And Aluminum Patents (Class 501/66)
  • Patent number: 8691711
    Abstract: Glass for a display device, which comprises, as represented by mole percentage based on the following oxides, from 61 to 72% of SiO2, from 8 to 17% of Al2O3, from 6 to 18% of Li2O, from 2 to 15% of Na2O, from 0 to 8% of K2O, from 0 to 6% of MgO, from 0 to 6% of CaO, from 0 to 4% of TiO2, and from 0 to 2.5% of ZrO2, and having a total content R2O of Li2O, Na2O and K2O of from 15 to 25%, a ratio Li2O/R2O of the Li2O content to R2O of from 0.35 to 0.8, and a total content of MgO and CaO of from 0 to 9%.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 8, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Tetsuya Nakashima, Seiki Ohara, Tatsuo Nagashima
  • Publication number: 20140087935
    Abstract: A glass sheet for a thin-film solar cell of the present invention is characterized by including, as a glass composition in terms of mass %, 45 to 60% of SiO2, more than 8.0 to 18% of Al2O3, 0 to 15% (excluding 15%) of B2O3, 1 to 40% of MgO+CaO+SrO+BaO, and 1 to 30% of Na2O+K2O, and having a strain point of more than 580° C.
    Type: Application
    Filed: April 25, 2012
    Publication date: March 27, 2014
    Inventor: Masato Muguruma
  • Patent number: 8679993
    Abstract: A glass composition for a glass fiber includes, in terms of oxides by mass %, 45 to 65% of SiO2, 10 to 20% of Al2O3, 13 to 25% of B2O3, 5.5 to 9% of MgO, 0 to 10% of CaO, 0 to 1% of Li2O+Na2O+K2O, SrO, and BaO.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 25, 2014
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Kaori Sawanoi, Jiro Abe, Toshikatsu Tanaka
  • Patent number: 8652978
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: February 18, 2014
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Publication number: 20140045676
    Abstract: The present invention provides the composition of an alkali-free glass composition containing no alkali metal oxide and the preparation thereof. The alkali-free glass comprising substantially no alkali metal oxide according to the present invention comprises 61 to 73 wt % of SiO2; 0.5 to 3.9 wt % of B2O3; 3.5 to 13.5 wt % of Al2O3; 9 to 13 wt % of MgO; 1 to 8 wt % of CaO; and 4 to 10 wt % of SrO, based on the total weight of oxides present therein.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Sang-Kook KIM, Won-Bae LIM, Du-Sun HWANG, Dong-Kwon LEE, Su-Hwan KIM, Da-Jeong KIM
  • Patent number: 8647995
    Abstract: Sodium containing aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CIGS photovoltaic devices. These glasses can be characterized as having strain points ?535° C., for example, ?570° C., thermal expansion coefficients of from 8 to 9 ppm/° C., as well as liquidus viscosities in excess of 50,000 poise. As such they are ideally suited for being formed into sheet by the fusion process.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: February 11, 2014
    Assignee: Corsam Technologies LLC
    Inventors: Bruce Gardiner Aitken, James Edward Dickinson, Jr., Timothy J Kiczenski
  • Publication number: 20140038807
    Abstract: According to the present invention, an alkali-free glass for a substrate, having a thickness of 0.1 mm to 0.3 mm and a compaction of 9 ppm or lower can be obtained without performing heat treatment as a post-treatment for the alkali-free glass for a substrate after production (after forming, annealing and cutting).
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: Asahi Glass Company, Limited
    Inventors: Tomoyuki TSUJIMURA, Manabu Nishizawa, Nobuhiko Higuchi
  • Patent number: 8640498
    Abstract: Glasses are disclosed which can be used to produce substrates for flat panel display devices, e.g., active matrix liquid crystal displays (AMLCDs). The glasses have MgO concentrations in the range from 1.0 mole percent to 3.0 mole percent and ?[RO]/[Al2O3] ratios greater than or equal to 1.00, where [Al2O3] is the mole percent of Al2O3 and ?[RO] equals the sum of the mole percents of MgO, CaO, SrO, and BaO. These compositional characteristics have been found to improve the melting properties of batch materials used to produce the glass, which, in turn, allows the glasses to be fined (refined) with more environmentally friendly fining agents, e.g., tin as opposed to arsenic and/or antimony.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: February 4, 2014
    Assignee: Corning Incorporated
    Inventor: Adam J. G. Ellison
  • Patent number: 8642491
    Abstract: Glasses are disclosed which can be used to produce substrates for flat panel display devices, e.g., active matrix liquid crystal displays (AMLCDs). The glasses have MgO concentrations in the range from 1.0 mole percent to 3.0 mole percent and ?[RO]/[Al2O3] ratios greater than or equal to 1.00, where [Al2O3] is the mole percent of Al2O3 and ?[RO] equals the sum of the mole percents of MgO, CaO, SrO, and BaO. These compositional characteristics have been found to improve the melting properties of batch materials used to produce the glass, which, in turn, allows the glasses to be fined (refined) with more environmentally friendly fining agents, e.g., tin as opposed to arsenic and/or antimony.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: February 4, 2014
    Assignee: Corning Incorporated
    Inventor: Adam J. G. Ellison
  • Publication number: 20140031192
    Abstract: A glass substrate for a display, which is formed of a glass having a light weight and having high refinability with decreasing environmental burdens, the glass comprising, by mass %, 50 to 70% of SiO2, 5 to 18% of B2O3, 10 to 25% of Al2O3, 0 to 10% of MgO, 0 to 20% of CaO, 0 to 20% of SrO, 0 to 10% of BaO, 5 to 20% of RO (in which R is at least one member selected from the group consisting of Mg, Ca, Sr and Ba), and over 0.20% but not more than 2.0% of R?2O (in which R? is at least one member selected from the group consisting of Li, Na and K), and containing, by mass %, 0.05 to 1.5% of oxide of metal that changes in valence number in a molten glass, and substantially containing none of As2O3, Sb2O3 and PbO.
    Type: Application
    Filed: January 18, 2013
    Publication date: January 30, 2014
    Applicant: AVANSTRATE, INC.
    Inventors: Junji Kurachi, Akihiro Koyama, Yoichi Hachitani
  • Publication number: 20140023865
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 23, 2014
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Publication number: 20140011659
    Abstract: The present invention provides the composition of an alkali-free glass composition containing no alkali metal oxide and the preparation thereof. The alkali-free glass comprising substantially no alkali metal oxide according to the present invention comprises 46 to 57 wt % of SiO2; 3.5 to 7.5 wt % of B2O3; 21 to 29 wt % of Al2O3; 3 to 14 wt % of MgO; 11 to 16 wt % of CaO; and 1 to 5 wt % of SrO, based on the total weight of oxides present therein.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 9, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Dong-Kwon LEE, Jung-Sik BANG, Sang-Kook KIM, Won-Bae LIM, Su-Hwan KIM, Da-Jeong KIM
  • Publication number: 20140005026
    Abstract: The present invention provides a glass plate to be tempered, which has a low thermal expansion coefficient, a high surface compression stress due to physical reinforcements and a low density and is excellent in the scratch durability. A glass plate to be tempered which comprises, by mass % as represented by the following composition: SiO2: 55 to 85%, B2O3: 2 to 12%, MgO: 0.1 to 12%, CaO: 0.1 to 12%, Na2O: 0 to 13%, MgO+CaO+SrO+ZnO: 3 to 16% and Al2O3: 0 to 3% and, which can be tempered by heating and quenching.
    Type: Application
    Filed: August 28, 2013
    Publication date: January 2, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Akio KOIKE, Setsuro Ito
  • Patent number: 8617273
    Abstract: An abrasive article having an abrasive body including abrasive grains contained within a bond material, wherein the abrasive grains comprise microcrystalline alumina, and wherein the bond material includes less than about 1.0 mol % phosphorous oxide (P2O5), and a ratio measured in mol % between a total content of sodium oxide (Na2O) and a total content of potassium oxide (K2O) defined by [K2O/Na2O] having a value greater than about 0.5.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: December 31, 2013
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Gilles Querel, Sandhya Jayaraman Rukmani, Muthu Jeevanantham, Rosemarie Bot-Schulz, Kelley McNeal, Nilanjan Sarangi
  • Publication number: 20130345040
    Abstract: The present invention provides the composition of an alkali-free glass composition containing no alkali metal oxide and the preparation thereof. The alkali-free glass comprising substantially no alkali metal oxide according to the present invention comprises 60 to 70 wt % of SiO2; 1 to 3.5 wt % of B2O3; 1 to 13 wt % of Al2O3; 8.5 to 14 wt % of MgO; 1 to 3 wt % of CaO; 4 to 7 wt % of SrO; and 0.5 to 7 wt % of BaO, based on the total weight of oxides present therein.
    Type: Application
    Filed: August 29, 2013
    Publication date: December 26, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Dong-Kwon LEE, Sang-Kook Kim, In-Ki Hong, Jung-Min Ko, Sang-Hyeok Im
  • Publication number: 20130345041
    Abstract: Provided is a glass composition suitable for a glass substrate for a flat panel display such as a liquid crystal display. This glass composition has high thermal stability, and is substantially free of BaO but has a low devitrification temperature. It is suitable for the production of a glass substrate by a downdraw process. This glass composition contains, in terms of mass %: 54 to 62% of SiO2; 4 to 11% of B2O3; 15 to 20% of Al2O3; 2 to 5% of MgO; 0 to 7% of CaO; 0 to 13.5% of SrO; 0 to 1% of K2O; 0 to 1% of SnO2; and 0 to 0.2% of Fe2O3, and is substantially free of BaO. In this glass composition, the total content of alkaline earth metal oxides (MgO+CaO+SrO) is 10 to 18.5 mass %. The devitrification temperature of the glass composition is 1200° C. or lower.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 26, 2013
    Applicant: AvanStrate Inc.
    Inventors: Akihiro KOYAMA, Mikiko HASHIMOTO
  • Patent number: 8609561
    Abstract: A colorless transparent colloid-former-containing glass that is convertible into a colorless transparent glass ceramic or a metal colloid-colored glass ceramic via respective heat treatments contains a combination of one or more metal colloid formers and one or more redox partners. The metal colloid formers are preferably oxides containing Au, Ag, As, Bi, Nb, Cu, Fe, Pd, Pt, Sb and/or Sn. The redox partners are preferably oxides containing As, Ce, Fe, Mn, Sb, Sn and/or W, with the proviso that the redox partner must be different from the metal colloid former. The glass advantageously contains from 0.97 to 1.9 wt. % SnO2, 0.93 to 3.0 wt. % As2O3, or 1.59 to 6.0 wt. % of Sb2O3 as redox partner.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: December 17, 2013
    Assignee: Schott AG
    Inventors: Meike Schneider, Thilo Zachau, Friedrich Siebers, Wolfgang Schmidbauer
  • Publication number: 20130324389
    Abstract: The present invention relates to a glass composition including, in terms of mol % on the basis of oxides: from 55 to 70% of SiO2, from 5 to 10% of Al2O3, from 0 to 0.5% of B2O3, from 3 to 15% of MgO, from 3 to 15% of CaO, from 2 to 10% of SrO, from 1 to 10% of BaO, from 0 to 3% of ZrO2, from 0 to 1.8% of Na2O, and from 0 to 1% of K2O, provided that MgO+CaO+SrO+BaO is from 20 to 35%, and Na2O+K2O is from 0 to 2%, in which the glass composition has a glass transition temperature of 680° C. or higher, an average thermal expansion coefficient of from 50×10?7 to 70×10?7/° C., and a temperature at which a viscosity is 102 dPa·s of 1,600° C. or lower.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: Asahi Glass Company, Limited
    Inventors: Tatsuo NAGASHIMA, Yuki KONDO, Manabu NISHIZAWA, Akio KOIKE
  • Patent number: 8598056
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: December 3, 2013
    Assignee: Corning Incorporated
    Inventors: Adam J. Ellison, Timothy J. Kiczenski
  • Patent number: 8598055
    Abstract: Disclosed are alkali-free glasses having a liquidus viscosity of greater than or equal to about 90,000 poises, said glass comprising SiO2, Al2O3, B2O3, MgO, CaO, and SrO such that, in mole percent on an oxide basis: 64?SiO2?68.2; 11?Al2O3?13.5; 5?B2O3?9; 2?MgO?9; 3?CaO?9; and 1?SrO?5. The glasses can be used to make a display glass substrates, such as thin film transistor (TFT) display glass substrates for use in active matrix liquid crystal display devices (AMLCDs) and other flat panel display devices.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: December 3, 2013
    Assignee: Corning Incorporated
    Inventor: Adam James Ellison
  • Publication number: 20130316162
    Abstract: Provided is a tempered glass sheet having a compression stress layer in a surface thereof, comprising, as a glass composition expressed in mass % in terms of oxides, 50 to 70% of SiO2, 5 to 20% of Al2O3, 0 to 5% of B2O3, 8 to 18% of Na2O, 2 to 9% of K2O, and 30 to 1,500 ppm of Fe2O3, and having a spectral transmittance in terms of a thickness of 1.0 mm at a wavelength of 400 to 700 nm of 85% or more, a chromaticity x of 0.3095 to 0.3120 in xy chromaticity coordinates (illuminant C, in terms of a thickness of 1 mm), and a chromaticity y of 0.3160 to 0.3180 in xy chromaticity coordinates (illuminant C, in terms of a thickness of 1 mm).
    Type: Application
    Filed: February 7, 2012
    Publication date: November 28, 2013
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Takashi Murata, Kosuke Kawamoto
  • Patent number: 8586492
    Abstract: A glass and an enclosure, including windows, cover plates, and substrates for mobile electronic devices comprising the glass. The glass has a crack initiation threshold that is sufficient to withstand direct impact, has a retained strength following abrasion that is greater than soda lime and alkali aluminosilicate glasses, and is resistant to damage when scratched. The enclosure includes cover plates, windows, screens, and casings for mobile electronic devices and information terminal devices.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: November 19, 2013
    Assignee: Corning Incorporated
    Inventors: Kristen L Barefoot, Matthew John Dejneka, Sinue Gomez, Timothy Michael Gross, Nagaraja Shashidhar
  • Publication number: 20130302618
    Abstract: A high-strength alkali-aluminosilicate glass, characterized by excellent meltability, fineability. and processibility, exhibits the following formula: SiO2 60.5 to 69.0 weight percent Al2O3 7.0 to 11.8 weight percent B2O3 0 to 4.0 weight percent MgO 2.0 to 8.5 weight percent CaO 0 to 4.0 weight percent ZnO 0 to 5.0 weight percent ZrO2 0 to 3.0 weight percent Na2O 15.0 to 17.5 weight percent K2O 0 to 2.7 weight percent Li2O 0 to 2.0 weight percent and from 0 to 1.5 weight percent of a fining agents such as As2O3, Sb2O3 CeO2, SnO2, Cl?, F?, (SO4)2? and combinations thereof. The glass allows for adequate conditions for an alkali ion exchange treatment in a short time period (4 to 8 hours) and can also be produced according to the established, continuous, vertically downward directed drawing process such as the overflow down-draw method or the fusion method, the die slot or the slot down-draw method, or combinations thereof.
    Type: Application
    Filed: January 27, 2012
    Publication date: November 14, 2013
    Applicant: Kornerstone Materials Technology Co., Ltd.
    Inventors: Bernd Kuhnemann, Michael Boettger, Sicco Rathke
  • Publication number: 20130296157
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature. The glasses comprise in mol percent on an oxide basis: 70-74.5 SiO2, 10.5-13.5 AL2O3, 0-2.5 B2O3, 3-7 MgO, 3-7 CaO, 0-4 SrO, 1.5-6 BaO, 0-0.3 SnO2, 0-03 CeO2, 0-0.5 As2O3, 0-0.5 Sb2O3, 0.01-0.08 Fe2O3 and F+Cl+BrRO/Al2O31.7 and 0.2MgO/RO0.45, RO being the sum of MgO, BaO, SrO and CaO.
    Type: Application
    Filed: January 25, 2012
    Publication date: November 7, 2013
    Inventors: Adam J. Ellison, Timothy J. Kiczenski
  • Publication number: 20130295366
    Abstract: Provided is a tempered glass having a compression stress layer in a surface thereof, comprising, as a glass composition in terms of mass %, 50 to 75% of SiO2, 5 to 20% of Al2O3, 0 to 8% of B2O3, 5 to 20% of Na2O, 0.1 to 10% of K2O, 0.1 to 15% of MgO, and 0.001 to 5% of SrO+BaO, and having a mass ratio (MgO+CaO+SrO+BaO)/(MgO+ZrO2) of 0.3 to 1.5.
    Type: Application
    Filed: January 16, 2012
    Publication date: November 7, 2013
    Inventors: Takashi Murata, Takako Tojyo
  • Patent number: 8575415
    Abstract: The present invention provides processes to immobilize high alkaline radioactive and/or hazardous waste in a silicate-based glass, the waste containing one or more of radionuclides, hazardous elements, hazardous compounds, and/or other compounds. The invention also provides silicate-based glass compositions for use in immobilizing radioactive and/or hazardous waste.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: November 5, 2013
    Assignee: Geomatrix Solutions, Inc.
    Inventors: Anatoly Chekhmir, Arthur Gribetz
  • Publication number: 20130288877
    Abstract: The present invention relates to an alkali-free glass having a strain point of 735° C. or higher, an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 40×10?7/° C., a temperature T2 at which a glass viscosity is 102 dPa·s of 1,710° C. or lower, a temperature T4 at which a glass viscosity is 104 dPa·s of 1,340° C. or lower, and a devitrification temperature of 1,330° C. or lower, the alkali-free glass including, in terms of mol % on the basis of oxides: SiO2 66 to 69, Al2O3 12 to 15, B2O3 0 to 1.5, MgO 6 to 9.5, CaO 7 to 9, SrO 0.5 to 3, BaO 0 to 1, and ZrO2 0 to 2, in which MgO+CaO+SrO+BaO is from 16 to 18.2, MgO/(MgO+CaO+SrO+BaO) is 0.35 or more, MgO/(MgO+CaO) is 0.40 or more and less than 0.52, and MgO/(MgO+SrO) is 0.45 or more.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 31, 2013
    Inventors: Tomoyuki TSUJIMURA, Manabu Nishizawa, Akio Koike
  • Publication number: 20130288001
    Abstract: Provided is a tempered glass having a compression stress layer in a surface thereof, the tempered glass comprising, as a glass composition in terms of mol %, 45 to 75% of SiO2, 3 to 15% of Al2O3, 0 to 12% of Li2O, 0.3 to 20% of Na2O, 0 to 10% of K2O, and 1 to 15% of MgO+CaO, and having a molar ratio (Al2O3+Na2O+P2O5)/SiO2 of 0.1 to 1, a molar ratio (B2O3+Na2O)/SiO2 of 0.1 to 1, a molar ratio P2O5/SiO2 of 0 to 1, a molar ratio Al2O3/SiO2 of 0.01 to 1, and a molar ratio Na2O/Al2O3 of 0.1 to 5, wherein the surface is etched partially or entirely before tempering treatment.
    Type: Application
    Filed: January 16, 2012
    Publication date: October 31, 2013
    Inventors: Takashi Murata, Takako Tojyo
  • Publication number: 20130281281
    Abstract: A fusion formable and ion exchangeable silicate glass having a seed concentration of less than about 1 seed/cm3.
    Type: Application
    Filed: June 19, 2013
    Publication date: October 24, 2013
    Inventors: Matthew John Dejneka, Sinue Gomez
  • Patent number: 8561429
    Abstract: A strengthened glass that does not exhibit frangible behavior when subjected to impact or contact forces, and a method of strengthening a glass. The glass may be strengthened by subjecting it to multiple, successive, ion exchange treatments. The multiple ion exchange treatments provide a local compressive stress maximum at a depth of the strengthened layer and a second local maximum at or near (e.g., within 10 ?m) the surface of the glass.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: October 22, 2013
    Assignee: Corning Incorporated
    Inventors: Douglas Clippinger Allan, Adam James Ellison, Sinue Gomez
  • Patent number: 8563149
    Abstract: To provide glass for a data storage medium substrate, whereby high heat resistance can be obtained. Glass for a data storage medium substrate, which comprises, as represented by mol percentage based on the following oxides, from 55 to 70% of SiO2, from 2.5 to 9% of Al2O3, from 0 to 10% of MgO, from 0 to 7% of CaO, from 0.5 to 10% of SrO, from 0 to 12.5% of BaO, from 0 to 2.5% of TiO2, from 0.5 to 3.7% of ZrO2, from 0 to 2.5% of Li2O, from 0 to 8% of Na2O, from 2 to 8% of K2O and from 0.5 to 5% of La2O3, provided that the total content of Al2O3 and ZrO2 (Al2O3+ZrO2) is at most 12%, and the total content of Li2O, Na2O and K2O (R2O) is at most 12%.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: October 22, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Tatsuo Nagashima, Kensuke Nagai, Tetsuya Nakashima, Kei Maeda
  • Publication number: 20130274086
    Abstract: The present invention relates to an alkali-free glass having a strain point of 725° C. or higher, an average thermal expansion coefficient at from 50 to 300° C. of from 30×10?7 to 40×10?7/° C., a temperature T2 at which a glass viscosity is 102 dPa·s of 1,710° C. or lower, and a temperature T4 at which a glass viscosity is 104 dPa·s of 1,320° C. or lower, the alkali-free glass including, in terms of mol % on the basis of oxides, SiO2: 66 to 70, Al2O3: 12 to 15, B2O3: 0 to 1.5, MgO: more than 9.5 and 13 or less, CaO: 4 to 9, SrO: 0.5 to 4.5, BaO: 0 to 1, and ZrO2: 0 to 2, in which MgO+CaO+SrO+BaO is from 17 to 21, MgO/(MgO+CaO+SrO+BaO) is 0.4 or more, MgO/(MgO+CaO) is 0.4 or more, MgO/(MgO+SrO) is 0.6 or more, and the alkali-free glass does not substantially contain an alkali metal oxide.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventors: Tomoyuki TSUJIMURA, Manabu Nishizawa, Akio Koike
  • Publication number: 20130267402
    Abstract: The present invention provides a glass substrate having high glass transition temperature and small compaction (C) in a heat treatment at a low temperature (150 to 300° C.), the glass substrate including SiO2, Al2O3, B2O3, MgO, CaO, SrO, BaO, ZrO2, Na2O, K2O, and Li2O, wherein each amount of these compounds is specifically limited, Al2O3+K2O is 7 to 27 mass %, Na2O+K2O is 11.5 to 22 mass %, MgO+CaO+SrO+BaO is 0.2 to 14 mass %, MgO+0.357Al2O3?0.239K2O?5.58 is ?3.0 to 1.5, Na2O+0.272Al2O3+0.876K2O?16.77 is ?2.5 to 2.5, a glass transition temperature is 500° C. or higher, and an average thermal expansion coefficient at 50 to 350° C. is 100×10?7/° C. or less.
    Type: Application
    Filed: December 3, 2012
    Publication date: October 10, 2013
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventor: ASAHI GLASS COMPANY, LIMITED
  • Publication number: 20130255779
    Abstract: CTE-matched silicate glasses and more particularly to low-alkali CTE-matched silicate glasses that are useful in semiconductor-based applications, such as photovoltaics are described along with methods of making such glasses.
    Type: Application
    Filed: May 9, 2013
    Publication date: October 3, 2013
    Inventors: Bruce Gardiner Aitken, Carlo Anthony Kosik Williams
  • Patent number: 8541327
    Abstract: A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO2; one or more compounds from the group of compounds consisting of La2O3, Al2O3, B2O3, and Ni; the La2O3 less than about 20 mole percent; the Al2O3 less than about 25 mole percent; the B2O3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: September 24, 2013
    Assignee: U.S. Department of Energy
    Inventors: Peizhen Kathy Lu, Manoj Kumar Mahapatra
  • Publication number: 20130244859
    Abstract: Provided is an alkali-free glass, which is substantially free of alkali metal oxides, and has a strain point of more than 680° C., an average coefficient of thermal expansion in the temperature range of 30 to 380° C. of 40 to 55×10?7/° C., and a liquidus temperature of less than 1,200° C. Further, the alkali-free glass comprises, as a glass composition in terms of mass %, 55 to 70% of SiO2, 10 to 20% of Al2O3, 0.1 to 4.5% of B2O3, 0 to 1% of MgO, 5 to 15% of CaO, 0.5 to 5% of SrO, and 5 to 15% of BaO.
    Type: Application
    Filed: August 10, 2011
    Publication date: September 19, 2013
    Inventors: Takahiro Kawaguchi, Shinkichi Miwa
  • Publication number: 20130237401
    Abstract: Provided is an alkali-free glass, comprising, as a glass composition in terms of mass %, 58 to 70% of SiO2, 15.5 to 20% of Al2O3, 0 to 1% of B2O3, 0 to 5% of MgO, 3.5 to 16% of CaO, 0.5 to 6.5% of SrO, and 5 to 15% of BaO, being substantially free of alkali metal oxides, and having a strain point of more than 725° C.
    Type: Application
    Filed: October 26, 2011
    Publication date: September 12, 2013
    Inventors: Takahiro Kawaguchi, Shinkichi Miwa
  • Publication number: 20130230692
    Abstract: Provided is a high refractive index glass, comprising, as a glass composition in terms of mass %, 0.1 to 60% of SiO2+Al2O3+B2O3, having a mass ratio (BaO+La2O3+Nb2O5+TiO2+ZrO2)/(SiO2+Al2O3+B2O3) of 0.1 to 50, amass ratio (MgO+CaO+SrO+BaO)/(BaO+La2O3+Nb2O5+TiO2+ZrO2) of 0 to 10, and a mass ratio (TiO2+ZrO2)/(BaO+La2O3+Nb2O5) of 0.001 to 40, and having a refractive index nd of 1.55 to 2.3.
    Type: Application
    Filed: December 7, 2011
    Publication date: September 5, 2013
    Inventors: Tomoki Yanase, Takashi Murata
  • Publication number: 20130225389
    Abstract: A glass composition and its use for producing glass tubes is provided. The glass tubes having the provided composition are particularly suitable for the outer tubes of fluorescent lamps in the case of which a phosphor layer is baked at temperatures of up to 700° C. The tubes composed of the glass of the provided composition have a lower tendency to deform or stick together when processed at high temperatures. To obtain the observed effects, the molar ratio of Na2O/(Na2O+K2O), inter alia, is greater than 0.4 and not more than 0.72.
    Type: Application
    Filed: August 27, 2012
    Publication date: August 29, 2013
    Applicant: SCHOTT AG
    Inventors: Erhard DICK, Joerg Hinrich Fechner
  • Publication number: 20130224491
    Abstract: Glass compositions that may be used to produce chemically strengthened glass sheets by ion exchange. The glass compositions are chosen to promote simultaneously high compressive stress and deep depth of layer or, alternatively, to reduce the time needed to ion exchange the glass to produce a predetermined compressive stress and depth of layer.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Inventors: Morten Mattrup Smedskjaer, Marcel Potuzak, John Christopher Mauro
  • Publication number: 20130225390
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 29, 2013
    Inventors: Adam James Ellison, Timothy James Kiczenski, Shawn Rachelle Markham, John Christopher Mauro
  • Patent number: 8497220
    Abstract: The glass substrate for a solar cell of the present invention is characterized by having a glass composition including, in terms of mass %, 50 to 80% of SiO2, 5 to 20% of Al2O3, 0 to 20% of B2O3, 0 to 20% of MgO, 0 to 20% of CaO, 0 to 20% of SrO, 0 to 20% of BaO, 0.001 to 2% of SnO2, 0 to 1% of As2O3, having a mass ratio SnO2/(Fe2O3+SnO2) of 0.9 or more, and having a difference between transmittances at a wavelength of 400 nm before and after irradiation with ultraviolet ray of 2% or less.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 30, 2013
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Takashi Murata
  • Patent number: 8476353
    Abstract: Provided are an amorphous polyamide resin composition having high transparency, and is excellent in heat resistance and stiffness, and a molded product thereof. The glass filler contains, expressed in terms of oxides by mass %, 68 to 74% of silicon dioxide (SiO2), 2 to 5% of aluminum oxide (Al2O3), 2 to 5% of boron oxide (B2O3), 2 to 10% of calcium oxide (CaO), 0 to 5% of zinc oxide (ZnO), 0 to 5% of strontium oxide (SrO), 0 to 1% of barium oxide (BaO), 1 to 5% of magnesium oxide (MgO), 0 to 5% of lithium oxide (Li2O), 5 to 12% of sodium oxide (Na2O), and 0 to 10% of potassium oxide (K2O), where a total amount of lithium oxide (Li2O), sodium oxide (Na2O), and potassium oxide (K2O) is 8 to 12%.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 2, 2013
    Assignee: Asahi Fiber Glass Company, Limited
    Inventors: Hideyuki Higashiyama, Keiji Sekine
  • Publication number: 20130165312
    Abstract: A cover glass for semiconductor package having thermal expansion coefficient conformable to plastic packages and allowing accurate detection of existence of foreign substances, dusts, etc. in an imaging test always having a low emission amount of alpha-ray, and a related production method. The cover glass comprises, in terms of percentage by mass, of from 58 to 75% of SiO2, of from 1.1 to 20% of Al2O3, of from 0 to 10% of B2O3, of from 0.1 to 20% of Na2O, of from 0 to 11% of K2O, and of from 0 to 20% of alkaline earth metal oxide. The cover glass has average thermal expansion coefficient of from 90 to 180×10?7/° C. in the temperature range of from 30 to 380° C., a Young's modulus of 68 GPa or more, and an emission amount of alpha-ray from the glass of 0.05 c/cm2·hr or less.
    Type: Application
    Filed: September 8, 2011
    Publication date: June 27, 2013
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Takako Komai, Takashi Murata, Masahiro Yodogawa
  • Patent number: 8455378
    Abstract: An alkali-free glass characterized by having a glass composition being substantially free of an alkali metal oxide, As2O3 and Sb2O3 and including, in terms of mol %, 55 to 75% of SiO2, 7 to 15% of Al2O3, 7 to 12% of B2O3, 0 to 3% of MgO, 7 to 12% of CaO, 0 to 5% of SrO, 0 to 2% of BaO, 0 to 5% of ZnO and 0.01 to 1% of SnO2 and has a liquidus viscosity of 105.2 dPa·s or higher and a temperature corresponding to a viscosity of 102.5 dPa·s of 1,550° C. or lower.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: June 4, 2013
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Tomoki Yanase, Shinkichi Miwa
  • Patent number: 8450226
    Abstract: Disclosed are glass compositions containing Beryllia in addition to various proportions of Silica, Alumina, Calcium, Magnesia, Sodium, Potassium, Iron, Titania, Zirconia, Manganese and/or Phosphorous. Fibers were produced from the disclosed compositions using standard glass processing equipment. These fibers yielded high temperature fibers having low density, high strength, high modulus, excellent glass surfaces requiring very little bonding material to hold the fibers together. Bio solubility is preferably promoted by ensuring that only trace quantities of alumina are present. Fibers having those properties are particularly suitable for producing high temperature glass fiber insulation for use in aircraft and other vehicles.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: May 28, 2013
    Assignee: Glass Incorporated
    Inventor: Albert Lewis
  • Patent number: 8445394
    Abstract: Aluminoborosilicate glasses which may be useful in photovoltaic, photochromic, electrochromic, or Organic Light Emitting Diode (OLED) lighting applications are described.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: May 21, 2013
    Assignee: Corning Incorporated
    Inventors: Bruce Gardiner Aitken, Adam James Ellison, Timothy J Kiczenski
  • Publication number: 20130115422
    Abstract: Provided is a glass sheet, comprising, as a glass composition in terms of mass %, 40 to 80% of SiO2, 0 to 30% of Al2O3, 0 to 15% of B2O3, 0 to 25% of an alkali metal oxide (one kind or two or more kinds of Li2O, Na2O, and K2O), and 0 to 15% of an alkaline earth metal oxide (one kind or two or more kinds of MgO, CaO, SrO, and BaO), and being used as a viewing zone control member for covering partially or wholly a two-dimensional display.
    Type: Application
    Filed: June 3, 2011
    Publication date: May 9, 2013
    Inventor: Takashi Murata
  • Patent number: 8431503
    Abstract: The present invention provides an alkali-free glass having a high strain point, a low viscosity and low devitrification, which is easily subjected to float molding and fusion molding. The glass herein has a strain point of 725° C. or higher, an average thermal expansion coefficient at 50 to 300° C. of 30×10?7 to 40×10?7/° C., a temperature T2 at which a glass viscosity becomes 102 dPa·s of 1,710° C. or lower, a temperature T4 at which a glass viscosity becomes 104 dPa·s of 1,330° C. or lower, a glass surface devitrification temperature (Tc) of 1,330° C. or lower, and a glass internal devitrification temperature (Td) of 1,330° C. or lower.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: April 30, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Kensuke Nagai, Yuichi Kuroki, Manabu Nishizawa, Tomoyuki Tsujimura
  • Patent number: 8431502
    Abstract: A fusion formable and ion exchangeable silicate glass having a seed concentration of less than about 1 seed/cm3.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: April 30, 2013
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Sinue Gomez