basic-refractory composition containing magnesium orthotitanate (Mg2TiO4) and calcium titanate (CaTiO3) suitable for use in rotating kilns for the production of Portland cement or lime.
    Type: Application
    Filed: October 31, 2007
    Publication date: March 11, 2010
    Inventor: Luís Leonardo Horne Curimbaba Ferreira
  • Publication number: 20100056357
    Abstract: An in-situ method for nanomixing magnesium aluminate spinel nanoparticles with a uniformly distributed controlled concentration of nanoparticles of an inorganic sintering aid, such as LiF, to produce ready-to-sinter spinel powder. The spinel-sintering aid nanomixture is formed by induced precipitation of the sintering aid nanoparticles from a dispersion of the spinel nanoparticles in an aqueous solution of the sintering aid, followed by separation, drying and deagglomeration of the spinel-sintering aid nanomixed product.
    Type: Application
    Filed: July 16, 2009
    Publication date: March 4, 2010
    Inventors: Raouf O. Loutfy, Juan L. Sepulveda, Sekyung Chang
  • Patent number: 7648933
    Abstract: A composition with a Mohs hardness of at least 6.0, wherein said composition contains at least 30 weight percent of spinel crystals, at least 10 weight percent of glass, and less than 10 weight percent of ferrometalsilicate. The composition also contains particles with a particle size distribution such that at least about 95 weight percent of such particles are smaller than about 2.0 millimeters; at least about 70 weight percent of such particles have a particle shape that is either the blocky particle shape or the pyramidal particle shape. At least 20 weight percent of the spinel crystals are equiaxed spinel crystals; the weight/weight ratio of said spinel crystals to said glass is at least 1.2/1; the composition has a melting point in excess of 1440 degrees Celsius; and the composition has a density of from about 3.0 to about 4.5.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: January 19, 2010
    Assignee: Dynamic Abrasives LLC
    Inventor: Sally H. Brodie
  • Publication number: 20090286668
    Abstract: A refractory brick having durability equal to alumina-magnesia castable materials, which is especially suitable for a ladle for steel making is provided. A refractory brick prepared by using an alumina raw material and a magnesia raw material containing 90% by mass or more of a fine powder of not more than 0.5 mm, press molding and then heat treating at 100° C. or higher and not higher than 1,150° C., the refractory brick containing Al2O3 and MgO in a total sum of 90% by mass or more, from 4 to 16% by mass of MgO, from 0.5 to 5% by mass of SiO2, and Na2O and K2O in a total sum of from 0.3 to 2% by mass, with the remainder being inevitable impurities and Al2O3.
    Type: Application
    Filed: November 24, 2006
    Publication date: November 19, 2009
    Applicant: SHINAGAWA REFRACTORIES CO., LTD.
    Inventors: Ryosuke Nakamura, Hiroyuki Shikama, Hisashi Tomiya, Hisaharu Sasaki
  • Patent number: 7576022
    Abstract: Molten ceramic grains are intended, for example, for applications involving abrading tools, having the following average chemical weight composition, expressed in weight percent based on oxide content: Al2O3: 93% to 97.5%; MgO: 2.2 to 6.5%; SiO2: <0.1%; other impurities: <0.4%.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: August 18, 2009
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventor: Samuel Marlin
  • Patent number: 7528085
    Abstract: The invention relates to a fired refractory ceramic product and a batch that can be used to produce said product. Both the batch (the mixture) and the prepared fired product contain spinels consisting of MgO and Al2O3.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: May 5, 2009
    Assignee: Refractory Intellectual Property GmbH & Co. KG
    Inventors: Bernd Buchberger, Roland Nilica
  • Patent number: 7528086
    Abstract: A ceramic having at least about 90% by weight magnesium aluminate and having a bulk scattering and absorption loss of less than about 1/cm at any wavelength in a range of about 0.23 to about 5.3 microns or 0.2/cm at any wavelength in a range of about 0.27 to about 4.5 microns. A method of making a ceramic by providing a plurality of particles having a magnesium aluminate core and a fluoride salt coating; heating the particles in an oxidizing atmosphere to a temperature in the range of about 400° C. to about 750° C.; and sintering the particles to form a solid ceramic.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: May 5, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Guillermo E. Villalobos, Jasbinder S. Sanghera, Shyam Bayya, Ishwar D. Aggarwal
  • Publication number: 20090067077
    Abstract: A low-cost spinel sintered body having small polarization and high heat-conductivity is provided. Also, a useful light-transmitting window and light-transmitting lens for light-emitting device is provided. For such purpose, the spinel sintered body of the present invention has a contrast ratio of 300 or more in the case of white light, where the contrast ratio is defined as the quotient obtained by dividing an amount of transmitting light in the case of being arranged between two polarizing plates, the polarizing directions of the two polarizing plates being parallel to each other, by an amount of transmitting light in the case of being arranged between two polarizing plates, the polarizing directions of the two polarizing plates being orthogonal to each other.
    Type: Application
    Filed: March 28, 2006
    Publication date: March 12, 2009
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akira Sasame, Ken-ichiro Shibata, Akihito Fujii, Shigeru Nakayama
  • Patent number: 7459409
    Abstract: Excellent characteristics concerning slag penetration-resistance, corrosion-resistance, and structural stability on usage of lining-refractory such as equipment for desiliconizing molten iron, a ladle for steel-making, a RH equipment are obtained. Unshaped refractories provide fine particles of under 0.75mm diameter, and aggregate of 0.75-10mm. Furthermore, the fine particles contain 10-35 mass % content of MgO, to the total mass % of the fine particles. Even furthermore, the sum total amount of MgO and Al2O3 is more than 90 mass %, to the total mass % of the fine particle. Additionally, such fine particles has 5-40 mass % of particles made of periclase-spinel, as a source of MgO, to the total mass % of the unshaped refractories. And, the aggregate comprises at least one selected from the group consisting of particles made of alumina and particles made of spinel.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: December 2, 2008
    Assignee: JFE Steel Corporation
    Inventor: Yoshisato Kiyota
  • Publication number: 20080274870
    Abstract: The invention relates to a refractory ceramic product which comprises: a) ?93% by weight of at least one refractory basic component and b) ?7% by weight of at least one anticorrosive component from the group including: b1) transition metals, b2) compounds of transition metals with each other, b3) non-oxidic compounds of transition metals, b4) oxidic compounds of transition metals, b5) compounds of the transition metals with Ca, Ba, Sr.
    Type: Application
    Filed: May 10, 2006
    Publication date: November 6, 2008
    Applicant: REFRACTORY INTELLECTUAL PROPERTY GMBH & CO. KG
    Inventor: Robert Treimer
  • Publication number: 20080254967
    Abstract: The invention relates to a fired refractory ceramic product and a batch that can be used to produce said product. Both the batch (the mixture) and the prepared fired product contain spinels consisting of MgO and Al2O3.
    Type: Application
    Filed: January 19, 2005
    Publication date: October 16, 2008
    Applicant: REFRACTORY INTELLECTUAL PROPERTY GMBH & CO. KG
    Inventors: Bernd Buchberger, Roland Nilica
  • Publication number: 20070259768
    Abstract: A nanocomposite ceramic includes a uniform combination of a ceramic spinel phase and an alumina phase, wherein each phase exhibits a grain size in the range of from about 0.1 nm to 10,000 nm.
    Type: Application
    Filed: November 9, 2006
    Publication date: November 8, 2007
    Inventors: Bernard H. Kear, Bryan W. McEnerney, Dale E. Niesz, Rajendra K. Sadangi
  • Publication number: 20070213199
    Abstract: A refractory brick, comprised of a refractory material having about 55% to about 96% by weight magnesia particles or magnesia particles containing spinel precipitates, about 3% to about 20% by weight fine zirconia particles having a particle size less than 35 Tyler mesh (less than 425 ?m), and about 1% to about 25% of a material selected from the group consisting of coarse zirconia, coarse spinel, coarse alumina-zirconia, and combinations thereof.
    Type: Application
    Filed: September 15, 2006
    Publication date: September 13, 2007
    Inventor: David J. Michael
  • Patent number: 7247589
    Abstract: Transparent polycrystalline sintered ceramic of cubic crystal structure. The invention relates to the field of technical ceramic and relates to transparent polycrystalline sintered ceramics of cubic crystal structure for applications with increased mechanical stress, e.g., as protective or armoring ceramic. Provided are sintered ceramics that combine a high transmission of RIT>75% of the theoretical maximum value with a distinctly improved hardness. Transparent polycrystalline sintered ceramics of cubic crystal structure with a real in-line transmission RIT>75% of the theoretical maximum value measured on 0.8 mm-thick polished plates and for light of a wavelength between 600 and 650 nm, and with an average grain size D in the range of 60 nm<D<10 ?m are provided.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: July 24, 2007
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Andreas Krell, Thomas Hutzler
  • Patent number: 7229940
    Abstract: A dense cordierite based sintered body is provided, containing at least 93% by mass of cordierite among crystal components present in the sintered body. The average particle diameter of the particles constituting the sintered body is 2 ?m or less.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: June 12, 2007
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Teratani, Naohito Yamada, Hiroaki Sakai
  • Patent number: 7166551
    Abstract: A subject for the invention is to provide an unshaped refractory composition having not only high thermal resistance but also improved corrosion resistance and improved unsusceptibility to slag infiltration. The invention is “an unshaped refractory composition comprising: (1) 20 to 70% by weight raw spinel material comprising an MgO—Al2O3 spinel phase and containing 2 to 20% by weight magnesia and/or raw spinel/corundum material comprising an MgO—Al2O3 spinel phase and a corundum phase and containing 2 to 20% by weight magnesia; (2) 3 to 12% by weight raw magnesia material having a particle diameter of 0.3 mm or smaller, containing particle sizes of 75 ?m or smaller in an amount of 55 to 85% by weight, and having a magnesia purity of 90% by weight or higher; (3) 3 to 10% by weight alumina cement having a calcia content lower than 20% by weight; (4) 0.3 to 1.5% by weight ultrafine powder consisting mainly of silica; and (5) a raw alumina material as the remainder”.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: January 23, 2007
    Assignee: Shinagawa Refractories Co., Ltd.
    Inventors: Toshihiko Kaneshige, Hisaharu Sasaki, Yukiharu Tabuchi
  • Patent number: 7037870
    Abstract: A ceramic sintered body comprising from 90 to 99.8% by volume of cordierite and from 0.2 to 10% by volume of mullite based on 100% by weight of a total sum of the contents of the cordierite and the mullite, and having a density of 2.48 g/cm3 or more.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: May 2, 2006
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiroshi Yamamoto, Eiji Miura, Takeshi Mitsuoka, Kazuhiro Urashima
  • Patent number: 6987077
    Abstract: A fired spinel complex oxide is produced by firing a mixture containing a slag by-produced in chromium refining, a reducer, and a silica-containing material, and is essentially composed of: 29 to 40 percent by weight of Fe2O3; 15 to 20 percent by weight of Al2O3; 9 to 14 percent by weight of MgO; 0 to 4 percent by weight of Na2O; 9 to 17 percent by weight of Cr2O3; 14 to 20 percent by weight of SiO2; and 2 percent by weight or less of CaO. The fired spinel complex oxide shows a Cu—K? X-ray diffraction pattern in which the ratio (b/a) of the diffraction peak intensity of the silica-containing material (b) in the vicinity of 2?=26.7° to the {113} plane diffraction peak intensity (a) in the vicinity of 2?=36° is 0.1 or less.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: January 17, 2006
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Nobuo Takagi, Masami Tadasa
  • Patent number: 6982233
    Abstract: The invention relates to a fired refractory ceramic molded piece with a spinel matrix based on (Mg)2+ (Al, Cr)23+O4, in which coarser particles based on chromium corundum and/or corundum and coarser particles based on ZrO2 are present.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: January 3, 2006
    Assignee: Refractory Intellectual Property GmbH & Co.
    Inventors: Bernd Buchberger, Markus Horn, Roland Nilica
  • Patent number: 6933255
    Abstract: A method of preparing beta-spodumene bodies from a plastic batch comprised entirely of minerals, absent a glass component. The resulting structure has a stoichiometry of 1:1:4 (Li2O:Al2O3:SiO2) to 1:1:11 (Li2O:Al2O3:SiO2), and exhibits a low coefficient of thermal expansion, high porosity and high strength, and is suitable for automotive catalytic converter substrates requiring a fast light-off time. There is also provided a ceramic article having a solid-solution of beta-spodumene ranging in molar ratio from 1:1:4 Li2O—Al2O3—SiO2 to 1:1:11 LiO2—Al2O3—SiO2 wherein a component selected from the group consisting of magnesium oxide (MgO), manganese oxide (MnO), and cobalt oxide (CoO) is substituted for lithium oxide (LiO2) at 10 to 65 mole %, and optionally a minor phase of mullite (3Al2O3-2SiO2) in an amount of up to 50% by weight.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: August 23, 2005
    Inventors: Douglas M. Beall, George H. Beall
  • Patent number: 6887810
    Abstract: A material for refractory shaped bodies or compounds, the material being a pleonaste and/or a spinel of the pleonaste type. In addition to FeOx and Al2O3, the material also includes MgO. The ratio of the iron in the material is calculated as Fe2O3:Al2O3 and ranges from 30:70 to 60:40. The material contains from 20 to 60% by mass of MgO, as based on Fe2O3+Al2O3.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: May 3, 2005
    Assignee: Refratechnik Holdings GmbH
    Inventors: Peter Bartha, Hans-Jurgen Klischat, Holger Wirsing, Guido Weibel
  • Patent number: 6858173
    Abstract: Composites of ceramic materials, notably alumina or metal oxides in general, with single-wall carbon nanotubes are consolidated by electric field-assisted sintering to achieve a fully dense material that has an unusually high fracture toughness compared to the ceramic alone, and also when compared to composites that contain multi-wall rather than single-wall carbon nanotubes, and when compared to composites that are sintered by methods that do not include exposure to an electric field.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: February 22, 2005
    Assignee: The Regents of the University of California
    Inventors: Guodong Zhan, Amiya K. Mukherjee, Joshua D. Kuntz, Julin Wan
  • Publication number: 20040266605
    Abstract: This invention pertains to product and process. The product is a transparent product of a density in excess 99.5% comprising spinel and having uniform mechanical properties. The process pertains to fabrication of a transparent spinel product comprising the steps of dissolving a sintering aid in water to form a neutral sintering aid solution, adding a suitable additive to the sintering aid solution, applying the sintering aid solution to spinel particles to form a spinel dispersion, sub-dividing or atomizing the spinel dispersion to form droplets comprising one or more spinel particles coated with the final spinel solution, drying the droplets to form dried coated particles comprising one or more spinel particles coated with a dried layer of the sintering aid, and densifying the dried coated particles to form a transparent spinel product having uniform optical and mechanical properties in absence of grains of exaggerated size.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Inventors: Guillermo R. Villalobos, Jas S. Sanghera, Shyam S. Bayya, Ishwar D. Aggarwal
  • Patent number: 6815389
    Abstract: An economical and environment-friendly process for the synthesis of anionic clays with carbonate and/or hydroxide anions as the charge-balancing interlayer species is disclosed. The process involves reacting a slurry comprising an aluminum source and a magnesium source, the aluminum source comprising two types of aluminum-containing compounds, preferably aluminum trihydrate and/or thermally treated calcined aluminum trihydrate. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: November 9, 2004
    Assignee: Akzo Nobel NV
    Inventors: Dennis Stamires, Michael F. Brady, William Jones, Fathi Kooli
  • Publication number: 20040220042
    Abstract: A material for refractory shaped bodies or compounds, the material being a pleonaste and/or a spinel of the pleonaste type. In addition to FeOx and A12O3, the material also includes MgO. The ratio of the iron in the material is calculated as Fe2O3:Al2O3 and ranges from 30:70 to 60:40. The material contains from 20 to 60% by mass of MgO, as based on Fe2O3+Al2O3.
    Type: Application
    Filed: May 26, 2004
    Publication date: November 4, 2004
    Applicant: Refratechnik Holding GmbH
    Inventors: Peter Bartha, Hans-Jurgen Klischat, Holger Wirsing, Guido Weibel
  • Publication number: 20040142812
    Abstract: The invention relates to a fired refractory ceramic molded piece with a spinel matrix based on (Mg)2+ (Al, Cr)23+O4, in which coarser particles based on chromium corundum and/or corundum and coarser particles based on ZrO2 are present.
    Type: Application
    Filed: November 12, 2003
    Publication date: July 22, 2004
    Inventors: Bernd Buchberger, Markus Horn, Roland Nilica
  • Patent number: 6753283
    Abstract: A material for refractory shaped bodies or compounds, the material being a pleonaste and/or a spinel of the pleonaste type. In addition to FeOX and Al2O3, the material also includes MgO. The ratio of the iron in the material is calculated as Fe2O3:Al2O3, and ranges from 30:70 to 50:40. The material contains from 20 to 60% by mass of MgO, as based on Fe2O3+Al2O3.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: June 22, 2004
    Assignee: Refratechnik Holding GmbH
    Inventors: Peter Bartha, Hans-Jurgen Klischat, Holger Wirsing, Guido Weibel
  • Patent number: 6753277
    Abstract: Ceramics comprising filler crystal particles having an average particle diameter of not smaller than 2.5 &mgr;m and a matrix crystal phase present on the grain boundaries of the filler crystal particles, the filler crystal particles being Al2O3 and the matrix crystal phase being diopside-type oxide crystals precipitated from the crystallized glass. The ceramics has a dielectric loss tangent at 60 to 77 GHz of not higher than 50×10−4, and can be effectively used as an insulating substrate in a wiring board for transmitting high-frequency signals.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: June 22, 2004
    Assignee: Kyocera Corporation
    Inventor: Yoshitake Terashi
  • Patent number: 6740262
    Abstract: A light-transmitting (fluorescent) sintered body formed of specific substances different from the prior art materials, solving problems that the performance or efficiency, uses and manufacturing methods are limited which have not been solved with the prior art light-transmitting sintered body and which provides a light-emitting tube and an electric discharge lamp using a light-transmitting (fluorescent) sintered body formed of the specific substance. Provided are a light-transmitting sintered body mainly formed of a compound having a Mugnetplumbite structure or a &bgr;-alumina structure except for aluminum oxide, a light-transmitting sintered body mainly formed of a compound containing rare earth elements with an ionic valence of two, aluminum element and oxygen element as main components and an light-transmitting sintered body formed of mainly of a compound containing elements with an ionic valence of two except for rare earth elements, rare earth elements and oxygen element as main components.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: May 25, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Shozo Oshio
  • Patent number: 6740612
    Abstract: A resistor, which is solidified from a melt, is provided for a refractory shaped body, and includes a refractory mineral metal-oxide main component having elasticizers a general formula A2+B3+2O4 in an amount so that solubility of the main component for the elasticizer is exceeded with the elasticizers providing precipitation areas in the main component. The resistor is produced by a joint melting of the main component and the oxides which form the elasticizers. A process is provided for the production of the resistor.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: May 25, 2004
    Assignee: Refratechnik Holding GmbH
    Inventors: Peter Bartha, Hans-Jurgen Klischat, Holger Wirsing, Guido Weibel
  • Patent number: 6723442
    Abstract: Disclosed is a ceramic material which is suitable for coating a body by way of a thermal spraying method and which has a coefficient of longitudinal thermal expansion that may be matched to that of a metal. The ceramic material includes 10 to 95% by weight of MgAl2O4, 5 to 90% by weight of MgO, up to 20% by weight of Al2O3, remainder standard impurities, and has grains of MgO which are embedded in a matrix of MgAl2O4.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: April 20, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jens Decker, Thomas Jansing, Günter Schürholt
  • Patent number: 6695985
    Abstract: An electromagnetic wave suppressor sheet formed into a sheet-like shape out of a material made of synthetic resin in which powder of conjugated magnetic particles surface-treated with an insulating inorganic material has been dispersed.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: February 24, 2004
    Assignees: Nitto Denko Corporation, Sony Corporation
    Inventors: Kazumasa Igarashi, Junichi Toyoda, Katsumi Okayama
  • Publication number: 20040029701
    Abstract: An insulating ceramic composition includes a mixture of a ceramic powder containing MgAl2O4 and a glass powder containing 30-60% by mole of silicon oxide on the basis of SiO2 and 20-55% by mole of magnesium oxide on the basis of MgO, and the ceramic powder further includes Mg2SiO4 and TiO2. The insulating ceramic composition can be fired at 1000° C. and co-sintered with Ag and Cu. An insulating ceramic obtained by sintering the insulating ceramic composition has a high Q-factor and is therefore suitable for ceramic multilayer substrates used at high frequencies.
    Type: Application
    Filed: July 30, 2003
    Publication date: February 12, 2004
    Inventors: Osamu Chikagawa, Sadaaki Sakamoto, Yoichi Moriya
  • Publication number: 20040009867
    Abstract: This invention is a method of manufacturing oxide porous bodies and components of alumina and magnesia, using alumina and magnesia powders as raw materials, wherein (1) cold isostatic pressure (CIP) of at least 100 MPa is applied to the materials to introduce a plastic deformation with lattice disorder in the surface vicinity without external changes in the particles, (2) by sintering (calcining) the powders with the above described plastic deformation, the microscopic plastic deformation is removed and, at the same time, formation and growth of necks between grains is induced, (3) from the above described steps (1) and (2), a highly porous body with a structure constituted by a three dimensional network of grains connected through the necks is produced.
    Type: Application
    Filed: January 9, 2003
    Publication date: January 15, 2004
    Applicant: National Inst. of Advanced Ind. Science and Tech.
    Inventors: Manuel E. Brito, Maria C. Valecillos, Naoki Kondo
  • Patent number: 6677261
    Abstract: Strong, high-surface-area honeycombs of alumina or other ceramic composition are provided by compounding and shaping a moldable ceramic powder extrusion batches including a cellulosic temporary binder and a high-surface-area boehmite precursor for a permanent binder, hydrating the shaped honeycomb to develop a boehmite binding phase, and calcining the hydrated body to develop the binder and provide a ceramic honeycomb of high strength and porosity.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: January 13, 2004
    Assignee: Corning Incorporated
    Inventors: William P. Addiego, Cecilia S. Magee
  • Patent number: 6673731
    Abstract: The present invention relates to a ceramic dielectric material for communication components, which can be used in the microwave and millimeter wave frequency band. More particularly, the present invention relates to a dielectric ceramic composition for the microwave/millimeter wave frequency band having a very high quality factor and a low dielectric constant, and a method of manufacturing the dielectric ceramic using the same. The dielectric ceramic composition consists of spinel (MgAl2O4) as a major component and a small amount of lithium carbonate (Li2CO3) as a sub composition with a specific composition formula. The dielectric ceramic is manufactured from magnesia (MgO), alumina (Al2O3) and lithium carbonate (Li2CO3) as raw materials and through the ceramic processing of calcination, shaping and sintering. The obtained dielectric ceramic has the quality factor (Q×f) of 160,000 and the dielectric constant (&egr;r) of 8.5.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: January 6, 2004
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin Woo Hahn, Dong Young Kim, Sang Seok Lee, Tae Goo Choy
  • Patent number: 6596041
    Abstract: Fused abrasive particles comprising eutectic material comprising Al2O3—MgO-REO eutectic. The fused abrasive particles can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 22, 2003
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 6593262
    Abstract: A porosifying, solidification-accelerating additive for binding agent building materials consisting of Al2O3, 50-90%; MgO, 4-20%; SiO2, 0.5-15%; AlN, 0.1-5%; Fe2O3, 0.1-5%; CaO, 0.1-5%; F, 0.1-5%; Na2O, 0.1-5%; K2O, 0.1-2%; as well as in the form of metallic particles: Al, 0.1-10%; Si, 0.1-3%; Fe, 0.1-3%; balance in total maximum, 5%; annealing losses, 0.1-15%; and of mineral main constituents in the form of corumdum (&agr;-Al2O3) and spinel (MgO×Al2O3), wherein the metallic aluminum particles are enveloped by mineral transition modifications from aluminum hydroxide (Al2O3×3H2O) to &agr;-aluminum oxide, the powder comprises a particle size of at least 90% smaller than 500 &mgr;m, and the BET surface of the powder amounts to at least 10 m2/g.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: July 15, 2003
    Assignee: Aluminium-Salzschlacke Aufbereitungs GmbH
    Inventors: Reinhard Feige, Gerhard Merker
  • Publication number: 20030119654
    Abstract: The present invention relates to a ceramic dielectric material for communication components, which can be used in the microwave and millimeter wave frequency band. More particularly, the present invention relates to a dielectric ceramic composition for the microwave/millimeter wave frequency band having a very high quality factor and a low dielectric constant, and a method of manufacturing the dielectric ceramic using the same. The dielectric ceramic composition consists of spinel (MgAl2O4) as a major component and a small amount of lithium carbonate (Li2CO3) as a sub composition with a specific composition formula. The dielectric ceramic is manufactured from magnesia (MgO), alumina (Al2O3) and lithium carbonate (Li2CO3) as raw materials and through the ceramic processing of calcination, shaping and sintering. The obtained dielectric ceramic has the quality factor (Q×f) of 160,000 and the dielectric constant (&egr;r) of 8.5.
    Type: Application
    Filed: May 20, 2002
    Publication date: June 26, 2003
    Inventors: Jin Woo Hahn, Dong Young Kim, Sang Seok Lee, Tae Goo Choy
  • Patent number: 6548435
    Abstract: The invention relates to free-flowing refractory castable material and castings produced therefrom. Refractory nonbasic and basic refractory castable materials have been known for a long time. The traditional refractory castable materials have thixotropic properties and must be lined sing vibration technology. In the past, free-flowing refractory castable materials were solely based on alumina raw materials. Attempts to produce an aqueous, highly concentrated basic suspension which would Coma the basis of free-flowing refractory castable materials failed to meet the requirements in terms of theological properties and a low degree of to hydration of the MgO-based materials. It is the aim of the invention to provide the above-mentioned refractory castable material for the monolithic lining or repair of high-temperature equipment and for the production of refractory castings. This is achieved by providing a fine-grained and a mixed fine and coarse-grained alternative.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: April 15, 2003
    Inventor: Jerzy Bugajski
  • Publication number: 20030064880
    Abstract: The invention relates to a material for refractory shaped bodies or compounds, wherein the material is a pleonaste and/or a spinel of the pleonaste type which, in addition to FeOx and Al2O3, also includes MgO, the ratio of the iron, calculated as Fe2O3:Al2O3 ranging from 30:70 to 60:40, and the material containing from 20 to 60% by mass of MgO, based on Fe2O3+Al2O3.
    Type: Application
    Filed: April 3, 2002
    Publication date: April 3, 2003
    Inventors: Peter Bartha, Hans-Jurgen Klischat, Holger Wirsing, Guido Weibel
  • Patent number: 6534430
    Abstract: A sensor material for measuring physical parameters capable of configuring a sensor capable of directly measuring a high value of physical parameters such as high stress or high pressure without employing a pressure resistance container. The sensor material for measuring static and dynamic physical parameters includes a matrix made of an electrically insulating ceramic material, and piezoresistance materials which are dispersed in the matrix so as to be electrically continuous to each other.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: March 18, 2003
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroaki Makino, Mitsuru Asai, Nobuo Kamiya, Shin Tajima, Katsunori Yamada, Hiroshi Hohjo
  • Publication number: 20030045422
    Abstract: The present invention has an object to obtain a ceramic body that can support a required amount of catalyst component, without lowering the characteristics such as strength, being manufactured without forming a coating layer and providing a high performance ceramic catalyst body that is excellent in practical utility and durability.
    Type: Application
    Filed: March 22, 2002
    Publication date: March 6, 2003
    Inventors: Masakazu Tanaka, Tomomi Hase, Takashi Kondo, Tosiharu Kondo, Hiromi Sano, Jun Hasegawa, Miho Ito, Tomohiko Nakanishi, Kazuhiko Koike, Takumi Suzawa
  • Patent number: 6482760
    Abstract: The invention relates to a refractory ceramic mass comprising 60 to 99 MgO sinter and 1 and 40 wt.-% of a manganese containing spinel.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: November 19, 2002
    Assignee: Veitsch-Radex GmbH
    Inventors: Gerald Buchebner, Dietmar Rumpf, Josef Deutsch