And Aluminum Patents (Class 501/66)
  • Patent number: 7704902
    Abstract: The invention relates to glass fibers having a chemical composition that contains the following constituents in the limits defined hereafter and expressed in percentage by weight, namely: 38 to 49 SiO2; 15 to 25 Al2O3; 1 to 15 CaO; 0 to 4 MgO; 14 to 25 Na2O; 0 to 10 K2O; 0 to 8 B2O3; 0 to 3 Fe2O3; and 0 to 3 P2O5.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 27, 2010
    Assignee: Saint-Gobain Isover
    Inventors: Bertrand Maquin, Jérôme Lalande, Yannick Lefrere
  • Patent number: 7700506
    Abstract: The PbO-free UV-absorbing glass is made under oxidative conditions and has a composition, in % by weight, of: SiO2, 55-79; B2O3, 3-25; Al2O3, 0-10; Li2O, 0-10; Na2O, 0-10; K2O, 0-10; MgO, 0-2; CaO, 0-3; SrO, 0-3; BaO, 0-3; ZnO, 0-3; ZrO2, 0-3; CeO2, 0-1; Fe2O3, 0-1; WO3, 0-3; Bi2O3, 0-3; MoO3, 0-3; ?Li2O+Na2O+K2O=0.5 to 16 and ?MgO+CaO+SrO+BaO+ZnO=0-10. It also contains from 0.1 to 10% TiO2 with at least 95% of the titanium as Ti+4 so that it has a high visible transmission, reduced color centers, and a sharp UV absorption edge.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 20, 2010
    Assignee: Schott AG
    Inventors: Joerg Fechner, Andreas Reisse, Franz Ott, Brigitte Hueber
  • Patent number: 7696113
    Abstract: Alkali-free glasses are disclosed which can be used to produce substrates for flat panel display devices, e.g., active matrix liquid crystal displays (AMLCDs). The glasses contain iron and tin as fining agents, and preferably are substantially free of arsenic and antimony. In certain embodiments, the glasses are also substantially free of barium. Methods for producing alkali-free glass sheets using a downdraw process (e.g., a fission process) are also disclosed.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: April 13, 2010
    Assignee: Corning Incorporated
    Inventor: Adam James Gillmar Ellison
  • Publication number: 20100084016
    Abstract: Aluminoborosilicate glasses which may be useful in photovoltaic, photochromic, electrochromic, or Organic Light Emitting Diode (OLED) lighting applications are described.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 8, 2010
    Inventors: Bruce Gardiner Aitken, Adam James Ellison, Timothy J. Kiczenski
  • Publication number: 20100087307
    Abstract: An object of the invention is to obtain a glass substrate having high mechanical strength by reconciling suitability for ion exchange and devitrification proof in a glass. The strengthened glass substrate of the invention is a strengthened glass substrate having a compression stress layer in the surface thereof, the glass substrate having a glass composition including, in terms of % by mass, 40-70% of SiO2, 12-25% of Al2O3, 0-10% of B2O3, 0-8% of Li2O, 6-15% of Na2O, 0-10% of K2O, 13-20% of Li2O+Na2O+K2O, 0-3.9% of MgO, 0-5% of CaO, 0-5% of ZnO, 0-6% of ZrO2, and 0-5% of SrO+BaO, the value of (MgO+ZrO2+ZnO)/(MgO+ZrO2+ZnO+Al2O3) in terms of mass proportion being from 0.25 to 0.45. The above-mentioned strengthened glass can be produced by melting raw glass materials mixed together so as to result in the given glass composition, forming the melt into a sheet by an overflow downdraw process, and then conducting an ion exchange treatment to form a compression stress layer in the glass sheet surface.
    Type: Application
    Filed: June 3, 2008
    Publication date: April 8, 2010
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Takashi Murata, Hiroki Yamazaki
  • Patent number: 7691762
    Abstract: The invention relates to a glass composition and a glass frit adequate for low temperature sintering agent at 1,100° C. or less, and a dielectric composition and a multilayer ceramic capacitor using the same. The glass composition comprises aLi2O-bK2O-cCaO-dBaO-eB2O3-fSiO2, in which a, b, c, d, e and f satisfy following relationships: a+b+c+d+e+f=100, 2?a?10, 2?b?10, 0?c?25, 0?d?25, 5?e?20, and 50?f?80.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: April 6, 2010
    Assignee: Samsung Electro-Mechanics Co.,
    Inventors: Sung Bum Sohn, Kang Heon Hur, Eun Sang Na, Tae Ho Song, Han Seong Jung, Chan Kong Kim
  • Patent number: 7687419
    Abstract: A glass substrate used as a substrate of an information recording medium such as a magnetic disk, magneto-optical disk, DVD, or MD, and a glass composition used to make such a glass substrate, contains the following glass ingredients: 40 to 70% by weight of SiO2; 1 to 20% by weight of Al2O3; 0 to 10% by weight, zero inclusive, of B2O3; SiO2+Al2O3+B2O3 accounting for 60 to 90% by weight; a total of 3.0 to 15% by weight of R2O compounds, where R=Li, Na, and K; a total of 2.0 to 15% by weight of R?O compounds, where R=Mg, and Zn; and a total of 1.0 to 20% by weight of MOx (TiO2+ZrO2+LnxOy), where LnxOy represents at least one compound selected from the group consisting of lanthanoid metal oxides, Y2O3, Nb2O5, and Ta2O5. Here, the following condition is fulfilled: 0.070<(total content of R?O compounds)/(SiO2+Al2O3+B2O3)<0.200.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: March 30, 2010
    Assignee: Konica Minolta Opto, Inc.
    Inventor: Hideki Kawai
  • Patent number: 7687420
    Abstract: The invention relates to a tempered glass comprising, in terms of mass percent, SiO2: 60 to 80%; Al2O3: 3 to 18%; B2O3: 0 to 7%; Li2O: 0.01 to 10%; Na2O: 4 to 16%; K2O: 0 to 15%; and R?O (wherein R?O indicates a total content of alkaline earth metal oxides): 0 to 5%, wherein a value of (Li2O+Al2O3)/(Na2O+K2O) in terms of molar ratio is within a range of 0.1 to 2, and wherein a surface of the tempered glass is treated to form a compressive stress layer.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: March 30, 2010
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Takashi Murata
  • Patent number: 7682999
    Abstract: Glass composition intended for the manufacture of windows that absorb ultraviolet and infrared radiation, comprising the oxides below, in contents varying within the following limits by weight: SiO2 65-80% Al2O3 0-5% B2O3 0-5% CaO ?5-15% MgO 0-2% Na2O ?9-18% K2O ?0-10% BaO 0-5% characterized in that it additionally comprises the absorbent agents below, in contents varying within the following limits by weight: Fe2O3 (total iron) 0.7 to 1.6% CeO2 0.1 to 1.2% TiO2 ??0 to 1.5% the glass having a redox factor of 0.23 or less and containing no tungsten oxide WO3.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: March 23, 2010
    Assignee: Saint-Gobain Glass France
    Inventor: Laurent Teyssedre
  • Publication number: 20100069221
    Abstract: The glass-metal bond for a tube collector includes a glass tube and metal part bonded to the glass tube. In order to match the thermal expansion properties, the glass tube has the following composition: SiO2, 73-77 wt. %; B2O3, 6-<8 wt. %; Al2O3, 6-6.5 wt. %; Na2O, 5.5-7 wt. %; K2O, 1-3 wt. %; CaO, 0.5-3.2 wt. %; MgO, 0-2 wt. %; Fe2O3, 50-150 ppm; and TiO2 0-<100 ppm. The ratio of the sum of the alkaline-earth metal oxides (in mol %) to the sum of the alkali metal oxides (in mol %) is ?0.6. The metal part is preferably made of metal material no. 1.3981 according to DIN 17745. The glass composition itself is also part of the invention.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 18, 2010
    Inventors: Erhard Dick, Johann Collignon, Wolfgang Zettl, Stephan Tratzky
  • Patent number: 7674736
    Abstract: The invention relates to a glass for dental applications which can be used as a glazing material of dental restorations and resists high temperatures, and thus does not tend to flow.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: March 9, 2010
    Assignee: Ivoclar Vivadent, AG
    Inventors: Diana Tauch, Harald Bürke, Volker M. Rheinberger
  • Patent number: 7670975
    Abstract: To provide an alkali free glass which is suitable as a glass substrate for LCD and has few defects of bubbles and an undissolved starting material, and a process for producing an alkali free glass which can readily lower the defects in bubbles and an undissolved starting material. An alkali free glass with a matrix composition comprising SiO2, Al2O3, B2O3, MgO, CaO, SrO and BaO and containing substantially no alkali metal oxide, of which the temperature at which the viscosity becomes 102 dPa·s, is at most 1,600° C. and which contains sulfur in an amount of from 0.001 to 0.1% as calculated as SO3, as represented by the mass percentage, per 100% of the total amount of the above matrix composition, and a process for producing a glass which comprises preparing a starting material and melting it so that a sulfate be incorporated to the starting material in an amount of from 0.01 to 5% as calculated as SO3, as represented by the mass percentage, per 100% of the total amount of the above matrix composition.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: March 2, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuhiro Suzuki, Manabu Nishizawa, Seiji Miyazaki, Junichiro Kase, Kei Maeda
  • Publication number: 20100047521
    Abstract: The invention relates to glass articles suitable for use as electronic device housing/enclosure or protective cover which comprise a glass material. Particularly, a housing/enclosure/cover comprising an ion-exchanged glass exhibiting the following attributes (1) radio, and microwave frequency transparency, as defined by a loss tangent of less than 0.03 and at a frequency range of between 15 MHz to 3.0 GHz; (2) infrared transparency; (3) a fracture toughness of greater than 0.6 MPa·m1/2; (4) a 4-point bend strength of greater than 350 MPa; (5) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf, (6) a Young's Modulus ranging between about 50 to 100 GPa; (7) a thermal conductivity of less than 2.0 W/m° C., and (9) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 25, 2010
    Inventors: Jaymin Amin, Matthew John Dejneka, Linda Ruth Pinckney, Katherine Rose Rossington, Robert Sabia
  • Publication number: 20100047591
    Abstract: The invention relates to a dark gray soda-lime silicate glass composition which includes a coloring part essentially consisting of the compounds below in contents varying within the following weight limits: Fe2O3 (total iron) 0.7 to 0.95% CoO ?50 to 80 ppm NiO 400 to 700 ppm or Fe2O3 (total iron) 0.7 to 0.95% CoO 200 to 300 ppm NiO 1500 to 1900 ppm? said composition being free of selenium, having a redox of 0.40 or less, and the glass having a light transmission factor (TLA) under illuminant A of 50% or less and an overall energy transmission factor (TE) of less than 45%, these being measured for a thickness of 3.85 mm.
    Type: Application
    Filed: October 29, 2009
    Publication date: February 25, 2010
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Laurent TEYSSEDRE, Lionel HOMO
  • Publication number: 20100045164
    Abstract: The invention concerns a glass composition for a glass body of an illuminating means with external electrodes, wherein the quotient of the loss angle (tan ?[10?4]) and the dielectric constant (??) amounts to tan ?[10?4]/??<5, i.e., tan ?/??<5×10?4). In this way, the total power loss of the illuminating means with external electrodes can be minimized in a targeted manner by means of the glass properties.
    Type: Application
    Filed: December 29, 2005
    Publication date: February 25, 2010
    Inventors: Joerg Fechner, Martin Letz, Steffen Reichel, Franz Ott, Brigitte Hueber
  • Patent number: 7666511
    Abstract: An alkali aluminosilicate glass that is chemically strengthened and has a down-drawable composition. The glass has a melting temperature less than about 1650° C. and a liquidus viscosity of at least 130 kpoise and, in one embodiment, greater than 250 kpoise. The glass undergoes ion exchange at relatively low temperatures to a depth of at least 30 ?m.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: February 23, 2010
    Assignee: Corning Incorporated
    Inventors: Adam James Ellison, Sinue Gomez
  • Patent number: 7661277
    Abstract: As a jig material to use under plasma reaction for producing semiconductors, the present invention provides a quartz glass having resistance against plasma corrosion, particularly corrosion resistance against fluorine-based plasma gases, and which is usable without causing anomalies to silicon wafers; the present invention furthermore provides a quartz glass jig, and a method for producing the same. A quartz glass containing 0.1 to 20 wt % in total of two or more types of metallic elements, said metallic elements comprising at least one type of metallic element selected from Group 3B of the periodic table as a first metallic element and at least one type of metallic element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids as a second metallic element, provided that the maximum concentration of each of the second metallic elements is 1.0 wt % or less.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 16, 2010
    Assignee: Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Tatsuhiro Sato, Nobumasa Yoshida, Mamoru Endo
  • Publication number: 20100035745
    Abstract: Provided is a glass substrate satisfying ion exchange performance and devitrification resistance of a glass simultaneously and having higher mechanical strength compared to a conventional glass substrate. A tempered glass substrate which has a compression stress layer on a surface thereof, has a glass composition including, in terms of mole %, 50 to 85% of SiO2, 5 to 30% of Al2O3, 0 to 20% of Li2O, 0 to 20% of Na2O, 0 to 20% of K2O, 0.001 to 10% of TiO2, and 15 to 35% of Li2O+Na2O+K2O+Al2O3, has a (Li2O+Na2O+K2O)/Al2O3 value of 0.7 to 3 in terms of mole fraction, and is substantially free of As2O3 and F.
    Type: Application
    Filed: October 10, 2007
    Publication date: February 11, 2010
    Inventor: Takashi Murata
  • Publication number: 20100029460
    Abstract: The present invention provides a glass for anodic bonding having a low thermal expansion coefficient and capable of being subjected to laser beam micromachining. The present invention is a glass for anodic bonding having a base glass composition containing 1 to 6 mol % of Li2O+Na2O+K2O and having an average linear expansion coefficient of 32×10?7 K?1 to 39×10?7 K?1 in a temperature range of room temperature to 450° C. This glass further contains 0.01 to 5 mol % of a metal oxide as a colorant relative to the base glass composition, and has an absorption coefficient of 0.5 to 50 cm?1 at a particular wavelength within 535 nm or less.
    Type: Application
    Filed: February 21, 2008
    Publication date: February 4, 2010
    Applicant: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Masanori Shojiya, Hirotaka Koyo, Koichi Sakaguchi, Satoshi Jibiki
  • Patent number: 7648656
    Abstract: The invention is directed to a silver-containing polarizing boroaluminosilicate glass composition that has been doped with a noble metal selected from the group consisting of Pt, Pd, Os, Ir, Rh and Ru, including mixtures thereof, to nucleate and precipitate silver ions to silver metal without the need for a reducing atmosphere step. The invention is further directed to a method for making the glass composition of the invention. Using the composition and method of the invention, one can prepare a glass having a selected null transmission range.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 19, 2010
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, George Bigelow Hares, David John McEnroe, Joseph Francis Schroeder, III
  • Patent number: 7648930
    Abstract: The glass for a fluorescent light with a high hydrolytic resistance, which has composition, in % by weight based on oxide content of: SiO2, 63-75; B2O3, 15-18; Al2O3, 3.2-4.5; Na2O, 1-2; K2O, 2-6; ?Na2O+K2O, 3-8; MgO, 0-8; CaO, 0-10; SrO, 0-10; BaO, 0-10; ZnO, 0-5; ?MgO+CaO+SrO+BaO+ZnO, 0-10; ZrO2, 0-3; CeO2, 0-10; Fe2O3, 0-1; WO3, 0-3; Bi2O3, 0-5; MoO3, 0-3; TiO2, 0-10; ?Hf+Ta+W+Re+Os+Ir+Pt+La+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu in oxidic form, 0 to 5% by weight, as well as one or more conventional refining agents. The glass is characterized in that it contains no lithium and has a weight ratio of Na2O to K2O of less than one.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: January 19, 2010
    Assignee: Schott AG
    Inventors: Joerg Fechner, Franz Ott
  • Publication number: 20100009154
    Abstract: A strengthened glass that does not exhibit frangible behavior when subjected to impact or contact forces, and a method of strengthening a glass. The glass may be strengthened by subjecting it to multiple, successive, ion exchange treatments. The multiple ion exchange treatments provide a local compressive stress maximum at a depth of the strengthened layer and a second local maximum at or near (e.g., within 10 ?m) the surface of the glass.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 14, 2010
    Inventors: Douglas Clippinger Allan, Adam James Ellison, Sinue Gomez
  • Publication number: 20090325349
    Abstract: A semiconductor encapsulation material of the present invention contains a glass for metal coating which has a strain point of 480° C. or higher, a temperature corresponding to a viscosity of 104 dPa·s of 1,100° C. or lower, and a thermal expansion coefficient at 30 to 380° C. of 70×10?7 to 110×10?7/° C. The semiconductor encapsulation material of the present invention contains no environmentally harmful substances, has a heat resistance temperature as high as 500° C. or above, and can be used for the encapsulation of metals susceptible to oxidation, e.g., Dumet.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 31, 2009
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Koichi HASHIMOTO
  • Publication number: 20090325776
    Abstract: A tempered glass of the present invention having a compression stress layer is characterized in that a ?-OH value is 0.01 to 0.5/mm. Here, the “?-OH value” is a value obtained from the following equation by measuring the transmittance of glass by FT-IR.
    Type: Application
    Filed: July 30, 2009
    Publication date: December 31, 2009
    Inventor: Takashi Murata
  • Publication number: 20090294773
    Abstract: Disclosed are alkali-free glasses having a liquidus viscosity of greater than or equal to about 90,000 poises, said glass comprising SiO2, Al2O3, B2O3, MgO, CaO, and SrO such that, in mole percent on an oxide basis: 64?SiO2?68.2; 11?Al2O3?13.5; 5?B2O3?9; 2?MgO?9; 3?CaO?9; and 1?SrO?5. The glasses can be used to make a display glass substrates, such as thin film transistor (TFT) display glass substrates for use in active matrix liquid crystal display devices (AMLCDs) and other flat panel display devices.
    Type: Application
    Filed: May 22, 2009
    Publication date: December 3, 2009
    Inventor: Adam James Ellison
  • Patent number: 7618908
    Abstract: The invention is directed to a method for preparing visible light optical polarizers using a non-halide silver salt and any glass composition that the non-halide silver salts is soluble, provided that the glass composition, including the silver salt, was a halide content that is, on a molar basis, 10% or less than the silver content, on a molar basis, of the glass composition. The silver containing glass is hydrogen reduced prior to stretching to form an optical polarizer. The invention enables one to form a visible light polarizer having a polarizing layer thickness in the range 10-40 ?m in which the silver particles have a surround index sufficiently removed from the blue polarizer region to allow good contrast.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: November 17, 2009
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, David John McEnroe, Joseph Francis Schroeder, III
  • Publication number: 20090275462
    Abstract: The glass substrate for a solar cell of the present invention is characterized by having a glass composition including, in terms of mass %, 50 to 80% of SiO2, 5 to 20% of Al2O3, 0 to 20% of B2O3, 0 to 20% of MgO, 0 to 20% of CaO, 0 to 20% of SrO, 0 to 20% of BaO, 0.001 to 2% of SnO2, 0 to 1% of As2O3, having a mass ratio SnO2/(Fe2O3+SnO2) of 0.9 or more, and having a difference between transmittances at a wavelength of 400 nm before and after irradiation with ultraviolet ray of 2% or less.
    Type: Application
    Filed: July 9, 2009
    Publication date: November 5, 2009
    Inventor: Takashi Murata
  • Patent number: 7611774
    Abstract: The glass ceramic or glass element that can be subjected to high thermal loads is decorated with a metallic colorant. The metallic colorant consists of a melted silicate and at least one effect pigment, which is included in a specified proportion in a melt of the silicate glass to form the metallic colorant. The at least one effect pigment is in the form of platelets of synthetic aluminum oxide (Al2O3) coated with at least one metal oxide. Preferably the at least one effect pigment is a XIRALLIC® high chroma sparkle pigment supplied commercially by Merck and the metallic colorant has a pigment content of from 1 to 30 wt. %.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: November 3, 2009
    Assignee: Schott AG
    Inventors: Monica Cotlear De Witzmann, Dietmar Wennemann, Angelina Milanovska, Ella Ruhl, Eva Lauterbach, Ioannis Kosmas
  • Patent number: 7605100
    Abstract: The present invention relates to lead and arsenic free optical hard crown glasses with a low transformation temperature (Tg?520° C.), characterized by their optical range with a refractive index of 1.57?nd?1.61 and an Abbe number of 56??d?63. The glasses have the following composition (in wt %): SiO2 37-46 B2O3 12-18 Al2O3 1-7 Li2O 5.5-<7? Na2O 1-5 K2O <4 MgO <5 CaO <7 BaO 21-29 SrO 0.1-1.5 ZnO ??1-4.5 TiO2 0.1-0.5 ZrO2 ??<0.7 with ? TiO2, ZrO2 < 0.9. Refiners can be added, provided that they do not comprise arsenic.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: October 20, 2009
    Assignee: Schott AG
    Inventors: Silke Wolff, Stefanie Hansen, Ute Woelfel
  • Patent number: 7605101
    Abstract: A laminate includes a first green sheet and a second green sheet. The first green sheet includes a first glass including Al and M which is at least one of Sr and Ba. A relationship between Al content and M content is so defined that a position represented by percent by mass of Al in terms of Al2O3 and percent by mass of M in terms of MO on a coordinate system are on or in a range defined by straight lines connecting point A (1, 21), point B (1, 35), point C (9, 45), point D (20, 45), point E (20, 35), and point F (9, 21) on the coordinate system. The second green sheet includes a second glass including Si and B. The first green sheet is integrally laminated with the second green sheet.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: October 20, 2009
    Assignee: KYOCERA Corporation
    Inventors: Shinya Kawai, Tatsuji Furuse, Mieko Yashima, Kouji Yamamoto
  • Patent number: 7598191
    Abstract: Glass for gas discharge tubes, which are used in fluorescent lamps, EEFL lamps, LCD displays, computer monitors, telephone displays and TFT displays, and a process for making it are described. The glass contains, in % by weight based on oxide content: SiO2, 60-75; B2O3, >25-35; Al2O3, 0-10; Li2O, 0-10; Na2O, 0-20; K2O, 0-20; MgO, 0-8; CaO, 0-20; SrO, 0-5; BaO, 0-5; ZnO, 0-3; ZrO2, 0-5; TiO2, 0-10; Fe2O3, 0-0.5; CeO2 0-0.5; MnO2, 0-1.0; Nd2O3, 0-1.0; WO3, 0-2; Bi2O3, 0-5; MoO3, 0-5; As2O3, 0-1; Sb2O3, 0-1; SO42?, 0-2; Cl-, 0-2 and F?, 0-2, wherein ?Li2O+Na2O+K2O=0-25% by weight; ?MgO+CaO+SrO+BaO=0-20; ?Fe2O3+CeO2+TiO2+PbO+As2O3+Sb2O3 is at least 0-10; and ?PdO+PtO3+PtO2+PtO+RhO2+Rh2O3+IrO2+Ir2O3 is from 0.00001-0.1.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: October 6, 2009
    Assignee: Schott AG
    Inventors: Joerg Fechner, Franz Ott, Brigitte Hueber
  • Patent number: 7596968
    Abstract: Glass, glass compositions, methods of preparing the glass compositions, microfluidic devices that include the glass composition, and methods of fabricating microfluidic devices that include the glass composition are disclosed. The borosilicate glass composition includes silicon dioxide (SiO2) in a range from about 60% to 74% by total composition weight; boric oxide (B2O3) in a range from about 9% to 25% by total composition weight; aluminum oxide (Al2O3) in a range from about 7% to 17% by total composition weight; and at least one alkali oxide in a range from about 2% to 7% by total composition weight. In addition, the borosilicate glass has a coefficient of thermal expansion (CTE) that is in a range between about 30×10?7/° C. and 55×10?7/° C. Furthermore, the borosilicate glass composition resists devitrification upon sintering without the addition of an inhibitor oxide.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: October 6, 2009
    Assignee: Corning Incorporated
    Inventor: Paulo Marques
  • Publication number: 20090237787
    Abstract: To Provide a polarizing glass with better weatherability than conventional polarizing glasses, affording high long-term reliability without the above-described surface deterioration. To provide an optical isolator employing polarizing glass of improved weatherability, affording good weatherability and high reliability for extended periods. [Means for Solving] A polarizing glass comprising geometrically anisotropic particles dispersed in an oriented manner in at least one surface layer of a glass base body. The glass base body does not comprise an oxide of alkali earth metal and PbO, and consists of borosilicate glass comprising at least one additive component selected from the group consisting of Y2O3, ZrO2, La2O3, CeO2, Ce2O3, TiO2, V2O5, Ta2O5, WO3, and Nb2O5, and the geometrically anisotropic metal particles are metallic cupper particles. An optical isolator employing the polarizing glass.
    Type: Application
    Filed: April 12, 2007
    Publication date: September 24, 2009
    Applicant: Hoya Candeo Optronics Corporation
    Inventors: Yoshitaka Yoneda, Sei-ichi Yokoyama
  • Publication number: 20090227438
    Abstract: The present invention relates to a color adapting composition used for coloring and color adapting porcelain for ceramic crown such as dental restorations and prosthetics, and aluminosilicate glass appropriate for using in a color adapting composition. More specifically, a color adapting composition for dental porcelains are prepared by blending two or more kinds of glass frits having different sintering temperatures from each other and an inorganic pigment or a colored glass obtained by previously dispersing inorganic pigments in glass.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Inventors: Yukio Fukatani, Keiji Takahashi, Ryuichi Yoshimoto
  • Publication number: 20090226671
    Abstract: A technical object of the present invention is to satisfy various properties required in glass for liquid crystal displays and the like, in particular, fusibility, devitrification resistance, and like properties, and then to design a glass composition in which components harmful to the environment are reduced or substantially not contained, thereby obtaining a glass substrate that takes the environment into consideration. An alkali-free glass of the present invention contains the following glass composition in percent by weight based on oxide: 50 to 70% of SiO2, 10 to 20% of Al2O3, 8 to 12% of B2O3, 0 to 3% of MgO, 4 to 15% of CaO, 0 to 10% of SrO, 0 to 1% of BaO, and 0 to 5% of ZnO, and substantially free of alkali metal oxide and As2O3.
    Type: Application
    Filed: May 22, 2007
    Publication date: September 10, 2009
    Inventors: Tomoki Yanase, Shinkichi Miwa
  • Publication number: 20090220761
    Abstract: A glass that is ion exchangeable to a depth of at least 20 ?m (microns) and has a internal region having a tension of less than or equal to 100 MPa. The glass is quenched or fast cooled from a first temperature above the anneal point of the glass to a second temperature that is below the strain point of the glass. In one embodiment, the glass is a silicate glass, such as an alkali silicate glass, an alkali aluminosilicate glass, an aluminosilicate glass, a borosilicate glass, an alkali aluminogermanate glass, an alkali germanate glass, an alkali gallogermanate glass, and combinations thereof.
    Type: Application
    Filed: February 26, 2009
    Publication date: September 3, 2009
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez
  • Patent number: 7582581
    Abstract: A subject for the invention is to provide an alkali-free glass which is capable of reducing or totally eliminating As2O3 and which has fewer bubble inclusion than that in the prior technology. The invention relates to an alkali-free glass which comprises SiO2 in an amount of from 40 to 70% by weight; Al2O3 in an amount of from 6 to 25% by weight; B2O3 in an amount of from 5 to 20% by weight; MgO in an amount of from 0 to 10% by weight; CaO in an amount of from 0 to 15% by weight; BaO in an amount of from 0 to 30% by weight; SrO in an amount of from 0 to 10% by weight; ZnO in an amount of from 0 to 10% by weight, each based on the total amount of said glass, and helium and/or neon in an amount of from 0.0001 to 2 ?l/g (0° C., 1 atm.).
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: September 1, 2009
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Masataka Kawaguchi, Masataka Takagi
  • Patent number: 7576021
    Abstract: A mother glass composition for graded index lenses, comprising the following glass components in mol %: 40?SiO2?65, 1?TiO2?10, 0?MgO?22, 2?Li2O?18, 2?Na2O ?20, 6?Li2O+Na2O?38, and from 0.1 to 15 mol % of any two or more of CaO, SrO and BaO, a graded index lens using the mother glass composition, a manufacturing method of the graded index lens, and an optical product and an optical instrument using the graded index lens, are provided.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: August 18, 2009
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Taro Miyauchi, Kazuya Ohkawa, Tatsufumi Shiba, Tomizou Matsuyama
  • Publication number: 20090202808
    Abstract: The invention is directed to a high strength, chemically toughened protective glass article, the glass article having a high damage tolerance threshold of at least 1500 g as measured by the lack of radial cracks when the load is applied to the glass using a Vickers indenter; preferably greater than 2000 g s measured by the lack of initiation of radial cracks when the load is applied to the glass using a Vickers indenter
    Type: Application
    Filed: February 6, 2009
    Publication date: August 13, 2009
    Inventors: Gregory Scott Glaesemann, James Joseph Price, Robert Sabia, Nagaraja Shashidhar
  • Patent number: 7572746
    Abstract: An optical glass having optical constants of refractive index (nd) within a range from 1.49 to 1.54 and Abbe number (? d) within a range from 55 to 65 comprises, in mass %, SiO2 >65-75% R2O (R is at least one selected from the group ?15-25% consisting of Li, Na, K and Cs) where Li2O ?0.1-5.0% Na2O ?1.0-10.0% K2O ?5.0-20.0% and Cs2O ?0-5.0% R?O (R? is at least one selected from the group ?0.5-10% consisting of Mg, Ca, Sr or Ba) where MgO ?0-10% and/or CaO ?0-10% and/or SrO ?0-10% and/or BaO ?0-10% ZnO ?0-<3.0% and/or B2O3 ?0-6.0% and/or Al2O3 ?0-<1.0% and/or TiO2 ?0-<2.0% and/or ZrO2 ?0-2% and/or WO3 ?0-3.0% and/or Sb2O3 ?0-2.0% and a fluoride or fluorides of a metal element or ?0-2%.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: August 11, 2009
    Assignee: Kabushiki Kaisha Ohara
    Inventors: Junko Ishioka, Masahiro Onozawa
  • Publication number: 20090176640
    Abstract: To provide an alkali-free glass substrate, which has a high Young's modulus, a low linear expansion coefficient, a high strain point and a low density, does not devitrify in the float forming process and is excellent in acid resistance. An alkali-free glass substrate, which contains neither alkali component nor BaO and consists essentially of, as represented by mol % based on oxide, from 57.0 to 65.0% of SiO2, from 10.0 to 12.0% of Al2O3, from 6.0 to 9.0% of B2O3, from 5.0 to 10.0% of MgO, from 5.0 to 10.0% of CaO and from 2.5 to 5.5% of SrO, provided that MgO+CaO+SrO is from 16.0 to 19.0%, MgO/(MgO+CaO+SrO)?0.40, and B2O3/(SiO2+Al2O3+B2O3)?0.12; wherein Young's modulus ?75 GPa; the linear expansion coefficient at from 50 to 350° C. is from 30×10?7/° C. to 40×10?7/° C.; the strain point ?640° C.; the temperature T2 (the viscosity ? satisfies log ?=2)?1,620° C.; the temperature T4 (the viscosity ? satisfies log ?=4)?1,245° C.; the devitrification temperature ?T4; and weight loss per unit area is at most 0.
    Type: Application
    Filed: January 7, 2009
    Publication date: July 9, 2009
    Applicant: Asahi Glass Company, Limited
    Inventors: Terutaka Maehara, Manabu Nishizawa, Junichiro Kase, Syuji Matsumoto
  • Publication number: 20090170684
    Abstract: The invention provides an alkali-free glass substrate small in the variation of the thermal shrinkage and a process for producing the same. An alkali-free glass substrate of the invention has an absolute value of a thermal shrinkage of 50 ppm or more when the alkali-free glass substrate is heated at a rate of 10° C./min from a room temperature, kept at a holding temperature of 450° C. for 10 hr and then cooled at a rate of 10° C./min.
    Type: Application
    Filed: December 15, 2006
    Publication date: July 2, 2009
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Yoshinari Kato, Tatsuya Takaya
  • Patent number: 7550645
    Abstract: The present invention provides processes to immobilize radioactive and/or hazardous waste in a borosilicate glass, the waste containing one or more of radionuclides, hazardous elements, hazardous compounds, and/or other compounds. The invention also provides borosilicate glass compositions for use in immobilizing radioactive and/or hazardous waste.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: June 23, 2009
    Assignee: Geomatrix Solutions, Inc.
    Inventors: Anatoly Chekhmir, Arthur Gribetz
  • Publication number: 20090141478
    Abstract: Disclosed is a glass composition for lamps which contains Mo ions as a component, substantially comprising the following that are expressed in terms of oxides: SiO2: 55 to 75 wt %, B2O3: 11 to 25 wt %, MoO3: 0.3 to 1.4 wt %, Al2O3: 1 to 10 wt %, Li2O: 0 to 10 wt %, Na2O: 0 to 10 wt %, K2O: 0 to 10 wt %, Li2O+Na2O+K2O: 1 to 10 wt %, MgO: 0 to 5 wt %, CaO: 0 to 10 wt %, SrO: 0 to 10 wt %, BaO: 0 to 10 wt %, MgO+CaO+SrO+BaO: 1 to 10 wt %. By having such a constitution, the glass composition has a high ultra violet shielding effect and hardly suffers from coloring.
    Type: Application
    Filed: March 28, 2006
    Publication date: June 4, 2009
    Inventors: Yasurou Niguma, Atsushi Motoya
  • Patent number: 7541302
    Abstract: Optical glass which is suitable for press molding does not substantially contain a compound of lead or arsenic, and has intermediate refractive index, low dispersion properties, low Tg and small density. Concretely, the optical glass includes the glass components of SiO2: 20 to 45%, B2O3: 15 to 40%, Al2O3: 4 to 15%, MgO: 0 to 10% (including 0), CaO: 13 to 25%, MgO+CaO: 13 to 25%, Li2O: 12.5 to 25%, Na2O: 0 to 10% (including 0), K2O: 0 to 10% (including 0), Li2O+Na2O+K2O: 12.5 to 25%, SrO: 0 to 10% (including 0), BaO: 0 to 5% (including 0), and Sb2O3: 0 to 1% (including 0).
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: June 2, 2009
    Assignee: Konica Minolta Opto, Inc.
    Inventor: Manabu Izuki
  • Publication number: 20090129061
    Abstract: The invention relates to aluminoborosilicate glasses as a glass casing body of a lighting means, especially for background illumination, which glass composition is equally suitable for use in lighting means with external contacting as well as for lighting means with internal contacting.
    Type: Application
    Filed: November 20, 2008
    Publication date: May 21, 2009
    Inventors: Jorg Fechner, Franz Ott, Christof Kass
  • Patent number: 7534734
    Abstract: Alkali-free glasses are disclosed which can be used to produce substrates for flat panel display devices, e.g., active matrix liquid crystal displays (AMLCDs). The glasses contain iron and tin as fining agents, and preferably are substantially free of arsenic and antimony. In certain embodiments, the glasses are also substantially free of barium. Methods for producing alkali-free glass sheets using a downdraw process (e.g., a fusion process) are also disclosed.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: May 19, 2009
    Assignee: Corning Incorporated
    Inventor: Adam James Gillmar Ellison
  • Publication number: 20090110963
    Abstract: To provide a glass for an information recording media substrate, which is excellent in weather resistance. A glass for an information recording media substrate, which comprises, as represented by mol % based on oxide, from 61 to 66% of SiO2, from 11.5 to 17% of Al2O3, from 8 to 16% of Li2O, from 2 to 8% of Na2O, from 2.5 to 8% of K2O, from 0 to 6% of MgO, from 0 to 4% of TiO2 and from 0 to 3% of ZrO2, provided that Al2O3+MgO+TiO2 is at least 12%, and Li2O+Na2O+K2O is from 16 to 23%, wherein in a case of where B2O3 is contained, its content is less than 1%. The above glass for an information recording media substrate, wherein when the glass is left under steam atmosphere at 120° C. at 0.2 MPa for 20 hours, and the amount of Li, the amount of Na and the amount of K, which precipitate on a surface of the glass are represented as CLi, CNa and CK respectively, CNa is at most 0.7 nmol/cm2, and CLi+CNa+CK is at most 3.5 nmol/cm2.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 30, 2009
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Tetsuya NAKASHIMA, Kei Maeda, Noriaki Shimodaira, Atsuyoshi Takenaka
  • Patent number: 7524784
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65-75 SiO2, 7-13 Al2O3, 5-15 B2O3, 0-3 MgO, 5-15 CaO, 0-5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: April 28, 2009
    Assignee: Corning Incorporated
    Inventors: Lisa C. Chacon, Adam J. G. Ellison, George B. Hares, Jeffrey T. Kohli, Josef C. Lapp, Robert Morena
  • Patent number: RE41127
    Abstract: An aluminosilicate glass having a composition consisting essentially of, as calculated in weight percent on an oxide basis, of 58-70% SiO2, 12-22% Al2O3, 3-15% B2O3, 2-12% CaO, 0-3% SrO, 0-3% BaO, 0-8% MgO, 10-25% MCSB (i.e., MgO+CaO+SrO+BaO), and SrO and BaO in combination being less than 3%.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: February 16, 2010
    Assignee: Corning Incorporated
    Inventor: Jeffrey T. Kohli