And Divalent Metal Oxide Other Than Alkaline Earth Oxide Or Magnesium Oxide Patents (Class 501/138)
  • Publication number: 20100243296
    Abstract: A dielectric porcelain composition contains a major component represented by a composition formula (BaO.xTiO2). The dielectric porcelain composition contains also contains a first minor component represented by a composition formula raB2O3 and a second minor component represented by a composition formula rbCuO. In the formulae, x is a molar ratio of TiO2 to BaO and is within a range of 4.6 to 8, ra is a weight ratio of B2O3 with respect to the major component and is within a range of 0.5 to 5% by mass, and rb is a weight ratio of CuO with respect to the major component and is within a range of 0.1 to 3% by mass.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicant: TDK CORPORATION
    Inventors: Yasuharu MIYAUCHI, Tomoko NAKAMURA, Toshiyuki SUZUKI
  • Patent number: 7791859
    Abstract: The invention relates to a method for manufacturing dielectric ceramic powder and a multilayer ceramic capacitor using the ceramic powder. According to the invention, BaCO3 powder is dispersed into a solution of solvent and dispersant to prepare BaCO3 slurry and then the resultant BaCO3 slurry is wet-milled. Also, TiO2 powder slurry is mixed into the wet-milled BaCO3 slurry to form mixed slurry and then the mixed slurry is dried into mixed powder. Finally, the dried mixed powder is calcined to produce BaTiO3 powder.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: September 7, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sung Soo Ryu, Seon Cheol Park, Sang Pyo Lee, Dong Sook Sinn, Sang Kyun Lee, Dang Hyok Yoon
  • Publication number: 20100220427
    Abstract: Multilayer ceramic chip capacitors (MLCC's) which satisfy X7R TCC requirements and which are compatible with silver-palladium internal electrodes. The MLCC's exhibit desirable dielectric properties—high capacitance, low dissipation factor, high insulation resistance, stable TCC—and excellent performance on highly accelerated life testing, and good resistance to dielectric breakdown. The dielectric layers comprise a lead-free and cadmium-free barium titanate base material doped with other metal oxides such oxides of zinc, boron, bismuth, barium, titanium, praseodymium, cerium, tungsten, neodymium, tungsten, tin, niobium, copper, and/or manganese in various combinations. The dielectric ceramic materials herein can be fired at less than 1150° C. with an inner electrode having 70 wt % or more Ag and 30 wt % or less Pd to form an MLCC.
    Type: Application
    Filed: October 27, 2008
    Publication date: September 2, 2010
    Applicant: FERRO CORPORATION
    Inventors: Walter J. Symes, JR., Mike S. H. Chu
  • Patent number: 7781358
    Abstract: An antiferroelectric ceramic material that can be formed into a multilayer capacitor is disclosed. The antiferroelectric ceramic material is selected from the Pb(Sn, Zr, Ti)O3 (PSnZT) composition family.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: August 24, 2010
    Assignee: TRS Technologies, Inc.
    Inventors: Wesley S. Hackenberger, Seongtae Kwon
  • Patent number: 7781360
    Abstract: The present invention provides a dielectric porcelain composition comprising 100 parts by weight of a barium titanate-based dielectric material and 4 to 10 parts by weight in total of Bi2O3 and at least one compound selected from the group of consisting of CuO, ZnO and MgO.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: August 24, 2010
    Assignees: NGK Insulators, Ltd., Soshin Electric Co., Ltd.
    Inventors: Tomoyuki Hasegawa, Yoshinori Ide, Tadashi Otagiri
  • Publication number: 20100204034
    Abstract: The dielectric ceramic composition comprising a main component including a compound satisfying a compositional formula of (SrxBa1-x)mTiO3 (“x” in said compositional formula is 0.159?“x”?0.238, and “m” is 0.997?“m”?1.011), and a subcomponent comprising 11 to 25 weight % of CaTiO3, 0.10 to 0.50 weight % of at least one oxide of element selected from the group consisting of Fe, Co, Ni, Cu, and Zn in terms of FeO3/2, CoO4/3, NiO, CuO, and ZnO, 0.590 to 1.940 mol % of an oxide of element “A” (A is Mn and/or Cr), and an oxide of element “D” where “D” is at least one element selected from a group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Y; wherein a ratio (A/D) of the element “A” with respect to element “D” is 2.250 to 7.450. According to the present invention, the dielectric loss (tan ?) at the wide frequency range can be lowered while maintaining a good capacitance temperature characteristic and the specific permittivity, without including Pb and bismuth Bi.
    Type: Application
    Filed: February 3, 2010
    Publication date: August 12, 2010
    Applicant: TDK CORPORATION
    Inventors: Yuji UMEDA, Fan ZHANG
  • Publication number: 20100195266
    Abstract: A dielectric ceramic with stable insulation properties even after calcination under a reducing atmosphere, as is preferred for a laminated ceramic capacitor, is a CaTiO3 composition containing Sn. It is preferable for the dielectric ceramic to contain, as its main component, (Ca1-xBaxSny)TiO3 (0?x<0.2, 0.01?y<0.2) with a solution of Sn at the B site.
    Type: Application
    Filed: January 28, 2010
    Publication date: August 5, 2010
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Megumi MORITA, Shoichiro Suzuki, Toshikazu Takeda, Tomomi Koga
  • Publication number: 20100195265
    Abstract: A dielectric ceramic which improves the lifetime characteristics and dielectric breakdown voltage of a laminated ceramic capacitor includes core-shell crystalline grains which have a core-shell structure and homogeneous crystalline grains which have a homogeneous structure. In this dielectric ceramic, the core-shell crystalline grains and the homogeneous crystalline grains are present at an area ratio in the range of 91:9 to 99:1. Preferably, when the mean grain size for the core-shell crystalline grains is represented by R1 and the mean grain size for the homogeneous crystalline grains is represented by R2, the ratio of R2/R1 is 0.8 or more and 3 or less.
    Type: Application
    Filed: January 20, 2010
    Publication date: August 5, 2010
    Applicant: MURATA MANUFACTURING CO., LTD
    Inventors: Masanori Nakamura, Shinichi Yamaguchi, Toshikazu Takeda
  • Patent number: 7767608
    Abstract: A dielectric ceramic-forming composition capable of being sintered at a temperature lower than that in the known art and to be formed into a dielectric ceramic material having a high dielectric constant; and a dielectric ceramic material obtained from the dielectric ceramic-forming composition are provided. The dielectric ceramic-forming composition includes a perovskite (ABO3) ceramic material powder having an average particle size of 0.01 to 0.5 ?m and a glass powder having an average particle size of 0.1 to 5 ?m, wherein the content of the glass powder is 3 to 12 percent by weight. The perovskite (ABO3) ceramic material powder is preferably a perovskite (ABO3) ceramic material powder prepared by a wet reaction.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: August 3, 2010
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Kyouichi Nishigaki, Shinji Tanabe, Naoaki Narishige
  • Publication number: 20100182733
    Abstract: A dielectric ceramic for use in dielectric ceramic layers has a main component represented by a composition formula of (Sr1-x-ySnxBay)TiO3, wherein x is 0.005?x?0.24, y is 0?y?0.25 and ______. Preferably, the dielectric ceramic includes 0.01 mol to 5 mol of M (M is at least one of Mn and V) calculated as MO and/or 0.2 mol to 5 mol of Si calculated as SiO2, with respect to 100 mols of the main component, and more preferably, further includes 0.1 mol to 25 mol of Ca calculated as CaO with respect to 100 mols of the main component. The dielectric ceramic has an increased dielectric constant permitting size reduction when used in a laminated ceramic capacitor.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 22, 2010
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Shoichiro Suzuki, Toshikazu Takeda
  • Patent number: 7759269
    Abstract: A dielectric ceramic composition of the invention comprises: BaTiO3 as a main component, MgO: 0.50 to 3.0 moles, MnO: 0.05 to 0.5 moles, oxide (RE12O3) of element selected from Sm, Eu, and Gd, oxide (RE22O3) of element selected from Tb and Dy, oxide (RE32O3) of element selected from Y, Ho, Er, Yb, Tm and Lu, BaZrO3: 0.20 to 1.0 moles, and oxide of element selected from V, Ta, Mo, Nb, and W: 0.05 to 0.25 moles as subcomponents wherein each subcomponent is calculated as a conversion of an oxide or composite oxide, with respect to 100 moles of the main component, and contents of said RE12O3, RE22O3 and RE32O3 satisfy RE12O3<RE22O3 and (RE12O3+RE22O3)?RE32O3.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: July 20, 2010
    Assignee: TDK Corporation
    Inventors: Tetsuhiro Takahashi, Yasuo Watanabe, Toshihiko Kaneko, Masakazu Hosono, Tatsuya Ishii, Saori Takeda, Taisuke Masuko
  • Patent number: 7727922
    Abstract: Multilayer ceramic chip capacitors which satisfy X8R requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a barium titanate base material doped with other metal oxides such as BaO, Y2O3, ZrO2, SiO2, MgO, MnO, MoO3, CaO, Lu2O3, Yb2O3, or WO3 in various combinations.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: June 1, 2010
    Assignee: Ferro Corporation
    Inventors: Gerhardus W. Koebrugge, Knuth Albertsen, Willibrordus J. L. M. J. Coppens
  • Publication number: 20100128414
    Abstract: To provide a dielectric ceramics achieving a high insulation resistance even at a low applied voltage, and minimizing insulation resistance drop when the voltage is increased, and also provide a multilayer ceramic capacitor including the dielectric ceramics as a dielectric layer, and having excellent life characteristics in a high temperature load test. The dielectric ceramics has crystal grains composed mainly of barium titanate and containing vanadium, and a grain boundary phase existing between the crystal grains. The dielectric ceramics contains 0.0005 to 0.03 moles of vanadium in terms of V2O5, with respect to 1 mole of barium constituting the barium titanate. In the X-ray diffraction chart of the dielectric ceramics, the diffraction intensity of (004) plane indicating the tetragonal system of barium titanate is larger than the diffraction intensity of (400) plane indicating the cubic system of barium titanate.
    Type: Application
    Filed: March 21, 2008
    Publication date: May 27, 2010
    Applicant: KYOCERA CORPORATION
    Inventors: Yusuke Azuma, Youichi Yamazaki
  • Publication number: 20100120607
    Abstract: A glass-free microwave dielectric ceramic that can be sintered at low temperature, and a manufacturing method thereof are provided. The glass-free microwave dielectric ceramic composition includes a composition represented by a formula, M2+N4+B2O6, wherein M is one element of Ba, Ca and Sr, and N is one element of Sn, Zr and Ti. The M may be replaced by two elements of Ba, Ca and Sr different from each other, to form a composition represented by a formula, (M1-x2+Mx2+)N4+B2O6, wherein 0<x<1. The N may also be replaced by two elements of Sn, Zr and Ti different from each other, to form a composition represented by a formula, M2+(N1-y4+Ny4+)B2O6, wherein 0<y<1. Furthermore, it is also possible to replace both of the M and N to form a composition represented by a formula, (M1-x2+Mx2+)(N1-y4+Ny4+)B2O6, wherein 0<x<1 and 0<y<1.
    Type: Application
    Filed: November 22, 2007
    Publication date: May 13, 2010
    Applicant: Korea Institute of Ceramic Engineering & Technolog y
    Inventors: Hyo Tae Kim, Jong Hee Kim, Myung Hwa Nam
  • Publication number: 20100120606
    Abstract: The invention relates to the technology of the production of ceramic ferroelectric composite materials, and it can be used in the electronics industry for the production of the broad class of elements and instruments of electronic engineering controlled by an applied electric field. The invention is intended for obtaining the ceramic ferroelectric composite material that ensures the achievement of the technical result, consisting in a decrease in the level of the dielectric losses in the radio and microwave frequencies for the materials with the dielectric constant from 152 to 796 together with an increase in the tunability of the dielectric constant by the electric field. The technical result is achieved by the proposed ceramic ferroelectric composite material, produced from the composition including BaTiO3 and SrTiO3, which additionally includes the magnesium-containing mixture of magnesium orthotitanate Mg2TiO4 and magnesia MgO, with the following content of components, mass %: BaTiO3 27.0-48.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 13, 2010
    Inventors: Elizaveta Arkadievna Nenasheva, Alexey Dmitrievich Kanareykin
  • Publication number: 20100097740
    Abstract: A dielectric ceramic comprising a barium titanate as a main component and a capacitor comprising the dielectric ceramic are disclosed. The dielectric ceramic has a high dielectric constant that is stable over temperature, and has a small spontaneous polarization. The capacitor can reduce audible noise caused by an electrically induced strain in a power supply circuit.
    Type: Application
    Filed: December 22, 2009
    Publication date: April 22, 2010
    Applicant: KYOCERA CORPORATION
    Inventor: Katsuyoshi YAMAGUCHI
  • Patent number: 7691286
    Abstract: A piezoelectric ceramic composition includes a primary component represented by the formula (1-x)(K1-a-bNaaLib)m(Nb1-c-dTacSbd)O3-xM1nM2O3, and 0.1 to 10 moles (preferably 1.5 to 10 moles) of at least one specific element selected from the group consisting of In, Sc, Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu with respect to 100 moles of the primary component, wherein M1 is Ca, Sr, or Ba M2 is Ti, Zr, or Sn; and x, a, b, c, d, m, and n satisfy 0.005?x?0.1, 0?a?0.9, 0?b?0.3, 0?a+b?0.9, 0?c?0.5, 0?d?0.1, 0.9?m?1.1, and 0.9?n?1.1. Preferably, Mn, Ni, Fe, Zn, Cu, or Mg is further added. As a result, at both a very low and a high electric field, a high piezoelectric d constant can be stably obtained with a high efficiency.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: April 6, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shinichiro Kawada, Ryoko Katayama, Katsuhiro Horikawa
  • Patent number: 7678853
    Abstract: The present invention provides a highly dielectric elastomer composition which shows a high dielectric constant in a wide temperature range from low to high temperature and has a low dielectric loss tangent, and a dielectric antenna composed of the highly dielectric elastomer composition. A dielectric antenna including a molding of a highly dielectric elastomer composition composed of an elastomer and a highly dielectric ceramic powder mixed with the elastomer and an electrode formed on the molding. The highly dielectric ceramic powder of barium titanate.neodymium ceramic has a temperature coefficient ?(unit: 1/° C.) of a dielectric constant of the ceramic powder on 25° C. standard ranging from ?200×10?6 to 100×10?6 over a temperature range from ?40° C. to 100° C. The dielectric constant of the highly dielectric elastomer composition is ?7 and a dielectric loss tangent thereof is ?0.01.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: March 16, 2010
    Assignee: NTN Corporation
    Inventor: Kouya Oohira
  • Publication number: 20100053843
    Abstract: A dielectric ceramic contains a barium titanate and Li. In the dielectric ceramic, the following inequalities are satisfied: 0.5?e?6.0, 0.06<Rg<0.17, and ?g<0.075, where e is the content, in molar parts, of Li with respect to 100 molar parts of the titanate; Rg is the average size, in ?m, of grains in the dielectric ceramic; and ?g is the standard deviation, in ?m, of the size of the grains.
    Type: Application
    Filed: August 13, 2009
    Publication date: March 4, 2010
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Tomonori Muraki, Tomoyuki Nakamura, Makoto Matsuda, Hironori Suzuki, Takehisa Sasabayashi, Masayuki Ishihara, Akihiro Shiota
  • Publication number: 20100035749
    Abstract: The present invention relates to a dielectric thin film composition showing linear dielectric properties, in which tin oxides (SnO2) are introduced into a (Ba,Sr)TiO3 (BSTO) dielectric thin film in a continuous diffusion gradient manner in composition. Since the non-linear dielectric properties of BSTO are converted to linear dielectric properties by the addition of SnO2 according to the present invention, the dielectric thin film composition of the present invention is characterized in that: there is little change in the capacitance according to the applied electric field; it has a high dielectric constant capable of showing a desired capacitance even at a thickness suitable for preventing the occurrence of electron tunneling; and it exhibits paraelectric properties similar to the conventional dielectric substances such as SiO2 while having a very low dielectric loss.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 11, 2010
    Inventors: Ji-Won Choi, Won Kook Choi, Seok-Jin Yoon
  • Patent number: 7655588
    Abstract: A dielectric porcelain composition here contains as main components BaO, Nd2O3, TiO2, MgO and SiO2 at the given ratios and as subordinate components ZnO, B2O3, CuO and an alkaline earth metal oxide RO (R: an alkaline earth metal) at given ratios, preferably with the addition of Ag as an optional subordinate component, so that it can have low-temperature sintering capability stable and reliable enough to permit a conductor formed of Ag, an alloy containing Ag as a main component or the like to be used as an internal conductor.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: February 2, 2010
    Assignee: TDK Corporation
    Inventors: Tomohiro Arashi, Yasuharu Miyauchi
  • Publication number: 20100022382
    Abstract: Provided are a dielectric composition and a ceramic electronic component including the same. The dielectric composition includes (a) barium titanate having a specific surface area of 2.5 m2/g to 6.0 m2/g; (b) a mixture containing at least one or more materials selected from the group consisting of any one oxide of Mg, Ca, Sr, Ba and Zr, and any one carbide thereof; (c) oxide containing at least one or more materials selected from the group consisting of Sc, Y, La, Ac, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; (d) oxide containing at least one or more material selected from the group consisting of Cr, Mn, Fe, Co, and Ni; (e) oxide containing at least one or more material selected from the group consisting of V, Nb, and Ta; and (f) oxide containing at least one or more material selected from the group consisting of Si and Al. The dielectric composition can satisfy X8R characteristic, can be sintered at a low temperature, and can obtain high reliability.
    Type: Application
    Filed: September 26, 2008
    Publication date: January 28, 2010
    Inventors: Sung Hyung KANG, Young Tae Kim, Kang Heon Hur, Jeong Oh Hong, Su Jin Kim
  • Patent number: 7652870
    Abstract: A multilayer ceramic capacitor includes a plurality of ceramic dielectric layers, a plurality of inner electrode layers and and external electrodes. The ceramic dielectric layers includes barium titanate crystal grains having pores inside. The inner electrode layers are between the ceramic dielectric layers. The external electrodes are electrically connected to the inner electrode layers. The barium titanate crystal grains each have a core-shell structure which include a core and a shell around the core. The the pores are mainly formed in the cores.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: January 26, 2010
    Assignee: Kyocera Corporation
    Inventors: Youichi Yamazaki, Kiyoshi Matsubara, Hiromi Seki
  • Publication number: 20100002360
    Abstract: A dielectric ceramic and a capacitor comprising the dielectric ceramic are disclosed. The dielectric ceramic has a high dielectric constant that is stable over temperature, and has a small spontaneous polarization. The capacitor can reduce audible noise caused by an electrically induced strain in a power supply circuit.
    Type: Application
    Filed: September 14, 2009
    Publication date: January 7, 2010
    Applicant: KYROCERA CORPORATION
    Inventors: Katsuyoshi YAMAGUCHI, Masahiro Nishigaki
  • Patent number: 7641970
    Abstract: A low temperature sinterable dielectric ceramic composition is obtained by bending 2.5-20 parts by weight of a glass component per 100 parts by weight of an aggregate of dielectric particles which are composed of Ti-containing dielectric material and contain an oxide including Ti and Zn in the surface portions. A low temperature sintered dielectric ceramic is produced by sintering this low temperature sinterable dielectric ceramic composition at 880 to 1000° C. With this low temperature sinterable dielectric ceramic composition, there can be obtained a multiplayer electronic component having an internal conductor composed of Ag, Cu or an alloy containing at least one of them.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: January 5, 2010
    Assignee: UBE Industries, Ltd.
    Inventors: Takafumi Kawano, Masataka Yamanaga, Koichi Fukuda
  • Patent number: 7638451
    Abstract: A dielectric ceramic contains a barium titanate compound oxide as a main component; at least one rare earth element R selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; Mg; and Ni, such that a crystalline compound oxide containing the rare earth element R, Ni, and Ti as main components is present. Dielectric ceramic layers are made of the dielectric ceramic. Accordingly, even when a higher electric field is continuously applied under a high-temperature atmosphere for a long time, high reliability can be ensured.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: December 29, 2009
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Noriyuki Inoue, Toshihiro Okamatsu
  • Publication number: 20090264276
    Abstract: A method of producing fine and uniform barium titanate particles having high crystallinity by performing a heat treatment on titanium dioxide and barium carbonate having a specific surface area of at least 20 m2/g and low rutile ratio; comprising the steps of preparing mixed powder by mixing titanium dioxide particles having a rutile ratio of 30% or lower and a specific surface area of 20 m2/g or more and barium carbonate particles, a first heat treatment step for performing a heat treatment on the mixed powder to generate a barium titanate phase having an average thickness of at least 3 nm continuously on surfaces of titanium dioxide particles by an amount of 15 wt % or more, and a second heat treatment step for performing a heat treatment at 800° C. to 1000° C.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 22, 2009
    Applicant: TDK CORPORATION
    Inventors: Tomohiro Yamashita, Tomoaki Nonaka, Shinsuke Hashimoto, Hiroshi Sasaki, Yoshinori Fujikawa
  • Patent number: 7605104
    Abstract: The invention relates to a glass composition and a glass frit adequate for low temperature sintering agent at 1,100° C. or less, and a dielectric composition and a multilayer ceramic capacitor using the same. The glass composition comprises aLi2O-bK2O-cCaO-dBaO-eB2O3-fSiO2, in which a, b, c, d, e and f satisfy following relationships: a+b+c+d+e+f=100, 2?a?10, 2?b?10, 0?c?25, 0?d?25, 5?e?20, and 50?f?80.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: October 20, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sung Bum Sohn, Kang Heon Hur, Eun Sang Na, Tae Ho Song, Han Seong Jung, Chan Kong Kim
  • Publication number: 20090253571
    Abstract: The invention intends to provide a precursor material for manufacturing dielectric fine particles, typically barium titanate particles, having uniform particle diameter and particle characteristics, and manufacturing method thereof. The composite oxide particles according to the present invention, which is the precursor material for barium titanate particles, substantially consists of 75 to 25 mol % barium titanate phase and 25 to 75 mol % titanium dioxide phase, and is produced by heat treating a mixed powder consisting of 100 mol % titanium dioxide particles and 25 to 75 mol % barium compound particles at 500° C. or more and less than 900° C.
    Type: Application
    Filed: March 26, 2009
    Publication date: October 8, 2009
    Applicant: TDK CORPORATION
    Inventors: Shinsuke Hashimoto, Tomohiro Yamashita, Tomoaki Nonaka, Hiroshi Sasaki
  • Patent number: 7597817
    Abstract: Novel metal oxide compositions are disclosed. These ferromagnetic or ferrimagnetic compositions have resitivities that vary between those of semiconducting and insulating materials, and they further exhibit Curie temperatures greater than room temperature (i.e., greater than 300 K). They are perovskite structures with the general chemical formulas (A1-xMx)BO3, (A1-xMx)(B?B?)O3 or A(B1-xMx)O3, where A can be a 1+, 2+ and 3+ charged ion; B can be a 5+, 4+, 3+ charged ion; B? and B? can be 2+, 3+, 4+, 5+ and 6+ charged ion. M is a magnetic ion dopant. X-ray diffraction patterns are presented for exemplary compositions.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: October 6, 2009
    Assignee: Intematix Corporation
    Inventors: Yi-Qun Li, Ning Wang, Qizhen Xue, Shifan Cheng, Xiao-Dong Xiang
  • Patent number: 7595975
    Abstract: A dielectric ceramic including a perovskite compound represented by the general formula {(Ba1-x-yCaxSny)m(Ti1-zZrz)O3} as a primary component in which the x, y, z, and m satisfy 0.02?x?0.20, 0.02?y?0.20, 0?z?0.05, and 0.99?m?1.1 and is processed by a thermal treatment at a low oxygen partial pressure of 1.0×10?10 to 1.0×10?12 MPa. Accordingly, there are provided a dielectric ceramic which can be stably used in a high-temperature atmosphere without degrading dielectric properties, properties of which can be easily adjusted, and which generates no electrode breakage even when ceramic layers and conductive films are co-fired, and a ceramic electronic element, such as a multilayer ceramic capacitor, which uses the above dielectric ceramic.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 29, 2009
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shoichiro Suzuki, Hideaki Niimi
  • Publication number: 20090195960
    Abstract: Electronic device 1 comprises an element body 10, comprising a dielectric layer 2 constituted by a dielectric ceramic composition, and a terminal electrode 4, formed outside of the element body 10. The dielectric ceramic composition comprised a main component including barium titanate; a first subcomponent including at least one oxide of Mg and Ca; a second subcomponent including SiO2; a third subcomponent including at least one oxide of Mn and Cr; and a fourth subcomponent including an oxide of rare earth elements, wherein the net valence of Mn and/or Cr in the third subcomponent is 2.2 to 2.4. According to the electronic device 1, both high temperature accelerated lifetime characteristics and capacity stress aging characteristics can be improved in a balanced manner.
    Type: Application
    Filed: June 23, 2006
    Publication date: August 6, 2009
    Applicant: TDK CORPORATION
    Inventors: Shigeki Sato, Keiichi Fukuda
  • Patent number: 7567428
    Abstract: A dielectric ceramic composition for low-temperature sintering and hot insulation resistance (hot IR) is capable of carrying out low-temperature sintering, improving a hot IR characteristic, and meeting X5R characteristics, and a multilayer ceramic capacitor makes use of the dielectric ceramic composition. The dielectric ceramic composition includes a main component BaTiO3, and sub-components, based on 100 moles of the main component, MgO of 0.5 moles to 2.0 moles, Re2O3 of 0.3 moles to 2.0 moles, MnO of 0.05 moles to 0.5 moles, V2O5 of 0.01 moles to 0.5 moles, BaO of 0.3 moles to 2.0 moles, SiO2 of 0.1 moles to 2.0 moles, and borosilicate glass of 0.5 moles to 3.0 moles, where Re includes at least one selected from the group consisting of Y, Ho and Dy.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: July 28, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sung Bum Sohn, Young Tae Kim, Kang Heon Hur, Eun Sang Na, Tae Ho Song, Soon Mo Song
  • Patent number: 7545626
    Abstract: A multi-layer ceramic capacitor including: a ceramic sintered body having cover layers provided on upper and lower surfaces thereof as outermost layers and a plurality of ceramic layers disposed between the cover layers; first and second internal electrodes formed on the ceramic layers, the first and second internal electrodes stacked to interpose one of the ceramic layers; first and second external electrodes formed on opposing sides of the ceramic sintered body to connect to the first and second internal electrodes, respectively; and anti-oxidant electrode layers formed between the cover layers and adjacent ones of the ceramic layers, respectively, the anti-oxidant electrode layers arranged not to affect capacitance.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: June 9, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dae Hwan Kim, Tae Ho Song, Hyung Joon Kim, Jong Ho Lee, Chul Seung Lee
  • Patent number: 7544629
    Abstract: A non-lead glass for forming a dielectric, which consists essentially of, as represented by mol %, from 20 to 39% of SiO2, from 5 to 35% of B2O3, from 2 to 15% of Al2O3, from 1 to 25% of CaO+SrO, from 5 to 25% of BaO, from 0 to 35% of ZnO, and from 0 to 10% of TiO2+ZrO2+SnO2, provided that B2O3+ZnO is from 15 to 45%, and which does not contain alkali metal oxides, or contains such oxides in a total amount within a range of less than 1%. Further, a glass ceramic composition for forming a dielectric, which consists essentially of a Ba-containing compound powder and a powder of the above mentioned non-lead glass for forming a dielectric. Further, a dielectric obtained by firing the above glass ceramic composition for forming a dielectric.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: June 9, 2009
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuhiro Ito, Yasuko Osaki, Katsuyoshi Nakayama, Kazunari Watanabe, Jiro Chiba
  • Publication number: 20090141427
    Abstract: Provided are a dielectric composition and a multi-layer ceramic capacitor embedded low temperature co-fired ceramic substrate using the same. The dielectric composition includes a main component, BaTiO3 of about 80 wt % or more, and an accessory component, CuBi2O4 and ZnO—B2O3—SiO2-based glass of about 20 wt % or less.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 4, 2009
    Inventors: Soo Hyun Lyoo, Jong Myeon Lee, Ho Sung Choo, Min Ji Ko, Beom Joon Cho, Myung Whun Chang
  • Patent number: 7541306
    Abstract: Multilayer ceramic chip capacitors which satisfy X8R requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a barium titanate base material doped with other metal oxides such as BaO, Y2O3, ZrO2, SiO2, MgO, MnO, MoO3, CaO, Lu2O3, Yb2O3, or WO3 in various combinations.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: June 2, 2009
    Assignee: Ferro Corporation
    Inventors: Gerhardus W. Koebrugge, Knuth Albertsen, Willibrordus J. L. M. J. Coppens
  • Patent number: 7541305
    Abstract: A dielectric ceramic composition having a main ingredient including a dielectric oxide expressed by the formula {(Me1-xCax)O}m.(Zr1-yTiy)O2, where the symbol Me indicating the name of the element in said formula is at least one of Sr, Mg, and Ba and where the symbols m, x, and y indicating the molar ratios of the formulation in the formula are in relationships of 0.995?m?1.020, 0<x?0.15, and 0?y?1.00, a first sub ingredient including an oxide of R (where R is a rare earth element), a second sub ingredient including an oxide of Mg, and a third sub ingredient including an oxide of Mn, wherein the ratios of the sub ingredients with respect to 100 moles of the main ingredient are first sub ingredient: 0.1 to 6 moles (value converted to oxide of R), second sub ingredient: 0.1 to 5 moles (value converted to oxide of Mg), and third sub ingredient: 0.1 to 2.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: June 2, 2009
    Assignee: TDK Corporation
    Inventors: Kazushige Ito, Akira Sato, Taku Murase
  • Publication number: 20090135546
    Abstract: The present invention provides a nano complex oxide doped dielectric ceramic material used for a multilayer ceramic capacitor using a base metal as a material of internal electrodes. The doped dielectric ceramic material comprises barium titanate and a nano complex oxide dopant, wherein the molar ratio of the barium titanate to the nano complex oxide dopant is in the range of (90˜98):(2˜10), the average particle size of the barium titanate is 50˜300 nm and the nano complex oxide dopant has the following formula (1): w A+x B+y C+z D. The present invention also provides processes for preparing the nano complex oxide doped dielectric ceramic material and ultrafine-grained and temperature-stable multilayer ceramic capacitors using the nano complex oxide doped dielectric ceramic material as the material of dielectric layers.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 28, 2009
    Applicant: Tsinghua University
    Inventors: Xiaohui Wang, Zhibin Tian, Tian Wang, Longtu Li
  • Patent number: 7538057
    Abstract: A ceramic electronic device having a dielectric layer, wherein the dielectric layer includes a main component containing a (Ba, Ca (Ti, Zr)O3 based material and a subcomponent containing an oxide of Si; and a content of the Si oxide is 0 to 0.4 wt % (note that 0 is not included) with respect to the entire dielectric layer; and preferably the dielectric layer has a segregation phase; and the segregation phase contains an oxide of Si and substantially not containing an oxide of Li; by which it is possible to provide a ceramic electronic device, such as a multilayer ceramic capacitor, having a low IR defect rate (initial insulation resistance defect rate), excellent high temperature load lifetime and high reliability.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: May 26, 2009
    Assignee: TDK Corporation
    Inventors: Kazushige Ito, Daisuke Iwanaga, Akira Sato
  • Publication number: 20090128988
    Abstract: A dielectric ceramic composition for low-temperature sintering and hot insulation resistance (hot IR) is capable of carrying out low-temperature sintering, improving a hot IR characteristic, and meeting X5R characteristics, and a multilayer ceramic capacitor makes use of the dielectric ceramic composition. The dielectric ceramic composition includes a main component BaTiO3, and sub-components, based on 100 moles of the main component, MgO of 0.5 moles to 2.0 moles, Re2O3 of 0.3 moles to 2.0 moles, MnO of 0.05 moles to 0.5 moles, V2O5 of 0.01 moles to 0.5 moles, BaO of 0.3 moles to 2.0 moles, SiO2 of 0.1 moles to 2.0 moles, and borosilicate glass of 0.5 moles to 3.0 moles, where Re includes at least one selected from the group consisting of Y, Ho and Dy.
    Type: Application
    Filed: June 27, 2008
    Publication date: May 21, 2009
    Inventors: Sung Bum Sohn, Young Tae Kim, Kang Heon Hur, Eun Sang Na, Tae Ho Song, Soon Mo Song
  • Publication number: 20090128990
    Abstract: A dielectric ceramic contains a barium titanate compound oxide as a main component; at least one rare earth element R selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; Mg; and Ni, such that a crystalline compound oxide containing the rare earth element R, Ni, and Ti as main components is present. Dielectric ceramic layers are made of the dielectric ceramic. Accordingly, even when a higher electric field is continuously applied under a high-temperature atmosphere for a long time, high reliability can be ensured.
    Type: Application
    Filed: January 16, 2009
    Publication date: May 21, 2009
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Noriyuki Inoue, Toshihiro Okamatsu
  • Patent number: 7528088
    Abstract: A multilayer ceramic capacitor 1 having dielectric layers 2 having barium titanate or barium calcium titanate as a main ingredient. When the dielectric layers are barium titanate, the ratio of the grains having a thickness of the crystal grain boundaries 22 present between adjoining dielectric grains 20 is 30% to 95% of the plurality of dielectric grains 20 forming the dielectric layers 2. When the dielectric layers 2 are barium calcium titanate, the ratio of the grains having a thickness of the crystal grain boundaries 22 present between adjoining dielectric grains 20 is 20% to 70% of the plurality of dielectric grains 20 forming the dielectric layers 2.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: May 5, 2009
    Assignee: TDK Corporation
    Inventors: Yuji Umeda, Satoko Ueda, Yoshinori Fujikawa, Akira Sato
  • Publication number: 20090105064
    Abstract: To provide a semiconductor ceramic composition containing no Pb in which a part of Ba in BaTiO3 is substituted with Bi—Na, which is capable of shifting the Curie temperate to a positive direction as well as of greatly lowering resistivity at room temperature, and a method for producing the same. BaTiO3 calcined powder and (BiNa)TiO3 calcined powder, which contain no semiconductive dopant, are prepared separately, the calcined powders are mixed, crushed, formed, and then sintered in an inert gas atmosphere having an oxygen concentration of 1% or less to obtain a semiconductor ceramic composition represented by a composition formula: [(BiNa)xBa1-x]TiO3 in which x satisfies 0<x?0.3.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 23, 2009
    Inventors: Takeshi Shimada, Kazuya Toji
  • Patent number: 7521390
    Abstract: Multilayer ceramic chip capacitors which satisfy X7R and BX requirements and which are compatible with silver-palladium internal electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a lead-free and cadmium-free barium titanate base material doped with other metal oxides such oxides of zinc, boron, bismuth, cerium, tungsten, copper, manganese, neodymium, niobium, silver, barium, silicon and nickel in various combinations. The dielectric ceramic materials herein can be sintered together (fired) at less than 1000° C. with an inner electrode having more than 80 wt % Ag and less than 20 wt % Pd to form a multilayer ceramic capacitor (MLCC).
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: April 21, 2009
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Mike S. H. Chu
  • Patent number: 7517823
    Abstract: A dielectric porcelain composition here contains as main components BaO, Nd2O3, TiO2, MgO and SiO2 at the given ratios and as subordinate components ZnO, B2O3 and CuO at given ratios, so that it can have a low-temperature sintering capability stable and reliable enough to permit a conductor formed of Ag, an alloy containing Ag as a main component or the like to be used as an internal conductor. It is also possible to obtain a dielectric porcelain composition that has limited resonance frequency changes with temperature changes and a specific dielectric constant lower than that of a BaO-rare earth oxide-TiO2 base dielectric porcelain composition, and so is suitable for multilayer type device formation.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: April 14, 2009
    Assignee: TDK Corporation
    Inventors: Tomohiro Arashi, Yasuharu Miyauchi
  • Publication number: 20090086407
    Abstract: A dielectric ceramic composition of the invention comprises: BaTiO3 as a main component, MgO: 0.50 to 3.0 moles, MnO: 0.05 to 0.5 moles, oxide (RE12O3) of element selected from Sm, Eu, and Gd, oxide (RE22O3) of element selected from Tb and Dy, oxide (RE32O3) of element selected from Y, Ho, Er, Yb, Tm and Lu, BaZrO3: 0.20 to 1.0 moles, and oxide of element selected from V, Ta, Mo, Nb, and W: 0.05 to 0.25 moles as subcomponents wherein each subcomponent is calculated as a conversion of an oxide or composite oxide, with respect to 100 moles of the main component, and contents of said RE12O3, RE22O3 and RE32O3 satisfy RE12O3<RE22O3 and (RE12O3+RE22O3)?RE32O3.
    Type: Application
    Filed: September 24, 2008
    Publication date: April 2, 2009
    Applicant: TDK CORPORATION
    Inventors: Tetsuhiro Takahashi, Yasuo Watanabe, Toshihiko Kaneko, Masakazu Hosono, Tatsuya Ishii, Saori Takeda, Taisuke Masuko
  • Publication number: 20090082192
    Abstract: A dielectric ceramic composition comprised of at least dielectric particles having barium titanate as its main ingredient, wherein the ratio of dielectric particles having a surface diffusion structure comprised of a main ingredient phase comprised of the main ingredient and a diffusion phase present around the main ingredient phase with respect to said dielectric particles is 60% or more and the ratio of dielectric particles having a domain in the main ingredient phase with respect to the dielectric particles having the surface diffusion structure is 20% or less. According to the present invention, a dielectric ceramic composition and electronic device realizing good high temperature accelerated life can be provided.
    Type: Application
    Filed: November 10, 2008
    Publication date: March 26, 2009
    Applicant: TDK CORPORATION
    Inventors: Kazushige Ito, Akira Sato, Akitoshi Yoshii, Masayuki Okabe, Atsushi Takeda, Takaki Shinkawa
  • Publication number: 20090075119
    Abstract: An embodiment of the present invention provides a method of making an electronically tunable dielectric material comprising mixing particles of at least one electronically tunable dielectric phase and particles of at least one compound of low loss complex perovskites, and particles of optional one other family of materials; and sintering the material.
    Type: Application
    Filed: October 2, 2008
    Publication date: March 19, 2009
    Inventors: Xubai Zhang, Louise C. Sengupta, Elijah Aaron Underhill
  • Patent number: 7505249
    Abstract: The present invention aims to provide an electronic component capable of reducing the occurrence of cracks at the joining portion to a board etc. A capacitor 1 (laminated ceramic capacitor) being one example of the electronic component is provided with an element assembly 10 (ceramic) and a pair of external electrodes 20 formed on both side surfaces of the element assembly 10. In the element assembly 10, a dielectric layer 12 and an internal electrode 14 are laminated alternately. The external electrode 20 has such constitution that a first electrode layer connected with the internal electrode, a second electrode layer (electroconductive resin layer) including a hardened product of thermohardening resin containing a polyphenol compound having a side chain composed of an aliphatic group, a third electrode layer composed of Ni and a fourth electrode layer composed of Sn are formed in this order from the element assembly side.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: March 17, 2009
    Assignee: TDK Corporation
    Inventors: Takashi Komatsu, Kouji Tanabe