Magnesium Containing Patents (Class 502/115)
  • Patent number: 10618987
    Abstract: The invention covers a supported catalyst system prepared according to a process comprising the following step: i). impregnating a silica-containing catalyst support having a specific surface area of from 150 m2/g to 800 m2/g, preferably 280 m2/g to 600 m2/g, with one or more titanium compounds of the general formula selected from RnTi(OR?)m and (RO)nTi(OR?)m, wherein R and R? are the same or different and are selected from hydrocarbyl groups containing from 1 to 12 carbon and halogens, and wherein n is 0 to 4, m is 0 to 4 and m+n equals 4, to form a titanated silica-containing catalyst support having a Ti content of at least 0.1 wt % based on the weight of the Ti-impregnated catalyst support wherein the supported catalyst system further comprises an alumoxane and a metallocene.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: April 14, 2020
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Christopher Willocq, Aurélien Vantomme, Martine Slawinski
  • Patent number: 10584192
    Abstract: The present disclosure provides a solid catalyst component obtainable by a process including: (a) a first step in which Ti(OEt)4, is reacted with a Mg based compound of formula MgCln(ORI)2-n, where n is from about 0.5 to about 1.5, RI is a C1-C10 alkyl groups, the Ti(OEt)4 and the Mg compound are used in amounts such that the Ti/Mg molar ratio is of about 0.2 to about 0.4, the reaction temperature is about 110 to about 130° C., and the reaction time is about 2 to about 5 hours; and (b) a subsequent step in which the product obtained in step (a) is reacted with a Ti compound of the formula Ti(ORI)4-yCly, where y is a number between 3 and 4.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: March 10, 2020
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Simona Guidotti, Tiziano Dall'Occo, Dario Liguori, Giampiero Morini
  • Patent number: 10308734
    Abstract: Catalyst components component for the (co)polymerization of olefins CH2?CHR, in which R is a hydrocarbyl radical with 1-12 carbon atoms, optionally in mixture with ethylene, comprising Ti, Mg, Zn, Cl, and an electron donor compound characterized by the fact that more than 50% of the titanium atoms are in the +4 valence state, and that the amount of Zn ranges from 0.1 to 4% by weight based on then total weight of said solid catalyst component.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: June 4, 2019
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Simona Guidotti, Simona Esposito, Dario Liguori, Giampiero Morini, Fabrizio Piemontesi, Gianni Vitale
  • Patent number: 10113018
    Abstract: The present disclosure relates to a single-pot process for the preparation of a shape controlled pro-catalyst. The process comprises the steps of i. reacting at least one alkanol with magnesium metal using at least one modifier and optionally, at least one solvent resulting in evolution of hydrogen gas, increasing the evolution of the hydrogen gas in a controlled manner by increasing the temperature in a graded manner to 100° C. to obtain a mass, and ii. subjecting the mass to drying to obtain a free flowing procatalyst.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: October 30, 2018
    Assignee: Reliance Industries Limited
    Inventors: Virendrakumar Gupta, Sanjay Govindbhai Chauhan, Hiren Manojkumar Bhajiwala, Shakil Shabbir Sayyed, Suketu Vakil
  • Patent number: 10106888
    Abstract: A process of bringing a compound of general formula (I) into the gaseous or aerosol state and depositing the compound of general formula (I) from the gaseous or aerosol state onto a solid substrate, wherein R11, R12, R13, R14, R15, R16, R17, R18 are independent of each other hydrogen, an alkyl group, an aryl group, or a trialkylsilyl group, R21, R22, R23, R24 are independent of each other an alkyl group, an aryl group, or a trialkylsilyl group, n is 1 or 2, M is a metal or semimetal, X is a ligand which coordinates M, and m is an integer from 0 to 3.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: October 23, 2018
    Assignee: BASF SE
    Inventors: Julia Strautmann, Rocco Paciello, Thomas Schaub, Kerstin Schierle-Arndt, Daniel Loeffler, Hagen Wilmer, Felix Eickemeyer, Florian Blasberg, Carolin Limburg
  • Patent number: 9834630
    Abstract: The supported metallocene catalyst for olefin polymerization is (nBuCp)2ZrCl2 impregnated onto a silica support having MAO tethered thereon. The catalyst is made by dehydroxylating silica, adding MAO dropwise to a slurry of the silica in toluene, heating the mixture for several hours, reacting (nBuCp)2ZrCl2 in toluene solvent with the MAO/silica support, and drying the catalyst under vacuum. The catalyst may be used, e.g., to catalyze copolymerization of ethylene with 1-hexene.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: December 5, 2017
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Muhammad Atiqullah, Mamdouh A. Al-Harthi, Siripon Anantawaraskul, Abdul-Hamid M. Emwas, Anwar Ul-Hamid, Anwar Hossaen
  • Patent number: 9815920
    Abstract: The present invention relates to a Ziegler-Natta catalyst component for olefin polymerization containing a urea element in combination with one or more internal electron donors. The catalyst components are able to produce polypropylene polymers with higher stereo-regularity. The present invention also provides phthalate-free catalyst system capable of producing polypropylene with an isotacticity that is equal to or higher than catalyst systems containing phthalate derivatives.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: November 14, 2017
    Assignee: Formosa Plastics Corporation, USA
    Inventors: Gapgoung Kong, Lei Zhang, Demin Xu, Yiqun Fang, Chih-Jian Chen
  • Patent number: 9181359
    Abstract: A method of production of ethylene-based polymer particles includes the steps of: homopolymerizing ethylene or copolymerizing ethylene and a linear or branched ?-olefin having 3 to 20 carbon atoms in the presence of an olefin polymerization catalyst including: (A) fine particles having an average particle diameter greater than or equal to 1 nm and less than or equal to 300 nm obtained at least by the following two steps: (Step 1) causing contact between a metal halide and an alcohol in a hydrocarbon solvent; (Step 2) causing contact between a component obtained by (Step 1) and an organoaluminum compound and/or an organoaluminumoxy compound; and (B) a transition metal compound represented in General Formula (I) or (II), and (E) an intrinsic viscosity [?] of the ethylene-based polymer particles, measured in decalin at 135° C., is from 5 to 50 dL/g.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: November 10, 2015
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Fumiaki Nishino, Takeshi Karino, Takayuki Onogi, Susumu Murata, Naoto Matsukawa, Yasunori Yoshida, Yasushi Nakayama
  • Patent number: 9175102
    Abstract: A process for the preparation of a catalyst that is in the form of solid particles includes preparing a solution of a complex of a metal and an electron donor; adding to the solution solid material obtaining a suspension combining the suspension at a temperature of at least 50° C. with at least one transition metal compound resulting in a precipitation of the catalyst being in the form of a solid particle; and optionally separating the catalyst.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: November 3, 2015
    Assignee: BOREALIS AG
    Inventors: Anssi Haikarainen, Peter Denifl, Timo Leinonen
  • Patent number: 9090406
    Abstract: An article (2) accumulation conveyor (1) having an endless conveying belt (9), characterized in that it comprises: a plurality of accumulation modules (14) having adjustable capacity, comprising independent frames (16), a device (53) for transferring the articles (2) from one accumulation module (14) to another (14), said device (53) being interposed between said modules (14); an endless conveying belt (9) common to the accumulation modules (14) and to the transfer device (53).
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 28, 2015
    Assignee: GEBO PACKAGING SOLUTIONS FRANCE
    Inventors: Rémy Lopez, Zmaj Petrovic, Pascal Walter
  • Patent number: 9068026
    Abstract: A magnesium halide adduct is provided, comprising at least one compound of the formula MgXY, at least one compound of the formula ROH, methanol, at least one modifying agent chosen from DOE and o-hydroxy benzoates, and optionally water. Also provided herein are a catalyst component comprising the magnesium halide adduct, a catalyst for olefin polymerization comprising the catalyst component; the respective processes for preparing the magnesium halide adduct and the catalyst component; use of the magnesium halide adduct for preparing the catalyst component, use of the catalyst component in a catalyst for olefin polymerization and use of the catalyst in olefin polymerization; and a process of olefin polymerization.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: June 30, 2015
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Xianzhi Xia, Yuexiang Liu, Jin Zhao, Jigui Zhang, Yongtai Ling, Weili Li, Suzhen Qiao, Yang Tan, Renqi Peng, Ping Gao, Futang Gao, Zhihui Zhang
  • Patent number: 9051400
    Abstract: A catalyst component for the polymerization of olefins comprising Mg, Ti and Cl obtained by a process comprising the following steps: a) reacting a precursor of formula MgCl2.mEtOH, wherein m is equal to, or lower than, 1.5 having a porosity due to pores with radius up to 1? of higher than 0.4 cm3/g with an alcohol of formula RIOH where RI is an alkyl different from ethyl, a cycloalkyl or aryl radical having 3-20 carbon atoms said RIOH being reacted with the said precursor using molar ratio RIOH/Mg ranging from 0.01 to 10; b) reacting the product obtained in (a) with TiCl4 using Ti/Mg molar ratio ranging from 0.01 to 15, c) reacting the product obtained in (b) with a silicon compound of formula RIaRIIbSi(ORIII)4?(a+b) where RI-RIII are linear or branched, cycloalkyl, aryl C1-C20 hydrocarbon groups a and b are integers from 0 to 2.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 9, 2015
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Friedhelm Gundert, Martin Schneider
  • Patent number: 9000242
    Abstract: The invention is directed to a catalyst for the gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene with HF to give 1-chloro-2,2-difluoroethane which catalyst is prepared by co-depositing FeCl3 and MgCl2 on chromia-alumina, or co-depositing Cr(NO3)3 and Ni(NO3)2 on active carbon, or by doping alumina with ZnCl2, and to a process for the preparation of 1-chloro-2,2-difluoroethane comprising a catalytic gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene wherein one of the catalysts according to claim 2 or 3 is used.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 7, 2015
    Assignee: Bayer Intellectual Property
    Inventors: Norbert Lui, Shanthan Rao Pamulaparthy, Srinivas Pvss, Thomas Vijaya, Sridhar Madabhushi, Rambabu Yadla, Narsaiah Banda, Sergii Pazenok
  • Patent number: 8633124
    Abstract: The invention relates to a process for the synthesis of spheroidal magnesium alkoxide having improved mechanical strength and narrow particle size distribution, the process comprising reacting magnesium metal, in the presence of iodine, with a mixture of alcohols by step-wise heating first in the range of 40° C. to 65° C. for a period of 2 hours and then in the range of 65° C. to 80° C. for a period of 1 hour, further by maintaining reaction temperature at 80° C. for a period of 6-10 hours, the vapors of the mixture produced during the reaction being condensed in an overhead condenser, hydrogen gas produced during the reaction being vented off and the mixture of alcohols left after the reaction being filtered and reused. The invention also relates to spheroidal magnesium alkoxide particles synthesized by the method, to the Ziegler natta procatalyst synthesized by using the alkoxide and to the polymer resin synthesized using the procatalyst.
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: January 21, 2014
    Assignee: Reliance Industries Limited
    Inventors: Virendrakumar Gupta, Saurabh Singh, Umesh Makwana, Jomichan Joseph, Kamlesh Singala, Smitha Rajesh, Vallabhbhai Patel, Mukeshkumar Yadav, Gurmeet Singh
  • Patent number: 8569194
    Abstract: The present invention relates to a supported catalyst composition for polymerization of olefins comprising at least two catalytic components; and a polymerization process using that catalyst composition; and a method for its preparation.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: October 29, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wei Xu, Syriac J. Palackal, Atieh Abu-Ruqabah, Maneet Muktibodh, Bing Wang, Nicolaas Hendrika Friederichs
  • Patent number: 8557935
    Abstract: Bimetallic catalysts, methods of producing bimetallic catalysts comprising a modified Ziegler-Natta catalyst and a metallocene, and methods of olefin polymerization using such catalysts are provided. The method of producing the bimetallic catalyst may include combining (a) a Ziegler-Natta catalyst comprising a Group 4, 5 or 6 metal halide and/or oxide, optionally including a magnesium compound, with (b) a modifier compound (“modifier”), wherein the modifier compound is a Group 13 alkyl compound, to form a modified Ziegler-Natta catalyst. The modified Ziegler-Natta catalyst is preferably non-activated, that is, it is unreactive towards olefin polymerization alone. The molar ratio of the Group 13 metal (of the modifier) to the Group 4, 5 or 6 metal halide and/or oxide may be less than 10:1. The bimetallic catalysts are useful in producing bimodal polymers, particularly bimodal polyethylene, having a Polydispersity (Mw/Mn) of from 12 to 50, which may be used in pipes and films.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 15, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Sun-Chueh Kao, Michael D. Awe
  • Patent number: 8546289
    Abstract: A solid catalyst component for olefin polymerization in which the molar ratio of residual alkoxy groups to supported titanium is 0.60 or less is obtained by reacting the following compound (a1) with the following compound (b1) at a hydroxyl group/magnesium molar ratio of 1.0 or more, reacting the reaction mixture with the following compound (c1) at a halogen/magnesium molar ratio of 0.20 or more, reacting the resultant reaction mixture with the following compounds (d1) and (e) at a temperature of 120° C. or higher but 150° C.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: October 1, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Publication number: 20130253156
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerisation catalyst component in particulate form for polymerising olefins, especially ethylene or propylene or comonomers thereof.
    Type: Application
    Filed: July 11, 2011
    Publication date: September 26, 2013
    Applicant: BOREALIS AG
    Inventors: Peter Denifl, Mikaela Eriksson, Timo Leinonen, Anssi Haikarainen
  • Publication number: 20130150540
    Abstract: The present invention relates to a catalyst component for olefin polymerization, which comprises the reaction product of at least one organo-magnesium compound, at least one titanium-containing compound, at least one hydroxyl group-containing compound, at least one chlorine-containing organo-aluminum, boron, phosphorus or silicon compound, and at least one polybutadiene block copolymer. The catalyst component of the present invention has well-shaped particles, and a narrow particle size distribution; a polymerization reaction of olefins with the catalyst component produces well-shaped polymer particles with a high bulk density (BD) and an excellent comprehensive catalytic performance. The present invention also relates to a preparation method for said catalyst component and the application thereof, particularly in the homopolymerization and copolymerization of olefins such as ethylene, propylene, butene, hexene and octene.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 13, 2013
    Inventors: Shibo Wang, Dongbing Liu, Junling Zhou, Xinping Lü, Lei Zhang, Bingquan Mao, Baoquan Xing, Xin Zhou, Changli Zhang
  • Publication number: 20130041120
    Abstract: A catalyst component for olefin polymerization comprising magnesium, titanium, halogen and electron donor, wherein the electron donor is selected from at least one of the diol diester compounds, when the diol diester comprised contains a certain amount of isomer with Fischer projection formula as shown in Formula (II), the activity and stereospecificity of the catalyst are greatly improved, especially in the production of polymers with high melt index, the isotactic index of the obtained polymers is improved substantially.
    Type: Application
    Filed: April 22, 2011
    Publication date: February 14, 2013
    Applicant: China Petroleum & Chemical Corporation
    Inventors: Mingzhi Gao, Changxiu Li, Haitao Liu, Xiaofan Zhang, Jianhua Chen, Jing Ma, Xiaoxia Cai, Xianzhong Li, Jixing Ma
  • Patent number: 8324126
    Abstract: The present invention relates a process for the preparation of catalytic support and the supported metallocene catalysts used in the production of ethylene homopolymers and ethylene copolymers with ?-olefins, of high and ultra high molecular weight with broad molecular weight distribution, in gas or liquid phase polymerization processes, the latter being in slurry, bulk or suspension, and the products obtained from these processes.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 4, 2012
    Assignee: Braskem S.A.
    Inventors: Marcia Silva Lacerda Miranda, Fernanda Oliveira Vieira da Cunha
  • Patent number: 8293672
    Abstract: A solid catalyst component for olefin polymerization in which the molar ratio of residual alkoxy groups to supported titanium is 0.60 or less is obtained by reacting the following compound (a1) with the following compound (b1) at a hydroxyl group/magnesium molar ratio of 1.0 or more, reacting the reaction mixture with the following compound (c1) at a halogen/magnesium molar ratio of 0.20 or more, reacting the resultant reaction mixture with the following compounds (d1) and (e) at a temperature of 120° C. or higher but 150° C.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: October 23, 2012
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Patent number: 8273486
    Abstract: An anode structure comprises an array of carbon nanotubes having a diffusion side and a membrane side, and catalyst particles interspersed on inner surfaces of the membrane side of the carbon nanotubes. The carbon nanotubes have an average diameter greater than the size of the hydrogen molecule but smaller than the size of the carbon monoxide molecule. Thus, hydrogen flowing toward the catalyst particles interspersed inside the carbon nanotubes are able to go through, while the flow of trace amounts of carbon monoxide contained in the hydrogen is blocked, preventing the poisoning of the catalyst particles by the carbon monoxide. A fuel cell utilizing the anode structure and a method for manufacturing the anode structure are also disclosed.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: September 25, 2012
    Assignee: Honeywell International, Inc.
    Inventor: Mark Kaiser
  • Patent number: 8268945
    Abstract: A catalyst component for ethylene polymerization, comprising an organic silicon compound of the formula (I), below wherein R1 is chosen from C3-C20 aliphatic hydrocarbyl groups, and is substituted with at least one substituent chosen from halogens, C1-C6 acyloxy groups, epoxy, amino, C1-C6 alkylamino groups, di(C1-C6 alkyl)amino groups, C1-C6 alkoxy groups, and oxo group; R2, R3 and R4, which may be the same or different, are each chosen from C1-C10 aliphatic hydrocarbyl, C3-C10 alicyclic hydrocarbyl, C6-C10 aryl, C7-C10 aralkyl, and C7-C10 alkaryl groups. A process for preparing the catalyst component and an active catalyst comprising the catalyst component and useful in polymerization, such as ethylene polymerization.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: September 18, 2012
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Taoyi Zhang, Junling Zhou, Hongtao Wang, Zifang Guo, Qingqiang Gou, Hongxu Yang, Ruixia Li, Shiyuan Xu
  • Publication number: 20120202955
    Abstract: Catalyst Systems, processes of forming the same and polymers and polymerization processes are described herein.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 9, 2012
    Applicant: Fina Technology, Inc.
    Inventors: LEI ZHANG, Kenneth Blackmon, David Rauscher
  • Patent number: 8227563
    Abstract: A process for the preparation of 1-butene homopolymers or 1-butene/alpha olefin copolymers wherein the alpha olefins are selected from ethylene, propylene or alpha olefins of formula CH2?CHZ wherein Z is a C3-C20 alkyl radical, comprising contacting 1-butene or 1-butene and one or more alpha olefins under polymerization conditions in the presence of a catalyst system comprising: (a) a solid component comprising a Ti compound and an internal electron-donor compound supported on MgCl2 (b) an alkylaluminum cocatalyst; and (c) a compound of formula (I) as external donor Wherein: R1, R2, R3 and R4, equal to or different from each other, are hydrogen atoms or C1-C20 hydrocarbon radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two R1, R2, R3 and R4 can be joined to form a C5-C20, saturated or unsaturated ring.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 24, 2012
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Gianni Vitale, Fabrizio Piemontesi, Ines Mingozzi, Isabella Maria Vittoria Camurati, Giampaolo Pellegatti
  • Patent number: 8193288
    Abstract: This invention relates to a supported nonmetallocene catalyst for olefin polymerization, which is produced by directly reacting a nonmetallocene ligand with a catalytically active metallic compound on a carrier through an in-situ supporting process. The process according to this invention is simple and feasible, and it is easy to adjust the load of the nonmetallocene ligand on the porous carrier. The supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, even in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts desirable polymer morphology and a high bulk density.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 5, 2012
    Assignee: Sinopec Yangzi Petro-Chemical Ltd.
    Inventors: Yuefeng Gu, Chuanfeng Li, Xiaoli Yao, Zhonglin Ma, Bo Liu, Feng Guo, Yaming Wang, Jiye Bai, Shaohui Chen, Xiaoqiang Li
  • Patent number: 8173569
    Abstract: A Ziegler-Natta procatalyst composition in the form of solid particles and comprising magnesium, halide and transition metal moieties, said particles having an average size (D50) of from 10 to 70 ?m, characterized in that at least 5 percent of the particles have internal void volume substantially or fully enclosed by a monolithic surface layer (shell), said layer being characterized by an average shell thickness/particle size ratio (Thickness Ratio) determined by SEM techniques for particles having particle size greater than 30 ?m of greater than 0.2.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: May 8, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Michael A. Kinnan, Michael D. Turner, Stephanie M. Whited, Laszlo L. Ban, Burkhard E. Wagner
  • Publication number: 20120095172
    Abstract: Ziegler-Natta catalyst composition capable of producing ethylene/alpha-olefins copolymers, particularly linear low density polyethylene; the composition having an improved stability of its behaviour during polymerization in respect to time. The Ziegler-Natta catalyst composition comprises: 1.
    Type: Application
    Filed: April 26, 2010
    Publication date: April 19, 2012
    Inventors: Thomas Garoff, Paivi Waldvogel, Kalle Kallio, Virginie Eriksson
  • Patent number: 8148286
    Abstract: The invention relates to an activated alkaline earth metal, to a method for its production and the use of the activated alkaline earth metal for the preparation of Grignard compounds and organoalkaline earth metal compounds.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: April 3, 2012
    Assignee: Chemetall GmbH
    Inventors: Rainer Dietz, Ute Emmel, Ulrich Wietelmann, Uwe Lischka
  • Patent number: 8143184
    Abstract: The invention is directed to a process for producing an olefin polymerization catalyst wherein a solution of a soluble magnesium complex containing an element of is Group 13 or 14 of the Periodic Table (IUPAC) is contacted with a halogen containing transition metal compound of Group 3 to 10 of the Periodic Table (IUPAC) to obtain a solid catalyst complex comprising as essential components Mg, said element of is Group 13 or 14 of the Periodic Table (IUPAC) and said transition metal compound.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: March 27, 2012
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Päivi Waldvogel
  • Publication number: 20120065346
    Abstract: An ethylene-?-olefin copolymer comprising monomer units derived from ethylene and monomer units derived from an ?-olefin having 3 to 20 carbon atoms, having a density (d) of 860 to 950 kg/m3, having a melt flow rate (MFR) of 0.01 to 100 g/10 min, having a bimodal molecular weight distribution, and having a single melting peak measured by a differential scanning calorimeter (DSC).
    Type: Application
    Filed: May 27, 2010
    Publication date: March 15, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshinobu Nozue, Naoko Ochi
  • Patent number: 8106137
    Abstract: The invention concerns a novel catalytic combination for polymerizing alpha-olefins based on a titanium diamidide complex. The invention also concerns a method for polymerizing alpha-olefins using said catalytic combination, in the absence of any aluminum-containing compound. The inventive catalytic combination comprises: component A which is a dichlorinated titanium diamidide complex of general formula (I) wherein R represents a methyl group (component A2) or an isopropyl group (component A1); component B which is a dialkylmagnesium whereof the reaction with component A enables an alkylated component AA to be obtained: and as activator of said component AA, component C which is trispentafluorophenylboran (B(C6F5)3).
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: January 31, 2012
    Assignee: Universite des Sciences et Technologies
    Inventors: André Mortreux, Régis Gauvin, Estelle Gautier
  • Patent number: 8067328
    Abstract: A polymerization catalyst composition comprising (1) a transition metal compound of Formula (A), Z being 5-membered heterocyclic containing at least one carbon, at least one nitrogen and at least one of nitrogen, sulphur and oxygen, the others being nitrogen or carbon; M is a Group 3 to 11 metal or a lanthamide metal; E1 and E2 are divalent groups of aliphatic, alicyclic, aromatic or alkyl substituted aromatic hydrocarbon, or heterocyclic; D1 and D2 are donor atoms or groups; X is an anionic group, L is a neutral donor group; n=m=zero or 1; y and z are zero or integer such that X and L satisfy valency/oxidation state of M, (2) a catalyst-activating support which is a solid particulate substance, insoluble in hydrocarbons, comprising at least magnesium and aluminum atoms and hydrocarbyloxy groups containing 1 to 20 carbon atoms, the molar ration of Mg/Al being in the range 1.0 to 300 and the molar ratio of hydrocarbyloxy groups to aluminum atoms being in the range 0.5 to 2.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: November 29, 2011
    Assignee: Ineos Europe Limited
    Inventors: Vernon Charles Gibson, Atanas Kostadinov Tomov, Grant Berent Jacobsen
  • Patent number: 8062989
    Abstract: Catalyst precursors comprising Mg, Cl, Ti, and OR groups that are in molar ratios defined by the formula MgClnTip(OR)(2?n)+4p in which n is from 0.3 to less than 1.7, p is lower than 0.6, the molar ratio (OR)/Cl is lower than 4 and R is C1-C15 hydrocarbon groups. The said precursor, just upon activation with organo-Al compounds, are able to advantageously polymerize ethylene and alpha olefins, and that upon reaction with halogenating compounds generate in high yields catalyst components with high polymerization activity particularly in the polymerization of propylene also in combination with 1,3-diethers.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: November 22, 2011
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Antonio Cristofori, Benedetta Gaddi, Dario Liguori, Joachim T. M. Pater, Gianni Vitale
  • Publication number: 20110263802
    Abstract: Methods of forming a catalyst, catalysts, polymerization processes and polymers formed therefrom are described herein. The method of forming a catalyst generally includes contacting an alkyl magnesium compound with an alcohol to form a magnesium alkoxide compound; contacting the magnesium alkoxide compound with a first titanium alkoxide and a first agent to form a reaction product “A”, wherein the titanium alkoxide and the first agent are nonblended individual components prior to contacting the magnesium alkoxide; and sequentially contacting the reaction product “A” with a second agent, followed by a third agent, and subsequently a first reducing agent to form a catalyst component.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Applicant: Fina Technology, Inc.
    Inventors: Lei Zhang, William Gauthier
  • Publication number: 20110237764
    Abstract: The present invention relates to a magnesium compound-supported nonmetallocene catalyst, which is produced by directly contacting a catalytically active metallic compound with a nonmetallocene ligand-containing magnesium compound, or by directly contacting a nonmetallocene ligand with a catalytically active metal-containing magnesium compound, through an in-situ supporting process. The process is simple and flexible. In the process, there are many variables in response for adjusting the polymerization activity of the catalyst, and the margin for adjusting the catalyst load or the catalyst polymerization activity is broad. The magnesium compound-supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts high bulk density and adjustable molecular weight distribution.
    Type: Application
    Filed: October 15, 2008
    Publication date: September 29, 2011
    Inventors: Yuefeng Gu, Xiaoli Yao, Chuanfeng Li, Zhonglin Ma, Feng Guo, Bo Liu, Yaming Wang, Shaohui Chen, Xiaoqiang Li, Jiye Bai
  • Patent number: 7998894
    Abstract: The present invention relates to a Ziegler-Natta catalyst comprising a solid, ligand-modified catalyst component formed at least from (a) a compound of Group 1 to 3 of the Periodic Table (IUPAC), (b) a transition metal compound of Group 4 to 10 of the Periodic Table (IUPAC), or a compound of an actinide or lanthanide, (c) one or more organic ligand compound(s) which is/are selected from organic compounds comprising a cyclopentadienyl anion backbone, and (d) a compound of Group 13 of the Periodic Table, wherein the catalyst component of said Ziegler-Natta catalyst is formed in an emulsion/solidification method, to a process for the production of such a catalyst, and to a process for the production of an olefin (co-)polymer in the presence of such a catalyst.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 16, 2011
    Assignee: Borealis Technology Oy
    Inventors: Marjo Väänänen, Minna Stalhammar, Young-Soo Ko, Siw Fredriksen, Marita Savilahti
  • Patent number: 7999048
    Abstract: There is provided a process for producing a prepolymerization catalyst for polymerization of an olefin, said process comprising the steps of feeding, to a polymerization reactor, an olefin and a solid catalyst component in which a catalyst component for polymerization of the olefin is carried on a fine particle support, and prepolymerizing the olefin in the presence of the solid catalyst component in the polymerization reactor, to thereby obtain the prepolymerization catalyst in which the olefin is prepolymerized on the solid catalyst component, characterized in that said solid catalyst component is pressure-fed to the polymerization reactor from a catalyst feeder connected to the polymerization reactor, and in that the inner pressure of the catalyst feeder at the start of the pressure-feeding is set at (Pr+0.0001) to (Pr+1) (MPa in unit) (in which Pr represents the inner pressure of the polymerization reactor (MPa in unit) at the start of the pressure-feeding).
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 16, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Tomoaki Goto
  • Patent number: 7989383
    Abstract: A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 2, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Richard E. Campbell, Jr.
  • Patent number: 7989382
    Abstract: An olefin polymerization catalyst whose molar ratio of residual alkoxy groups to titanium is 0.60 or less, obtained by reacting (a1) an oxide of an element from Groups II to IV elements and which supports an alcohol-free halogen-containing magnesium compound, with (b1) an alcohol, at a hydroxyl group/magnesium molar ratio of 1.0 or more, then reacting that reaction mixture with (c1) a halogen-containing silicon compound, at a halogen/magnesium molar ratio of 0.20 or more, then reacting the resultant reaction mixture with (d1) an electron-donating compound, and (e) a halogen-containing titanium compound at a temperature of 120° C. to 150° C., washing the reaction mixture with an inert solvent, reacting the reaction mixture with (e) again at that temperature and washing the reaction mixture with an inert solvent, thereby providing a solid catalyst component for olefin polymerization.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: August 2, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Patent number: 7973112
    Abstract: A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: July 5, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Natarajan Muruganandam, Kersten A. Terry, Michael D. Awe, John H. Oskam
  • Patent number: 7947788
    Abstract: The invention is directed to a process for the preparation of a catalyst component wherein a compound with formula Mg(OAlk)xCly wherein x is larger than 0 and smaller than 2, y equals 2?x and each Alk, independently represents an alkyl group, is contacted with a titanium tetraalkoxide and/or an alcohol in the presence of an inert dispersant to give an intermediate reaction product and wherein the intermediate reaction product is contacted with titanium tetrachloride in the presence of an internal donor. The invention also relates to a polymerization catalyst comprising the catalyst component and furthermore the invention relates to the polymerization of an olefin in the presence of the polymerization catalyst comprising the catalyst component.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: May 24, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Yves Johann Elizabeth Ramjoie, Sergei Andreevich Sergeev, Mark Vlaar, Vladimir Aleksandrovich Zakharov, Gennadii Dimitrievich Bukatov
  • Patent number: 7943545
    Abstract: A polyethylene may be prepared using a mixture of a silica supported catalyst and a magnesium chloride supported catalyst. By changing the ratio of the two catalysts, the polyethylene produced may have a varying bulk density and shear response. The method allows for the tuning or targeting of properties to fit a specific application, such as a blow molding or vapor barrier film.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: May 17, 2011
    Assignee: Fina Technology, Inc.
    Inventors: Vincent Barre, Kayo Vizzini, Steven Gray
  • Patent number: 7939460
    Abstract: A production process is provided for an olefin polymerization catalyst component precursor, including the steps of (I) adding an organomagnesium compound to a solution containing a solvent, a Si—O bond-containing silicon compound, and a defined titanium compound, under agitation, and continuing the agitation until a magnesium concentration in a liquid phase of a reaction mixture decreases to 9 ppm by weight or lower, and (II) solid-liquid separating the reaction mixture. A production process is also provided for an olefin polymerization catalyst component using the above precursor. Further, producing process is provided for an olefin polymerization catalyst using the above catalyst component. Still further, a production process is provided for an olefin polymer using the above catalyst.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: May 10, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Wataru Hirahata, Shinya Nakahara
  • Publication number: 20110098428
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerization catalyst component in particulate form having improved polymerization properties due to the use of H2 during catalyst component preparation and the use of such catalyst components in a process for polymerizing olefins.
    Type: Application
    Filed: June 22, 2009
    Publication date: April 28, 2011
    Applicant: Borealis AG
    Inventors: Timo Leinonen, Peter Denifl, Anssi Haikarainen
  • Patent number: 7919569
    Abstract: The present invention relates to a process for the polymerization of olefins, comprising the steps of introducing at least one olefin, at least one polymerization catalyst, at least one cocatalyst and at least one cocatalyst aid, and optionally a scavenger, into a polymerization reactor, and polymerizing the olefin, wherein the cocatalyst aid is a reaction product prepared separately prior to the introduction into the reactor by reacting at least one metal alkyl compound of group IIA or IIIA of the periodic system of elements and at least one compound (A) of the formula RmXR?n, wherein R is a branched, straight, or cyclic, substituted or unsubstituted, hydrocarbon group having 1 to 30 carbon atoms, R? is hydrogen or any functional group with at least one active hydrogen, X is at least one heteroatom selected from the group of O, N, P or S or a combination thereof, and wherein n and m are each at least 1 and are such that the formula has no net charge.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 5, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wei Xu, Vugar O. Aliyev, Sirajudeen Mohamed, Atieh Abu-Raqabah
  • Patent number: 7902108
    Abstract: A process for producing a Gp 2/transition metal olefin polymerisation catalyst component, in which a Gp 2 metal complex is reacted with a transition metal compound so as to produce an oil-in-oil emulsion, the disperse phase containing the preponderance of the Mg being solidified by heating to provide a catalyst component of excellent morphology. Polymerisation of olefins using a catalyst containing such a component is also disclosed. The process may be employed in the production of Ziegler-Natta catalysts.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: March 8, 2011
    Assignee: Borealis Technology Oy
    Inventors: Peter Denifl, Timo Leinonen
  • Patent number: 7893175
    Abstract: A method for making a solid catalytic component for a Ziegler-Natta catalyst includes contacting a particulate porous support with a solution of a hydrocarbon soluble organomagnesium precursor compound in a hydrocarbon solvent; and reacting said hydrocarbon soluble organo-magnesium precursor compound with an amount of aliphatic or aromatic alcohol, said amount being within an acceptable range of a molar equivalent of aliphatic or aromatic alcohol calculated according to formula (I): Equ Alkanol = 2 · [ ( mmole ? ? MgR / g ? ? support ) - 2.1 - 0.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: February 22, 2011
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Frank Wolf Spaether, David Andrew Presken
  • Patent number: 7875568
    Abstract: The present invention provides a method for supporting a nonmetallocene olefin polymerization catalyst, comprising the following steps: a carrier reacts with a chemical activator to obtain a modified carrier; a magnesium compound is dissolved in a tetrahydrofuran-alcohol mixed solvent to form a solution, then the modified carrier is added to the solution to perform a reaction, then filtered and washed, dried and suction dried to prepare a composite carrier; a nonmetallocene olefin polymerization catalyst is dissolved in a solvent, and then reacts with said composite carrier, then is washed and filtered, dried and suction dried, to prepare a supported nonmetallocene olefin polymerization catalyst. The present invention further relates to a supported nonmetallocene olefin polymerization catalyst as prepared by this method.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: January 25, 2011
    Assignee: Yangzi Petrochemical Company Co., Ltd.
    Inventors: Houliang Dai, Houping You, Chuanfeng Li, Xiaoli Yao, Lijin Zhou, Xiaoqiang Li, Yarning Wang, Zhonglin Ma, Jiye Bai