Containing Hydrides Or Organometallic Of Two Or More Different Component A Metals Patents (Class 502/114)
-
Patent number: 10464054Abstract: The invention relates to a catalyst comprising a support based on alumina or silica or silica-alumina, at least one element of group VIII, at least one element of group VIB and ?-ketovaleric acid. The invention also relates to the process for the preparation of said catalyst and the use thereof in a hydrotreatment and/or hydrocracking process.Type: GrantFiled: March 11, 2016Date of Patent: November 5, 2019Assignee: IFP Energies NouvellesInventor: Pierre-Louis Carrette
-
Patent number: 10066035Abstract: Embodiments of methods of producing 1,4-polybutadiene comprise polymerizing a solution comprising conjugated diene monomer and organic solvent to yield 1,4-polybutadiene having a cis content of between about 92% to about 98%, a vinyl content of about 1% to about 5%, a trans content of about 1 to about 3%, a molecular weight distribution (MWD) of about 3 to about 5, and a Mooney viscosity (ML1+4) at 100° C. of less than 60. The polymerization achieves over an 80% conversion of the conjugated diene monomer when catalyzed with a catalyst comprising at least one nickel compound, at least one aluminum activator compound, and a mixture of BF3.hexanol and BF3.H2O. For the catalyst, the molar ratio of Ni/H2O is from about 0.05 to about 20 and the molar ratio of BF3/H2O is from about 1.8 to about 500.Type: GrantFiled: December 7, 2016Date of Patent: September 4, 2018Assignee: Bridgestone CorporationInventors: Zengquan Qin, Christine M. Rademacher
-
Patent number: 9751848Abstract: A catalyst, method of using, and use of a hydrogenation catalyst, preferably palladium on a support, preferably alumina or activated charcoal support. This in the presence of lithium salts, with salts such as the borates being preferred. This provides hydrogenation of precursors to give rise to a stereoselective, such as diastereoselective bias in the product of alkene hydrogenation using the catalyst.Type: GrantFiled: September 28, 2015Date of Patent: September 5, 2017Assignee: Thomas Swan & Co. LtdInventors: David Dunn, Howard Winston Tyrrell Sutton, John Ing Chuan Daly, Simon Jonathon Grant, Lian Hutchings, Patrice Georges Antonin Ribiere, Matthew Richard Gibbings, Sergio Aaron Gamboa Martinez, Craig Anderson, Yulia Rogan
-
Patent number: 9611340Abstract: A catalyst system for the polymerization of olefins may include a first solid catalytic component and a second solid catalytic component. The first solid catalytic component may include: a spherical MgCl2-xROH support; a group 4-8 transition metal; and a diether internal electron donor. The second solid catalytic component may include: a spherical MgCl2-xROH support; a group 4-8 transition metal; and a diether internal electron donor. The first solid catalytic component produces a propylene homopolymer having a Xylene Solubles (XS) value of greater than 2 wt %; and the second solid catalytic component produces a propylene homopolymer having a XS value of less than 2 wt %. The second catalytic component may act as an external electron donor during use, and embodiments herein do not require use of any additional external electron donors to control polymerization and reliably vary the properties of the resulting polymer.Type: GrantFiled: May 27, 2014Date of Patent: April 4, 2017Assignee: Lummus Novolen Technology GmbHInventors: Yvonne Denkwitz, Oliver Schuster, Andreas Winter
-
Publication number: 20150141596Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization with chain transfer agent.Type: ApplicationFiled: November 13, 2014Publication date: May 21, 2015Inventor: John R. Hagadorn
-
Publication number: 20150080541Abstract: The present invention provides a new process for preparing a catalyst for the gas phase polymerization of olefins wherein the sequence of addition of the catalyst components and the selection of the said components provides a catalyst composition which exhibits a superior response to hydrogen, a surprisingly high productivity and an improved activity profile. The catalyst consists of compounds of a group IV transition metal, Mg, C1 and A1 supported on a silica support.Type: ApplicationFiled: April 16, 2013Publication date: March 19, 2015Inventors: Fabien Bini, Paul Fiasse, Luc Girardot, Benoit Koch
-
Patent number: 8975209Abstract: Disclosed is a solid support-polymethylaluminoxane complex exhibiting a higher polymerization activity than a conventional substance and being homogeneous. Also disclosed is a method for producing an olefin-based polymer having a favorable quality using the complex and a transition metal compound. The complex comprises a coating layer containing polymethylaluminoxane and trimethylaluminum on the surface of a solid support. The coating layer comprises a solid polymethylaluminoxane composition in which (i) the content of aluminum is in a range of 36 to 41 mass % and (ii) the molar fraction of methyl groups derived from a trimethylaluminum moiety to the total number of moles of methyl groups is 12 mol % or less. Also disclosed is an olefin polymerization catalyst comprising the complex and a transition metal compound represented by general formula (III): MR5R6R7R8 as catalyst components, and a method for producing a polyolefin comprising polymerizing an olefin using the catalyst.Type: GrantFiled: May 11, 2011Date of Patent: March 10, 2015Assignee: Tosoh Finechem CorporationInventors: Eiichi Kaji, Etsuo Yoshioka
-
Patent number: 8895465Abstract: This invention provides activator precursor compositions and activator compositions. The activator precursor compositions are formed from a support material, an organoaluminum compound, and polyfunctional compounds having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. The activator compositions are formed from a support material, an organoaluminum compound, an aluminoxane, and a polyfunctional compound having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. Also provided are catalyst compositions, processes for forming catalyst compositions, and polymerization processes utilizing the catalyst compositions of this invention.Type: GrantFiled: November 14, 2011Date of Patent: November 25, 2014Assignee: Albemarle CorporationInventor: Lubin Luo
-
Patent number: 8859451Abstract: The present invention refers to a process for the preparation of supported catalysts for the polymerization of olefins comprising at least a late transition metal complex, wherein the process comprises two steps. In the first step a catalytically active component comprising at least one late transition metal complex, optionally in the presence of one or more cocatalysts is mixed with a support; and in the second step the obtained mixture is treated at a reduced pressure under a flow of inert gas at a temperature equal to or below 40° C. to obtain a supported catalyst. The method is especially useful for the preparation of dual supported catalysts, useful in the gas-phase polymerization of olefins.Type: GrantFiled: December 16, 2010Date of Patent: October 14, 2014Assignee: Basell Polyolefine GmbHInventors: Shahram Mihan, Volker Fraaije, Harald Schmitz
-
Patent number: 8765886Abstract: The invention generally relates to chain shuttling agents (CSAs), a process of preparing the CSAs, a composition comprising a CSA and a catalyst, a process of preparing the composition, a processes of preparing polyolefins, end functional polyolefins, and telechelic polyolefins with the composition, and the polyolefins, end functional polyolefins, and telechelic polyolefins prepared by the processes.Type: GrantFiled: November 2, 2012Date of Patent: July 1, 2014Assignee: Dow Global Technologies LLCInventors: Thomas P. Clark, Nahrain E. Kamber, Sara B. Klamo, Phillip D. Hustad, David R. Wilson
-
Patent number: 8658556Abstract: This invention relates to a method to polymerize olefins comprising contacting olefins with a catalyst system comprising a transition metal catalyst compound and: 1) at least two NCA activators represented by the formula: Zd+ (Ad-), where Z is a Bronsted acid or a reducible Lewis acid, Ad- is a boron containing NCA, d is 1, 2, or 3, and where Z is a Bronsted acid and Z is a reducible Lewis acid in the first and second NCA activators, respectively; or 2) at least two NCA activators, one as described in Formula I and one not as described in Formula I; or 3) two NCA activators as described in Formula I except that the N in the second NCA in the ArNHal is at a different position in the nitrogen containing aromatic ring than the N in the first NCA.Type: GrantFiled: May 23, 2012Date of Patent: February 25, 2014Assignee: ExxonMobil Chemical Patents Inc.Inventor: Ian C. Stewart
-
Patent number: 8436114Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.Type: GrantFiled: October 18, 2011Date of Patent: May 7, 2013Assignee: ExxonMobil Chemical Patents Inc.Inventors: Donna J. Crowther, David M. Fiscus
-
Patent number: 8436111Abstract: Embodiments relate to a novel catalyst composition comprising a transition metal-containing compound, a PNP compound, an alkylating agent and a fluorine containing compound. Other embodiments relate to a method of polymerizing a diene monomer in the presence of the novel composition to form a diene-containing polymer having greater than 90% cis content.Type: GrantFiled: October 1, 2009Date of Patent: May 7, 2013Assignee: Bridgestone CorporationInventors: James H. Pawlow, Terrence E. Hogan
-
Patent number: 8431661Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 6 to 25 mole %, prior to use as an activator, where the mole % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the unknown species is the peak is identified in the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.Type: GrantFiled: October 21, 2010Date of Patent: April 30, 2013Assignee: ExxonMobil Chemical Patents Inc.Inventors: Donna J. Crowther, David M. Fiscus
-
Publication number: 20130072646Abstract: The present invention relates to a catalyst composition and a process for preparing an olefin polymer using the same. More specifically, the present invention relates to a novel catalyst composition comprising at least two types of catalysts and a process for preparing an olefin polymer having excellent heat resistance using the same. The present invention can provide an olefin polymer having excellent activity and high heat resistance, and also can control the values of density, heat resistance and melt index (MI) of the olefin polymer.Type: ApplicationFiled: April 25, 2011Publication date: March 21, 2013Applicant: LG Chem, Ltd.Inventors: Kyung-Seop Noh, Hoon Chae, Cheon-Il Park, Won-Hee Kim, Sang-Jin Jeon, Eun-Jung Lee, Choong-Hoon Lee, Jong-Joo Ha
-
Patent number: 8193113Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.Type: GrantFiled: June 7, 2010Date of Patent: June 5, 2012Assignee: General Electric CompanyInventors: Grigorii Lev Soloveichik, Matthew John Andrus
-
Patent number: 8188200Abstract: Disclosed is a method of producing a polyolefin composition comprising contacting a metallocene pre-catalyst, co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; and polymerizing the first monomer for a time sufficient to form the polyolefin. The method allows for the use of minimum amounts of activating co-catalyst and metallocene pre-catalyst. Also disclosed is a method of producing a block polyolefin composition comprising contacting a metallocene pre-catalyst, a co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; polymerizing the first monomer for a time sufficient to form the polyolefin; adding a second monomer; and polymerizing the second olefin monomer for a time sufficient to form said block polyolefin composition. Also disclosed are amorphous atactic polymer and copolymer compositions made according to the present invention.Type: GrantFiled: November 10, 2008Date of Patent: May 29, 2012Assignee: University of Maryland, College ParkInventors: Lawrence R. Sita, Wei Zhang
-
Publication number: 20120065346Abstract: An ethylene-?-olefin copolymer comprising monomer units derived from ethylene and monomer units derived from an ?-olefin having 3 to 20 carbon atoms, having a density (d) of 860 to 950 kg/m3, having a melt flow rate (MFR) of 0.01 to 100 g/10 min, having a bimodal molecular weight distribution, and having a single melting peak measured by a differential scanning calorimeter (DSC).Type: ApplicationFiled: May 27, 2010Publication date: March 15, 2012Applicant: SUMITOMO CHEMICAL COMPANY, LIMITEDInventors: Yoshinobu Nozue, Naoko Ochi
-
Patent number: 8106137Abstract: The invention concerns a novel catalytic combination for polymerizing alpha-olefins based on a titanium diamidide complex. The invention also concerns a method for polymerizing alpha-olefins using said catalytic combination, in the absence of any aluminum-containing compound. The inventive catalytic combination comprises: component A which is a dichlorinated titanium diamidide complex of general formula (I) wherein R represents a methyl group (component A2) or an isopropyl group (component A1); component B which is a dialkylmagnesium whereof the reaction with component A enables an alkylated component AA to be obtained: and as activator of said component AA, component C which is trispentafluorophenylboran (B(C6F5)3).Type: GrantFiled: June 21, 2006Date of Patent: January 31, 2012Assignee: Universite des Sciences et TechnologiesInventors: André Mortreux, Régis Gauvin, Estelle Gautier
-
Patent number: 8084559Abstract: A transition metal complex represented by formula [1], and its production process; a substituent-carrying fluorene compound represented by formula [2], and its production process; an olefin polymerization catalyst component comprising the complex; an olefin polymerization catalyst obtained by contacting the catalyst component with a defined aluminum compound and/or a defined boron compound; and a production process of an olefin polymer using the catalyst:Type: GrantFiled: January 24, 2006Date of Patent: December 27, 2011Assignee: Sumitomo Chemical Company, LimitedInventors: Taichi Senda, Hidenori Hanaoka, Shinya Nakahara, Kenji Sogoh
-
Patent number: 7998894Abstract: The present invention relates to a Ziegler-Natta catalyst comprising a solid, ligand-modified catalyst component formed at least from (a) a compound of Group 1 to 3 of the Periodic Table (IUPAC), (b) a transition metal compound of Group 4 to 10 of the Periodic Table (IUPAC), or a compound of an actinide or lanthanide, (c) one or more organic ligand compound(s) which is/are selected from organic compounds comprising a cyclopentadienyl anion backbone, and (d) a compound of Group 13 of the Periodic Table, wherein the catalyst component of said Ziegler-Natta catalyst is formed in an emulsion/solidification method, to a process for the production of such a catalyst, and to a process for the production of an olefin (co-)polymer in the presence of such a catalyst.Type: GrantFiled: July 13, 2007Date of Patent: August 16, 2011Assignee: Borealis Technology OyInventors: Marjo Väänänen, Minna Stalhammar, Young-Soo Ko, Siw Fredriksen, Marita Savilahti
-
Patent number: 7985817Abstract: Disclosed is a homogeneous catalyst system for producing an ethylene homopolymer or an ethylene copolymer with ?-olefin. Specifically, this invention pertains to a transition metal catalyst which has stability under high temperature solution polymerization at 120˜250° C., in which a cyclopentadiene derivative and an electron donating substituent, both of which are bonded to a Group IV transition metal acting as a central metal, are crosslinked through a silyl derivative substituted with a cyclohexyl, to a catalyst system including such a transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst, and to a method of producing an ethylene homopolymer or an ethylene copolymer with ?-olefin, having high molecular weight, using the catalyst system under conditions of high-temperature solution polymerization.Type: GrantFiled: September 8, 2006Date of Patent: July 26, 2011Assignee: SK Energy Co., Ltd.Inventors: Tae Woo Woo, Myung Ahn Ok, Jong Sok Hahn, Sang Ook Kang, Jae Ho Jung
-
Publication number: 20110136994Abstract: An olefin polymerization catalyst is provided formed by contacting a specified transition metal compound (A1), a specified transition metal compound (A2) and a specified solid catalyst component (B) with one another, a molar ratio of (A1)/(A2) being 1 to 90: wherein M1 and M2 are a transition metal atom of Group 4 in the Periodic Table; X1, X2, R1, R3 and R4 are a hydrogen atom, a halogen atom, a hydrocarbyl group or a hydrocarbyloxy group; and Q1 and Q2 are a specified cross-linking group.Type: ApplicationFiled: November 27, 2008Publication date: June 9, 2011Applicant: SUMITOMO CHEMICAL COMPANY, LIMITEDInventors: Naoko Ochi, Yoshinobu Nozue, Yasutoyo Kawashima
-
Patent number: 7951746Abstract: Bulk metallic catalysts comprised of a Group VIII metal and a Group VIB metal and methods for synthesizing bulk metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic acid, such as glyoxylic acid, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.Type: GrantFiled: October 9, 2007Date of Patent: May 31, 2011Assignee: ExxonMobil Research and Engineering CompanyInventors: Chuansheng Bai, El-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Jun Han, Daniel Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, Jr., David Michael Lowe
-
Patent number: 7943546Abstract: A combinatorial method for identifying a catalyst composition for use in the homogeneous addition polymerization of an olefin monomers, said catalyst composition comprising a transition metal compound, a cocatalyst and a polymerization modifier, as well as catalyst compositions and improved olefin polymerization processes resulting therefrom.Type: GrantFiled: May 1, 2009Date of Patent: May 17, 2011Assignee: Dow Global Technologies LLCInventors: Daryoosh Beigzadeh, Richard E. Campbell, Jr., David D. Devore, Duane R. Romer, James C. Stevens, Francis J. Timmers, Hendrik E. Tuinstra, Paul C. Vosejpka
-
Publication number: 20110092655Abstract: Supported catalysts systems and method of forming the same are described herein. The method generally includes providing a support material, providing a single site transition metal catalyst compound, contacting the transition metal catalyst compound with triisobutyl aluminum (TiBAl) to form a modified catalyst compound and contacting the support material with the modified catalyst compound to form a supported catalyst system.Type: ApplicationFiled: December 22, 2010Publication date: April 21, 2011Applicant: Fina Technology, Inc.Inventors: JOSEPH THORMAN, Shady Henry
-
Patent number: 7919569Abstract: The present invention relates to a process for the polymerization of olefins, comprising the steps of introducing at least one olefin, at least one polymerization catalyst, at least one cocatalyst and at least one cocatalyst aid, and optionally a scavenger, into a polymerization reactor, and polymerizing the olefin, wherein the cocatalyst aid is a reaction product prepared separately prior to the introduction into the reactor by reacting at least one metal alkyl compound of group IIA or IIIA of the periodic system of elements and at least one compound (A) of the formula RmXR?n, wherein R is a branched, straight, or cyclic, substituted or unsubstituted, hydrocarbon group having 1 to 30 carbon atoms, R? is hydrogen or any functional group with at least one active hydrogen, X is at least one heteroatom selected from the group of O, N, P or S or a combination thereof, and wherein n and m are each at least 1 and are such that the formula has no net charge.Type: GrantFiled: May 12, 2006Date of Patent: April 5, 2011Assignee: Saudi Basic Industries CorporationInventors: Wei Xu, Vugar O. Aliyev, Sirajudeen Mohamed, Atieh Abu-Raqabah
-
Patent number: 7897539Abstract: A method of preparing a composition comprising dry mixing commercial grade alumina and a solid sulfating agent to form a mixture and calcining the mixture to form a sulfated alumina support.Type: GrantFiled: May 16, 2007Date of Patent: March 1, 2011Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Elizabeth A. Benham, Randall S. Muninger
-
Patent number: 7834112Abstract: A process for the polymerization of olefins using a metal complex of group 3, 4, 5, 6, 7, 8, 9 or 10 of the Periodic Table comprising at least one group C?NR1, C?PR1, C?O, C?S or a heteroaromatic ring system containing at least one atom from the group consisting of N, P, O and S, can be used for controlling the width of the molar mass distribution of the resulting polymers.Type: GrantFiled: September 10, 2002Date of Patent: November 16, 2010Assignee: Basell Polyolefine GmbHInventors: Shahram Mihan, Birgit Dorer, Markus Enders, Pablo Fernandez
-
Patent number: 7820580Abstract: A nickel-carbene polymerization catalyst system for preparing high cis polydienes is provided. The catalyst system comprises (a) a nickel N-heterocyclic carbene complex, (b) an organoaluminum compound, (c) a fluorine-containing compound, and (d) optionally, an alcohol. Also provided is a process for producing a polydiene comprising reacting a conjugated diene in the presence of a polymerization catalyst comprising (a) a nickel N-heterocyclic carbene complex, (b) an organoaluminum compound, (c) a fluorine-containing compound, and (d) optionally, an alcohol.Type: GrantFiled: November 13, 2008Date of Patent: October 26, 2010Assignee: Bridgestone CorporationInventors: Zengquan Qin, Jason T. Poulton, Michael W. Hayes
-
Patent number: 7799722Abstract: A catalyst system solution obtainable by a process comprising the following steps: (a) contacting a solution of methylalumoxane in an aromatic solvent (solvent a) with a solution of one or more organo-aluminium in a solvent (solvent b), or a solution of one or more alumoxanes different from methylalumoxane in a solvent (solvent b); (b) when solvent b) is an aromatic solvent or if solvent b) has a boiling point lower than solvent a) add to the solution formed in step a) an alifatic solvent (solvent c) having a boiling point higher than solvent a) and solvent b); or (c) solubilizing a metallocene compound in the solution obtained in step a) or in step b); and (d) substantially removing solvent a) or solvent a) and solvent b) from the solution.Type: GrantFiled: March 8, 2005Date of Patent: September 21, 2010Assignee: Basell Polyolefine GmbHInventors: Luigi Resconi, Gilberto Moscardi, Anna Fait
-
Patent number: 7754641Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.Type: GrantFiled: February 14, 2008Date of Patent: July 13, 2010Assignee: General Electric CompanyInventors: Grigorii Lev Soloveichik, Matthew John Andrus
-
Publication number: 20100160581Abstract: The present invention relates to a supported catalyst composition for polymerization of olefins comprising at least two catalytic components; and a polymerization process using that catalyst composition; and a method for its preparation.Type: ApplicationFiled: August 11, 2006Publication date: June 24, 2010Inventors: Wei Xu, Syriac J. Palackal, Atieh Abu-Ruqabah, Maneet Muktibodh, Bing Wang, Nicolaas Hendrika Friederichs
-
Patent number: 7718566Abstract: A catalyst composition and method for olefin polymerization are provided. In one aspect, the catalyst composition is represented by the formula ?a?b?gMXn wherein M is a metal; X is a halogenated aryloxy group; ? and ? are groups that each comprise at least one Group 15 atom; ? is a linking moiety that forms a chemical bond to each of ? and ?; and a, b, g, and n are each integers from 1 to 4.Type: GrantFiled: November 25, 2008Date of Patent: May 18, 2010Assignee: Univation Technologies, LLCInventors: Timothy T. Wenzel, Zondra Dee Dixon
-
Publication number: 20100093920Abstract: Embodiments relate to a novel catalyst composition comprising a transition metal-containing compound, a PNP compound, an alkylating agent and a fluorine containing compound. Other embodiments relate to a method of polymerizing a diene monomer in the presence of the novel composition to form a diene-containing polymer having greater than 90% cis content.Type: ApplicationFiled: October 1, 2009Publication date: April 15, 2010Inventors: James H. PAWLOW, Terrence E. HOGAN
-
Patent number: 7651969Abstract: A process for synthesizing a catalyst component for manufacturing ethylene polymer and co-polymer. The present invention provides a process for synthesizing catalyst component (A), comprising forming a complex by contacting the solid intermediate (B) with an aluminum compound represented by formula X3-nAl(OY)n, and alkyl metal (C), wherein X is halide, Y is a hydrocarbon group or chelating carbonyl group, and wherein 1 is less than or equal to n which is less than or equal to 3, and then contacting the complex with titanium halide having formula TiX4 wherein X is halide. Solid intermediate (B) is formed by reacting magnesium metal with alkyl halide in the presence of alkoxy aluminum represented by formula Al(ORa)3, silicon halide represented by formula SiX4 and alkoxy silane represented by formula Si(ORb)4, wherein Ra and Rb are an aromatic or aliphatic alkyl group and wherein X is halide.Type: GrantFiled: December 5, 2006Date of Patent: January 26, 2010Assignee: Formosa Plastics Corporation, U.S.A.Inventors: Gapgoung Kong, Zhongyang Liu, Honglan Lu
-
Patent number: 7553917Abstract: A combinatorial method for identifying a catalyst composition for use in the homogeneous addition polymerization of an olefin monomers, said catalyst composition comprising a transition metal compound, a cocatalyst and a polymerization modifier, as well as catalyst compositions and improved olefin polymerization processes resulting therefrom.Type: GrantFiled: May 13, 2005Date of Patent: June 30, 2009Assignee: Dow Global Technologies, Inc.Inventors: Daryoosh Beigzadeh, David D. Devore, Richard E. Campbell, Jr., Duane R. Romer, James C. Stevens, Hendrik E. Tuinstra, Francis J. Timmers, Paul C. Vosejpka
-
Patent number: 7521512Abstract: A catalyst composition for the polymerization of olefins comprising the combination of one or more Ziegler-Natta procatalysts comprising one or more transition metal compounds; one or more aluminum containing cocatalysts; and a mixture comprising two or more selectivity control agents (SCA's), corresponding to the formula: (CH3O)nSi(OR)4-n, wherein R, independently each occurrence, is C2-12 alkyl, C3-12 cycloalkyl, C6-18 aryl or (poly)alkyl-substituted aryl, or C7-18 poly(aryl)-substituted alkyl, and n is an integer from zero to 4.Type: GrantFiled: May 27, 2004Date of Patent: April 21, 2009Assignee: Union Carbide Chemicals & Plastics Technology LLCInventor: Stanley E. Wilson
-
Patent number: 7468416Abstract: A process for the preparation of a catalyst system includes the steps of combining a Lewis base, an organic compound having at least one functional group containing active hydrogen, and an organometallic component with a particulate support material to provide an intermediate composition, and then combining the intermediate composition with one or more metallocene compound. The catalyst system is advantageously used for olefin polymerization.Type: GrantFiled: May 16, 2007Date of Patent: December 23, 2008Assignee: Lummus Technology Inc.Inventors: Thorsten Sell, Joerg Schottek, Nicola Stefanie Paczkowski, Andreas Winter
-
Patent number: 7442667Abstract: The present invention relates to a process for preparing a supported cocatalyst for olefin polymerization, which comprises reacting A) a support bearing functional groups, B) triethylaluminum and C) a compound of the formula (I), (R1)x—A—OH)y??(I) where A is an atom of group 13 or 15 of the Periodic Table, R1 are identical or different and are each, independently of one another, hydrogen, halogen, C1-C20-alkyl, C1-C20-haloalkyl, C1-C10-alkoxy, C6-C20-aryl, C6-C20-haloaryl, C6-C20-aryloxy, C7-C40-arylalky, C7-C40-haloarylalkyl, C7-C40-alkylaryl, C7-C40-haloalkylaryl or an OSiR32 group, where R2 are identical or different and are each hydrogen, halogen, C1-C20-alkyl, C1-C20-haloalkyl, C1-C10-alkoxy, C6-C20-aryl, C6-C20-haloaryl, C6-C20-aryloxy, C7-C40-arylalkyl, C7-C40-haloarylalkyl, C7-C40-alkylaryl or C7-C40-haloalkylaryl, y is 1 or 2 and x is 3 minus y.Type: GrantFiled: December 22, 2004Date of Patent: October 28, 2008Assignee: Bosell Polyolefine GmbHInventors: Naka Seidel, Bodo Richter, Roland Kratzer
-
Patent number: 7429635Abstract: Disclosed is a method of preparing an ultra-high molecular weight, linear low density polyethylene with a catalyst system that comprises a bridged indenoindolyl transition metal complex, a non-bridged indenoindolyl transition metal complex, an alumoxane activator and a boron-containing activator. The ultra-high molecular weight, linear low density polyethylene has a weight average molecular weight greater than 1,000,000 and a density less than 0.940 g/cm3.Type: GrantFiled: September 28, 2006Date of Patent: September 30, 2008Assignee: Equistar Chemicals, LPInventor: Shaotian Wang
-
Patent number: 7326760Abstract: Broad molecular weight polyethylene and polyethylene having a bimodal molecular weight profile can be produced with chromium oxide based catalyst systems employing alkyl silanols. The systems may also contain various organoaluminum compounds. Catalyst activity and molecular weight of the resulting polyethylene may also be tuned using the present invention.Type: GrantFiled: January 31, 2006Date of Patent: February 5, 2008Assignee: Univation Technologies, LLCInventors: Kevin J. Cann, Minghui Zhang, John H. Moorhouse, Maria A. Apecetche
-
Patent number: 7232869Abstract: A process for the preparation of a catalyst system includes the steps of combining a Lewis base, an organic compound having at least one functional group containing active hydrogen, and an organometallic component with a particulate support material to provide an intermediate composition, and then combining the intermediate composition with one or more metallocene compound. The catalyst system is advantageously used for olefin polymerization.Type: GrantFiled: May 17, 2005Date of Patent: June 19, 2007Assignee: Novolen Technology Holdings, C.V.Inventors: Thorsten Sell, Joerg Schottek, Nicola Stefanie Paczkowski, Andreas Winter
-
Patent number: 7230056Abstract: A two-step catalyst preparation method is disclosed. First, a support is combined with an indenoindolyl Group 3-10 metal complex and a first activator comprising an alkyl alumoxane to give a supported complex. The supported complex is subsequently combined with a second activator comprising an ionic borate to produce a borate-treated supported complex. Activating indenoindolyl metal complexes in this sequence surprisingly provides an exceptional activity boost compared with other ways of activating them with either or both types of activators.Type: GrantFiled: July 1, 2005Date of Patent: June 12, 2007Assignee: Equistar Chemicals, LPInventor: Shaotian Wang
-
Patent number: 7220695Abstract: This invention relates to supported activators comprising the product of the combination of an ion-exchange layered silicate, an organoaluminum compound, and a heterocyclic compound, which may be substituted or unsubstituted. This invention further relates to catalyst systems comprising catalyst compounds and such activators, as well as processes to polymerize unsaturated monomers using the supported activators. For the purposes of this patent specification and the claims thereto, the term “activator” is used interchangeably with the term “co-catalyst”, the term “catalyst” refers to a metal compound that when combined with an activator polymerizes olefins, and the term “catalyst system” refers to the combination of a catalyst and an activator with or without a support. The terms “support” or “carrier”, for purposes of this patent specification, are used interchangeably and are any ion-exchange layered silicates.Type: GrantFiled: January 7, 2004Date of Patent: May 22, 2007Assignee: ExxonMobil Chemical Patents Inc.Inventors: Gary L. Casty, Smita Kacker, Jack W. Johnson, Murielle V. Scott, Steven L. Hegwood, Robert R. Simpson, Robert P. Reynolds
-
Patent number: 7214638Abstract: Catalyst compositions that are highly tolerant of catalyst poisons for use in addition polymerizations comprising a catalytic derivative of a Group 4 metal complex, a cocatalyst, and a Group 13 metal amide compound.Type: GrantFiled: November 17, 2003Date of Patent: May 8, 2007Assignee: Dow Global Technologies Inc.Inventors: Duane R. Romer, James C. Stevens, Robert K. Rosen, Francis J. Timmers, Hendrik E. Tuinstra
-
Patent number: 7214744Abstract: A catalyst system comprising (i) a bulky ligand catalyst compound; and (ii) a novel borate activator is active for olefin polymerization. The novel borate contains at least one chelating (divalent) ligand and contains at least one fluorine atom. Preferred borate activators are provided as anilinium or carbonium salts. Highly preferred borate salts contain two perfluorinated alkoxy chelating ligands. The catalyst system may be used to produce polyethylene for “end use” applications such as polyethylene film and molded polyethylene goods.Type: GrantFiled: June 22, 2005Date of Patent: May 8, 2007Assignee: Nova Chemicals (International) S.A.Inventors: Xiaoliang Gao, Isam Jaber
-
Patent number: 7208441Abstract: A copolymer of ethylene and a higher alpha olefin, preferably 1-hexene, can be produced using an activated chromium containing catalyst system and a cocatalyst selected from the group consisting of trialkylboron, trialkylsiloxyalutninum, and a combination of trialkylboron and thalkylaluminum compounds. The polymerization process must be carefully controlled to produce a copolymer resin having an exceptionally broad molecular weight distribution, extremely high PENT ESCR values, and a natural branch profile that impacts branching preferably into the high molecular weight portion of the polymer. The resulting copolymer resin is especially useful in high stiffness pipe applications.Type: GrantFiled: November 23, 2004Date of Patent: April 24, 2007Assignee: Chevron Philips Chemical Company LPInventors: Elizabeth A. Benham, Paul J. DesLauriers, Max P. McDaniel, Al R. Wolfe
-
Patent number: 7172987Abstract: Bimetallic catalysts, and methods of producing a bimetallic catalyst comprising a modified Ziegler-Natta catalyst and a metallocene are provided, in one embodiment the method including combining: (a) a Ziegler-Natta catalyst comprising a Group 4, 5 or 6 metal halide and/or oxide, optionally including a magnesium compound, with (b) a modifier compound (“modifier”), wherein the modifier compound is a Group 13 alkyl compound, to form a modified Ziegler-Natta catalyst. Also provided is a method of olefin polymerization using the bimetallic catalyst of the invention. The modified Ziegler-Natta catalyst is preferably non-activated, that is, it is unreactive towards olefin polymerization alone. In one embodiment, the molar ratio of the Group 13 metal (of the modifier) to the Group 4, 5 or 6 metal halide and/or oxide is less than 10:1 in one embodiment.Type: GrantFiled: October 2, 2003Date of Patent: February 6, 2007Assignee: Univation Technologies, LLCInventors: Sun-Chueh Kao, Michael D. Awe
-
Patent number: 7151146Abstract: The present invention relates to a method for preparing neodymium-carbon-nanotube and a process for preparing 1,4-cis-polybutadiene utilizing the same and more particularly, neodymium-carbon-nanotube. Neodymium is introduced by coordination with carboxylic acid, which is formed on the surface of carbon nanotube. In 1,3-butadiene polymerization with the neodymium-catalyst comprising the neodymium-carbon nanotube, a particular halogen compound, and a particular organometallic compound in an appropriate ratio, high 1,4-cis polybutadiene having molecular weight of 10,000 to 2,000,000 is produced, which exhibits excellent mechanical properties such as elasticity and durability.Type: GrantFiled: December 23, 2005Date of Patent: December 19, 2006Assignee: Korea Kumho Petrochemical Co., Ltd.Inventors: Gwanghoon Kwag, Pilsung Kim, Shin Han, Hyung Kyu Choi, Dong Hwan Kim, Seung Hwa Lee, Sung Hoon Han