Containing Hydrides Or Organometallic Of Two Or More Different Component A Metals Patents (Class 502/114)
  • Patent number: 10464054
    Abstract: The invention relates to a catalyst comprising a support based on alumina or silica or silica-alumina, at least one element of group VIII, at least one element of group VIB and ?-ketovaleric acid. The invention also relates to the process for the preparation of said catalyst and the use thereof in a hydrotreatment and/or hydrocracking process.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: November 5, 2019
    Assignee: IFP Energies Nouvelles
    Inventor: Pierre-Louis Carrette
  • Patent number: 10066035
    Abstract: Embodiments of methods of producing 1,4-polybutadiene comprise polymerizing a solution comprising conjugated diene monomer and organic solvent to yield 1,4-polybutadiene having a cis content of between about 92% to about 98%, a vinyl content of about 1% to about 5%, a trans content of about 1 to about 3%, a molecular weight distribution (MWD) of about 3 to about 5, and a Mooney viscosity (ML1+4) at 100° C. of less than 60. The polymerization achieves over an 80% conversion of the conjugated diene monomer when catalyzed with a catalyst comprising at least one nickel compound, at least one aluminum activator compound, and a mixture of BF3.hexanol and BF3.H2O. For the catalyst, the molar ratio of Ni/H2O is from about 0.05 to about 20 and the molar ratio of BF3/H2O is from about 1.8 to about 500.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: September 4, 2018
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Christine M. Rademacher
  • Patent number: 9751848
    Abstract: A catalyst, method of using, and use of a hydrogenation catalyst, preferably palladium on a support, preferably alumina or activated charcoal support. This in the presence of lithium salts, with salts such as the borates being preferred. This provides hydrogenation of precursors to give rise to a stereoselective, such as diastereoselective bias in the product of alkene hydrogenation using the catalyst.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: September 5, 2017
    Assignee: Thomas Swan & Co. Ltd
    Inventors: David Dunn, Howard Winston Tyrrell Sutton, John Ing Chuan Daly, Simon Jonathon Grant, Lian Hutchings, Patrice Georges Antonin Ribiere, Matthew Richard Gibbings, Sergio Aaron Gamboa Martinez, Craig Anderson, Yulia Rogan
  • Patent number: 9611340
    Abstract: A catalyst system for the polymerization of olefins may include a first solid catalytic component and a second solid catalytic component. The first solid catalytic component may include: a spherical MgCl2-xROH support; a group 4-8 transition metal; and a diether internal electron donor. The second solid catalytic component may include: a spherical MgCl2-xROH support; a group 4-8 transition metal; and a diether internal electron donor. The first solid catalytic component produces a propylene homopolymer having a Xylene Solubles (XS) value of greater than 2 wt %; and the second solid catalytic component produces a propylene homopolymer having a XS value of less than 2 wt %. The second catalytic component may act as an external electron donor during use, and embodiments herein do not require use of any additional external electron donors to control polymerization and reliably vary the properties of the resulting polymer.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: April 4, 2017
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Yvonne Denkwitz, Oliver Schuster, Andreas Winter
  • Publication number: 20150141596
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization with chain transfer agent.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 21, 2015
    Inventor: John R. Hagadorn
  • Publication number: 20150080541
    Abstract: The present invention provides a new process for preparing a catalyst for the gas phase polymerization of olefins wherein the sequence of addition of the catalyst components and the selection of the said components provides a catalyst composition which exhibits a superior response to hydrogen, a surprisingly high productivity and an improved activity profile. The catalyst consists of compounds of a group IV transition metal, Mg, C1 and A1 supported on a silica support.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 19, 2015
    Inventors: Fabien Bini, Paul Fiasse, Luc Girardot, Benoit Koch
  • Patent number: 8975209
    Abstract: Disclosed is a solid support-polymethylaluminoxane complex exhibiting a higher polymerization activity than a conventional substance and being homogeneous. Also disclosed is a method for producing an olefin-based polymer having a favorable quality using the complex and a transition metal compound. The complex comprises a coating layer containing polymethylaluminoxane and trimethylaluminum on the surface of a solid support. The coating layer comprises a solid polymethylaluminoxane composition in which (i) the content of aluminum is in a range of 36 to 41 mass % and (ii) the molar fraction of methyl groups derived from a trimethylaluminum moiety to the total number of moles of methyl groups is 12 mol % or less. Also disclosed is an olefin polymerization catalyst comprising the complex and a transition metal compound represented by general formula (III): MR5R6R7R8 as catalyst components, and a method for producing a polyolefin comprising polymerizing an olefin using the catalyst.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: March 10, 2015
    Assignee: Tosoh Finechem Corporation
    Inventors: Eiichi Kaji, Etsuo Yoshioka
  • Patent number: 8895465
    Abstract: This invention provides activator precursor compositions and activator compositions. The activator precursor compositions are formed from a support material, an organoaluminum compound, and polyfunctional compounds having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. The activator compositions are formed from a support material, an organoaluminum compound, an aluminoxane, and a polyfunctional compound having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. Also provided are catalyst compositions, processes for forming catalyst compositions, and polymerization processes utilizing the catalyst compositions of this invention.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: November 25, 2014
    Assignee: Albemarle Corporation
    Inventor: Lubin Luo
  • Patent number: 8859451
    Abstract: The present invention refers to a process for the preparation of supported catalysts for the polymerization of olefins comprising at least a late transition metal complex, wherein the process comprises two steps. In the first step a catalytically active component comprising at least one late transition metal complex, optionally in the presence of one or more cocatalysts is mixed with a support; and in the second step the obtained mixture is treated at a reduced pressure under a flow of inert gas at a temperature equal to or below 40° C. to obtain a supported catalyst. The method is especially useful for the preparation of dual supported catalysts, useful in the gas-phase polymerization of olefins.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: October 14, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Volker Fraaije, Harald Schmitz
  • Patent number: 8765886
    Abstract: The invention generally relates to chain shuttling agents (CSAs), a process of preparing the CSAs, a composition comprising a CSA and a catalyst, a process of preparing the composition, a processes of preparing polyolefins, end functional polyolefins, and telechelic polyolefins with the composition, and the polyolefins, end functional polyolefins, and telechelic polyolefins prepared by the processes.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Thomas P. Clark, Nahrain E. Kamber, Sara B. Klamo, Phillip D. Hustad, David R. Wilson
  • Patent number: 8658556
    Abstract: This invention relates to a method to polymerize olefins comprising contacting olefins with a catalyst system comprising a transition metal catalyst compound and: 1) at least two NCA activators represented by the formula: Zd+ (Ad-), where Z is a Bronsted acid or a reducible Lewis acid, Ad- is a boron containing NCA, d is 1, 2, or 3, and where Z is a Bronsted acid and Z is a reducible Lewis acid in the first and second NCA activators, respectively; or 2) at least two NCA activators, one as described in Formula I and one not as described in Formula I; or 3) two NCA activators as described in Formula I except that the N in the second NCA in the ArNHal is at a different position in the nitrogen containing aromatic ring than the N in the first NCA.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Ian C. Stewart
  • Patent number: 8436114
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: May 7, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, David M. Fiscus
  • Patent number: 8436111
    Abstract: Embodiments relate to a novel catalyst composition comprising a transition metal-containing compound, a PNP compound, an alkylating agent and a fluorine containing compound. Other embodiments relate to a method of polymerizing a diene monomer in the presence of the novel composition to form a diene-containing polymer having greater than 90% cis content.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: May 7, 2013
    Assignee: Bridgestone Corporation
    Inventors: James H. Pawlow, Terrence E. Hogan
  • Patent number: 8431661
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 6 to 25 mole %, prior to use as an activator, where the mole % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the unknown species is the peak is identified in the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: April 30, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, David M. Fiscus
  • Publication number: 20130072646
    Abstract: The present invention relates to a catalyst composition and a process for preparing an olefin polymer using the same. More specifically, the present invention relates to a novel catalyst composition comprising at least two types of catalysts and a process for preparing an olefin polymer having excellent heat resistance using the same. The present invention can provide an olefin polymer having excellent activity and high heat resistance, and also can control the values of density, heat resistance and melt index (MI) of the olefin polymer.
    Type: Application
    Filed: April 25, 2011
    Publication date: March 21, 2013
    Applicant: LG Chem, Ltd.
    Inventors: Kyung-Seop Noh, Hoon Chae, Cheon-Il Park, Won-Hee Kim, Sang-Jin Jeon, Eun-Jung Lee, Choong-Hoon Lee, Jong-Joo Ha
  • Patent number: 8193113
    Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: June 5, 2012
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Matthew John Andrus
  • Patent number: 8188200
    Abstract: Disclosed is a method of producing a polyolefin composition comprising contacting a metallocene pre-catalyst, co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; and polymerizing the first monomer for a time sufficient to form the polyolefin. The method allows for the use of minimum amounts of activating co-catalyst and metallocene pre-catalyst. Also disclosed is a method of producing a block polyolefin composition comprising contacting a metallocene pre-catalyst, a co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; polymerizing the first monomer for a time sufficient to form the polyolefin; adding a second monomer; and polymerizing the second olefin monomer for a time sufficient to form said block polyolefin composition. Also disclosed are amorphous atactic polymer and copolymer compositions made according to the present invention.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: May 29, 2012
    Assignee: University of Maryland, College Park
    Inventors: Lawrence R. Sita, Wei Zhang
  • Publication number: 20120065346
    Abstract: An ethylene-?-olefin copolymer comprising monomer units derived from ethylene and monomer units derived from an ?-olefin having 3 to 20 carbon atoms, having a density (d) of 860 to 950 kg/m3, having a melt flow rate (MFR) of 0.01 to 100 g/10 min, having a bimodal molecular weight distribution, and having a single melting peak measured by a differential scanning calorimeter (DSC).
    Type: Application
    Filed: May 27, 2010
    Publication date: March 15, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshinobu Nozue, Naoko Ochi
  • Patent number: 8106137
    Abstract: The invention concerns a novel catalytic combination for polymerizing alpha-olefins based on a titanium diamidide complex. The invention also concerns a method for polymerizing alpha-olefins using said catalytic combination, in the absence of any aluminum-containing compound. The inventive catalytic combination comprises: component A which is a dichlorinated titanium diamidide complex of general formula (I) wherein R represents a methyl group (component A2) or an isopropyl group (component A1); component B which is a dialkylmagnesium whereof the reaction with component A enables an alkylated component AA to be obtained: and as activator of said component AA, component C which is trispentafluorophenylboran (B(C6F5)3).
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: January 31, 2012
    Assignee: Universite des Sciences et Technologies
    Inventors: André Mortreux, Régis Gauvin, Estelle Gautier
  • Patent number: 8084559
    Abstract: A transition metal complex represented by formula [1], and its production process; a substituent-carrying fluorene compound represented by formula [2], and its production process; an olefin polymerization catalyst component comprising the complex; an olefin polymerization catalyst obtained by contacting the catalyst component with a defined aluminum compound and/or a defined boron compound; and a production process of an olefin polymer using the catalyst:
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: December 27, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Taichi Senda, Hidenori Hanaoka, Shinya Nakahara, Kenji Sogoh
  • Patent number: 7998894
    Abstract: The present invention relates to a Ziegler-Natta catalyst comprising a solid, ligand-modified catalyst component formed at least from (a) a compound of Group 1 to 3 of the Periodic Table (IUPAC), (b) a transition metal compound of Group 4 to 10 of the Periodic Table (IUPAC), or a compound of an actinide or lanthanide, (c) one or more organic ligand compound(s) which is/are selected from organic compounds comprising a cyclopentadienyl anion backbone, and (d) a compound of Group 13 of the Periodic Table, wherein the catalyst component of said Ziegler-Natta catalyst is formed in an emulsion/solidification method, to a process for the production of such a catalyst, and to a process for the production of an olefin (co-)polymer in the presence of such a catalyst.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 16, 2011
    Assignee: Borealis Technology Oy
    Inventors: Marjo Väänänen, Minna Stalhammar, Young-Soo Ko, Siw Fredriksen, Marita Savilahti
  • Patent number: 7985817
    Abstract: Disclosed is a homogeneous catalyst system for producing an ethylene homopolymer or an ethylene copolymer with ?-olefin. Specifically, this invention pertains to a transition metal catalyst which has stability under high temperature solution polymerization at 120˜250° C., in which a cyclopentadiene derivative and an electron donating substituent, both of which are bonded to a Group IV transition metal acting as a central metal, are crosslinked through a silyl derivative substituted with a cyclohexyl, to a catalyst system including such a transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst, and to a method of producing an ethylene homopolymer or an ethylene copolymer with ?-olefin, having high molecular weight, using the catalyst system under conditions of high-temperature solution polymerization.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: July 26, 2011
    Assignee: SK Energy Co., Ltd.
    Inventors: Tae Woo Woo, Myung Ahn Ok, Jong Sok Hahn, Sang Ook Kang, Jae Ho Jung
  • Publication number: 20110136994
    Abstract: An olefin polymerization catalyst is provided formed by contacting a specified transition metal compound (A1), a specified transition metal compound (A2) and a specified solid catalyst component (B) with one another, a molar ratio of (A1)/(A2) being 1 to 90: wherein M1 and M2 are a transition metal atom of Group 4 in the Periodic Table; X1, X2, R1, R3 and R4 are a hydrogen atom, a halogen atom, a hydrocarbyl group or a hydrocarbyloxy group; and Q1 and Q2 are a specified cross-linking group.
    Type: Application
    Filed: November 27, 2008
    Publication date: June 9, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Naoko Ochi, Yoshinobu Nozue, Yasutoyo Kawashima
  • Patent number: 7951746
    Abstract: Bulk metallic catalysts comprised of a Group VIII metal and a Group VIB metal and methods for synthesizing bulk metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic acid, such as glyoxylic acid, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: May 31, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, El-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Jun Han, Daniel Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, Jr., David Michael Lowe
  • Patent number: 7943546
    Abstract: A combinatorial method for identifying a catalyst composition for use in the homogeneous addition polymerization of an olefin monomers, said catalyst composition comprising a transition metal compound, a cocatalyst and a polymerization modifier, as well as catalyst compositions and improved olefin polymerization processes resulting therefrom.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: May 17, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Daryoosh Beigzadeh, Richard E. Campbell, Jr., David D. Devore, Duane R. Romer, James C. Stevens, Francis J. Timmers, Hendrik E. Tuinstra, Paul C. Vosejpka
  • Publication number: 20110092655
    Abstract: Supported catalysts systems and method of forming the same are described herein. The method generally includes providing a support material, providing a single site transition metal catalyst compound, contacting the transition metal catalyst compound with triisobutyl aluminum (TiBAl) to form a modified catalyst compound and contacting the support material with the modified catalyst compound to form a supported catalyst system.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: Fina Technology, Inc.
    Inventors: JOSEPH THORMAN, Shady Henry
  • Patent number: 7919569
    Abstract: The present invention relates to a process for the polymerization of olefins, comprising the steps of introducing at least one olefin, at least one polymerization catalyst, at least one cocatalyst and at least one cocatalyst aid, and optionally a scavenger, into a polymerization reactor, and polymerizing the olefin, wherein the cocatalyst aid is a reaction product prepared separately prior to the introduction into the reactor by reacting at least one metal alkyl compound of group IIA or IIIA of the periodic system of elements and at least one compound (A) of the formula RmXR?n, wherein R is a branched, straight, or cyclic, substituted or unsubstituted, hydrocarbon group having 1 to 30 carbon atoms, R? is hydrogen or any functional group with at least one active hydrogen, X is at least one heteroatom selected from the group of O, N, P or S or a combination thereof, and wherein n and m are each at least 1 and are such that the formula has no net charge.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 5, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wei Xu, Vugar O. Aliyev, Sirajudeen Mohamed, Atieh Abu-Raqabah
  • Patent number: 7897539
    Abstract: A method of preparing a composition comprising dry mixing commercial grade alumina and a solid sulfating agent to form a mixture and calcining the mixture to form a sulfated alumina support.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: March 1, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Randall S. Muninger
  • Patent number: 7834112
    Abstract: A process for the polymerization of olefins using a metal complex of group 3, 4, 5, 6, 7, 8, 9 or 10 of the Periodic Table comprising at least one group C?NR1, C?PR1, C?O, C?S or a heteroaromatic ring system containing at least one atom from the group consisting of N, P, O and S, can be used for controlling the width of the molar mass distribution of the resulting polymers.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: November 16, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Birgit Dorer, Markus Enders, Pablo Fernandez
  • Patent number: 7820580
    Abstract: A nickel-carbene polymerization catalyst system for preparing high cis polydienes is provided. The catalyst system comprises (a) a nickel N-heterocyclic carbene complex, (b) an organoaluminum compound, (c) a fluorine-containing compound, and (d) optionally, an alcohol. Also provided is a process for producing a polydiene comprising reacting a conjugated diene in the presence of a polymerization catalyst comprising (a) a nickel N-heterocyclic carbene complex, (b) an organoaluminum compound, (c) a fluorine-containing compound, and (d) optionally, an alcohol.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: October 26, 2010
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Jason T. Poulton, Michael W. Hayes
  • Patent number: 7799722
    Abstract: A catalyst system solution obtainable by a process comprising the following steps: (a) contacting a solution of methylalumoxane in an aromatic solvent (solvent a) with a solution of one or more organo-aluminium in a solvent (solvent b), or a solution of one or more alumoxanes different from methylalumoxane in a solvent (solvent b); (b) when solvent b) is an aromatic solvent or if solvent b) has a boiling point lower than solvent a) add to the solution formed in step a) an alifatic solvent (solvent c) having a boiling point higher than solvent a) and solvent b); or (c) solubilizing a metallocene compound in the solution obtained in step a) or in step b); and (d) substantially removing solvent a) or solvent a) and solvent b) from the solution.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: September 21, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Gilberto Moscardi, Anna Fait
  • Patent number: 7754641
    Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 13, 2010
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Matthew John Andrus
  • Publication number: 20100160581
    Abstract: The present invention relates to a supported catalyst composition for polymerization of olefins comprising at least two catalytic components; and a polymerization process using that catalyst composition; and a method for its preparation.
    Type: Application
    Filed: August 11, 2006
    Publication date: June 24, 2010
    Inventors: Wei Xu, Syriac J. Palackal, Atieh Abu-Ruqabah, Maneet Muktibodh, Bing Wang, Nicolaas Hendrika Friederichs
  • Patent number: 7718566
    Abstract: A catalyst composition and method for olefin polymerization are provided. In one aspect, the catalyst composition is represented by the formula ?a?b?gMXn wherein M is a metal; X is a halogenated aryloxy group; ? and ? are groups that each comprise at least one Group 15 atom; ? is a linking moiety that forms a chemical bond to each of ? and ?; and a, b, g, and n are each integers from 1 to 4.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: May 18, 2010
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Zondra Dee Dixon
  • Publication number: 20100093920
    Abstract: Embodiments relate to a novel catalyst composition comprising a transition metal-containing compound, a PNP compound, an alkylating agent and a fluorine containing compound. Other embodiments relate to a method of polymerizing a diene monomer in the presence of the novel composition to form a diene-containing polymer having greater than 90% cis content.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 15, 2010
    Inventors: James H. PAWLOW, Terrence E. HOGAN
  • Patent number: 7651969
    Abstract: A process for synthesizing a catalyst component for manufacturing ethylene polymer and co-polymer. The present invention provides a process for synthesizing catalyst component (A), comprising forming a complex by contacting the solid intermediate (B) with an aluminum compound represented by formula X3-nAl(OY)n, and alkyl metal (C), wherein X is halide, Y is a hydrocarbon group or chelating carbonyl group, and wherein 1 is less than or equal to n which is less than or equal to 3, and then contacting the complex with titanium halide having formula TiX4 wherein X is halide. Solid intermediate (B) is formed by reacting magnesium metal with alkyl halide in the presence of alkoxy aluminum represented by formula Al(ORa)3, silicon halide represented by formula SiX4 and alkoxy silane represented by formula Si(ORb)4, wherein Ra and Rb are an aromatic or aliphatic alkyl group and wherein X is halide.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 26, 2010
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Gapgoung Kong, Zhongyang Liu, Honglan Lu
  • Patent number: 7553917
    Abstract: A combinatorial method for identifying a catalyst composition for use in the homogeneous addition polymerization of an olefin monomers, said catalyst composition comprising a transition metal compound, a cocatalyst and a polymerization modifier, as well as catalyst compositions and improved olefin polymerization processes resulting therefrom.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: June 30, 2009
    Assignee: Dow Global Technologies, Inc.
    Inventors: Daryoosh Beigzadeh, David D. Devore, Richard E. Campbell, Jr., Duane R. Romer, James C. Stevens, Hendrik E. Tuinstra, Francis J. Timmers, Paul C. Vosejpka
  • Patent number: 7521512
    Abstract: A catalyst composition for the polymerization of olefins comprising the combination of one or more Ziegler-Natta procatalysts comprising one or more transition metal compounds; one or more aluminum containing cocatalysts; and a mixture comprising two or more selectivity control agents (SCA's), corresponding to the formula: (CH3O)nSi(OR)4-n, wherein R, independently each occurrence, is C2-12 alkyl, C3-12 cycloalkyl, C6-18 aryl or (poly)alkyl-substituted aryl, or C7-18 poly(aryl)-substituted alkyl, and n is an integer from zero to 4.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 21, 2009
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventor: Stanley E. Wilson
  • Patent number: 7468416
    Abstract: A process for the preparation of a catalyst system includes the steps of combining a Lewis base, an organic compound having at least one functional group containing active hydrogen, and an organometallic component with a particulate support material to provide an intermediate composition, and then combining the intermediate composition with one or more metallocene compound. The catalyst system is advantageously used for olefin polymerization.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: December 23, 2008
    Assignee: Lummus Technology Inc.
    Inventors: Thorsten Sell, Joerg Schottek, Nicola Stefanie Paczkowski, Andreas Winter
  • Patent number: 7442667
    Abstract: The present invention relates to a process for preparing a supported cocatalyst for olefin polymerization, which comprises reacting A) a support bearing functional groups, B) triethylaluminum and C) a compound of the formula (I), (R1)x—A—OH)y??(I) where A is an atom of group 13 or 15 of the Periodic Table, R1 are identical or different and are each, independently of one another, hydrogen, halogen, C1-C20-alkyl, C1-C20-haloalkyl, C1-C10-alkoxy, C6-C20-aryl, C6-C20-haloaryl, C6-C20-aryloxy, C7-C40-arylalky, C7-C40-haloarylalkyl, C7-C40-alkylaryl, C7-C40-haloalkylaryl or an OSiR32 group, where R2 are identical or different and are each hydrogen, halogen, C1-C20-alkyl, C1-C20-haloalkyl, C1-C10-alkoxy, C6-C20-aryl, C6-C20-haloaryl, C6-C20-aryloxy, C7-C40-arylalkyl, C7-C40-haloarylalkyl, C7-C40-alkylaryl or C7-C40-haloalkylaryl, y is 1 or 2 and x is 3 minus y.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: October 28, 2008
    Assignee: Bosell Polyolefine GmbH
    Inventors: Naka Seidel, Bodo Richter, Roland Kratzer
  • Patent number: 7429635
    Abstract: Disclosed is a method of preparing an ultra-high molecular weight, linear low density polyethylene with a catalyst system that comprises a bridged indenoindolyl transition metal complex, a non-bridged indenoindolyl transition metal complex, an alumoxane activator and a boron-containing activator. The ultra-high molecular weight, linear low density polyethylene has a weight average molecular weight greater than 1,000,000 and a density less than 0.940 g/cm3.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 30, 2008
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 7326760
    Abstract: Broad molecular weight polyethylene and polyethylene having a bimodal molecular weight profile can be produced with chromium oxide based catalyst systems employing alkyl silanols. The systems may also contain various organoaluminum compounds. Catalyst activity and molecular weight of the resulting polyethylene may also be tuned using the present invention.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: February 5, 2008
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, John H. Moorhouse, Maria A. Apecetche
  • Patent number: 7232869
    Abstract: A process for the preparation of a catalyst system includes the steps of combining a Lewis base, an organic compound having at least one functional group containing active hydrogen, and an organometallic component with a particulate support material to provide an intermediate composition, and then combining the intermediate composition with one or more metallocene compound. The catalyst system is advantageously used for olefin polymerization.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: June 19, 2007
    Assignee: Novolen Technology Holdings, C.V.
    Inventors: Thorsten Sell, Joerg Schottek, Nicola Stefanie Paczkowski, Andreas Winter
  • Patent number: 7230056
    Abstract: A two-step catalyst preparation method is disclosed. First, a support is combined with an indenoindolyl Group 3-10 metal complex and a first activator comprising an alkyl alumoxane to give a supported complex. The supported complex is subsequently combined with a second activator comprising an ionic borate to produce a borate-treated supported complex. Activating indenoindolyl metal complexes in this sequence surprisingly provides an exceptional activity boost compared with other ways of activating them with either or both types of activators.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: June 12, 2007
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 7220695
    Abstract: This invention relates to supported activators comprising the product of the combination of an ion-exchange layered silicate, an organoaluminum compound, and a heterocyclic compound, which may be substituted or unsubstituted. This invention further relates to catalyst systems comprising catalyst compounds and such activators, as well as processes to polymerize unsaturated monomers using the supported activators. For the purposes of this patent specification and the claims thereto, the term “activator” is used interchangeably with the term “co-catalyst”, the term “catalyst” refers to a metal compound that when combined with an activator polymerizes olefins, and the term “catalyst system” refers to the combination of a catalyst and an activator with or without a support. The terms “support” or “carrier”, for purposes of this patent specification, are used interchangeably and are any ion-exchange layered silicates.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary L. Casty, Smita Kacker, Jack W. Johnson, Murielle V. Scott, Steven L. Hegwood, Robert R. Simpson, Robert P. Reynolds
  • Patent number: 7214744
    Abstract: A catalyst system comprising (i) a bulky ligand catalyst compound; and (ii) a novel borate activator is active for olefin polymerization. The novel borate contains at least one chelating (divalent) ligand and contains at least one fluorine atom. Preferred borate activators are provided as anilinium or carbonium salts. Highly preferred borate salts contain two perfluorinated alkoxy chelating ligands. The catalyst system may be used to produce polyethylene for “end use” applications such as polyethylene film and molded polyethylene goods.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: May 8, 2007
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Isam Jaber
  • Patent number: 7214638
    Abstract: Catalyst compositions that are highly tolerant of catalyst poisons for use in addition polymerizations comprising a catalytic derivative of a Group 4 metal complex, a cocatalyst, and a Group 13 metal amide compound.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: May 8, 2007
    Assignee: Dow Global Technologies Inc.
    Inventors: Duane R. Romer, James C. Stevens, Robert K. Rosen, Francis J. Timmers, Hendrik E. Tuinstra
  • Patent number: 7208441
    Abstract: A copolymer of ethylene and a higher alpha olefin, preferably 1-hexene, can be produced using an activated chromium containing catalyst system and a cocatalyst selected from the group consisting of trialkylboron, trialkylsiloxyalutninum, and a combination of trialkylboron and thalkylaluminum compounds. The polymerization process must be carefully controlled to produce a copolymer resin having an exceptionally broad molecular weight distribution, extremely high PENT ESCR values, and a natural branch profile that impacts branching preferably into the high molecular weight portion of the polymer. The resulting copolymer resin is especially useful in high stiffness pipe applications.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: April 24, 2007
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Elizabeth A. Benham, Paul J. DesLauriers, Max P. McDaniel, Al R. Wolfe
  • Patent number: 7172987
    Abstract: Bimetallic catalysts, and methods of producing a bimetallic catalyst comprising a modified Ziegler-Natta catalyst and a metallocene are provided, in one embodiment the method including combining: (a) a Ziegler-Natta catalyst comprising a Group 4, 5 or 6 metal halide and/or oxide, optionally including a magnesium compound, with (b) a modifier compound (“modifier”), wherein the modifier compound is a Group 13 alkyl compound, to form a modified Ziegler-Natta catalyst. Also provided is a method of olefin polymerization using the bimetallic catalyst of the invention. The modified Ziegler-Natta catalyst is preferably non-activated, that is, it is unreactive towards olefin polymerization alone. In one embodiment, the molar ratio of the Group 13 metal (of the modifier) to the Group 4, 5 or 6 metal halide and/or oxide is less than 10:1 in one embodiment.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: February 6, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Sun-Chueh Kao, Michael D. Awe
  • Patent number: 7151146
    Abstract: The present invention relates to a method for preparing neodymium-carbon-nanotube and a process for preparing 1,4-cis-polybutadiene utilizing the same and more particularly, neodymium-carbon-nanotube. Neodymium is introduced by coordination with carboxylic acid, which is formed on the surface of carbon nanotube. In 1,3-butadiene polymerization with the neodymium-catalyst comprising the neodymium-carbon nanotube, a particular halogen compound, and a particular organometallic compound in an appropriate ratio, high 1,4-cis polybutadiene having molecular weight of 10,000 to 2,000,000 is produced, which exhibits excellent mechanical properties such as elasticity and durability.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: December 19, 2006
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Gwanghoon Kwag, Pilsung Kim, Shin Han, Hyung Kyu Choi, Dong Hwan Kim, Seung Hwa Lee, Sung Hoon Han