Nonmetallic Organic Halide Patents (Class 502/128)
  • Patent number: 7414005
    Abstract: The present invention relates to a process for preparing a catalyst composition for olefin polymerization, which comprises preparing a catalyst solid in a first step by bringing A) at least one support, B) at least one organic compound having at least one functional group containing active hydrogen, C) at least one organometallic compound and D) at least one organic transition metal compound into contact with one another, then bringing this catalyst solid into contact with E) at least one organoaluminum compound in a second step and then using this mixture for the polymerization without further work-up. In addition, the invention relates to catalyst system for the polymerization of olefins which comprise such catalyst compositions, to the use of the catalyst compositions or the catalyst systems for the polymerization of olefins and to a process of the polymerization of olefins.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: August 19, 2008
    Assignee: Basell Polyolefine GmbH
    Inventor: Roland Kratzer
  • Patent number: 7300902
    Abstract: The present invention provides an ethylene polymerization catalyst. The present invention also provides a process for preparing the ethylene polymerization catalyst, comprising reacting powdered magnesium with an alkyl halide of formula RX in the presence of an ether solvent to form a magnesium compound having a structure represented by the formula (RMgX)p(MgX2)q, in which R is an alkyl group having from 3 to 12 carbon atoms, X is halogen, and molar ratio of q to p is in the range of from larger than 0 to 1, impregnating the magnesium compound onto silica carrier, reacting the silica loading the magnesium compound with an alkyl halide of formula R1X, a titatium compound and an alkyl aluminum compound to form a main catalyst component, contacting the main catalyst component with a cocatalyst component to form catalyst for ethylene polymerization. The present invention also relates to the use of the catalyst in the polymerization of ethylene.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: November 27, 2007
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Chemical Industry
    Inventors: Mingwei Xiao, Shijiong Yu, Xiaofeng Ye, Zixiao Chai
  • Patent number: 7288611
    Abstract: Disclosed herein are a method for preparing a cis-1,4-polybutadiene with a controlled molecular weight distribution, comprising polymerizing butadiene monomers using a rare-earth catalyst system comprising: (a) at least one aliphatic hydrocarbon-soluble organometallic compound comprising at least one metal element chosen from the elements of atomic numbers 51-71 in the periodic table; (b) at least one organoaluminum compound of the formula: AlR1R22, (c) at least one aliphatic hydrocarbon-soluble halogen-containing compound; (d) optionally at least one alkylaluminum alkoxide; and (e) at least one conjugated double bond-containing organic compound, and methods of preparing the rare-earth catalyst system.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: October 30, 2007
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Liansheng Jiang, Xuequan Zhang, Weimin Dong, Xichun Liu, Jifu Bi
  • Patent number: 7262258
    Abstract: There are provided (I) a process for producing a copolymer of ethylene, an ?-olefin having from 3 to 20 carbon atoms and optionally a polyene, which comprises the step of copolymerizing those monomers in a polymerization reactor by feeding the following components (A), (B), (C1) and (D) to the polymerization reactor: (A) a transition metal complex, (B) an organic aluminum compound, (C1) a halogen-containing compound, and (D) a Lewis base, wherein those components are fed to the polymerization reactor without a preliminary contact of (1) the component (A) with the component (B), (2) the component (A) with the component (C1), (3) the component (B) with the component (C1), and (4) the component (B) with the component (D); and (II) a process for producing said copolymer, which comprises the step of copolymerizing those monomers in a polymerization reactor (i) by feeding to the polymerization reactor the components (A), (B), (D), (C2) a halogen-containing compound, which is a derivative of an aryl group-contai
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: August 28, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Jun Kawashima, Katsunari Inagaki, Tatsuo Sassa
  • Patent number: 7256150
    Abstract: A process for producing a Gp 2/transition metal olefin polymerisation catalyst component, in which a Gp 2 complex is reacted with a transition metal compound so as to produce an oil-in-oil emulsion, the disperse phase containing the preponderance of the Gp 2 metal being selectively sorbed on a carrier to provide a catalyst component of excellent morphology. Polymerisation of olefins using a catalyst containing such a component is also disclosed.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: August 14, 2007
    Assignee: Borealis Polymers Oy
    Inventors: Peter Denifl, Timo Leinonen
  • Patent number: 7232869
    Abstract: A process for the preparation of a catalyst system includes the steps of combining a Lewis base, an organic compound having at least one functional group containing active hydrogen, and an organometallic component with a particulate support material to provide an intermediate composition, and then combining the intermediate composition with one or more metallocene compound. The catalyst system is advantageously used for olefin polymerization.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: June 19, 2007
    Assignee: Novolen Technology Holdings, C.V.
    Inventors: Thorsten Sell, Joerg Schottek, Nicola Stefanie Paczkowski, Andreas Winter
  • Patent number: 7220695
    Abstract: This invention relates to supported activators comprising the product of the combination of an ion-exchange layered silicate, an organoaluminum compound, and a heterocyclic compound, which may be substituted or unsubstituted. This invention further relates to catalyst systems comprising catalyst compounds and such activators, as well as processes to polymerize unsaturated monomers using the supported activators. For the purposes of this patent specification and the claims thereto, the term “activator” is used interchangeably with the term “co-catalyst”, the term “catalyst” refers to a metal compound that when combined with an activator polymerizes olefins, and the term “catalyst system” refers to the combination of a catalyst and an activator with or without a support. The terms “support” or “carrier”, for purposes of this patent specification, are used interchangeably and are any ion-exchange layered silicates.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary L. Casty, Smita Kacker, Jack W. Johnson, Murielle V. Scott, Steven L. Hegwood, Robert R. Simpson, Robert P. Reynolds
  • Patent number: 7214744
    Abstract: A catalyst system comprising (i) a bulky ligand catalyst compound; and (ii) a novel borate activator is active for olefin polymerization. The novel borate contains at least one chelating (divalent) ligand and contains at least one fluorine atom. Preferred borate activators are provided as anilinium or carbonium salts. Highly preferred borate salts contain two perfluorinated alkoxy chelating ligands. The catalyst system may be used to produce polyethylene for “end use” applications such as polyethylene film and molded polyethylene goods.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: May 8, 2007
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Isam Jaber
  • Patent number: 7211535
    Abstract: The present invention provides a novel process for preparing a catalyst useful in gas phase polymerization of olefins wherein the physical properties of the polymer and the productivity of the catalyst can be altered depending on the sequence of addition of the catalyst components. The catalyst consists of compounds of Ti, Mg, Al and optionally an electron donor supported on an amorphous support.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 1, 2007
    Assignees: Nova Chemicals Corporation, Ineos Europe Limited
    Inventors: Mark Kelly, Shivendra Kumar Goyal, Victoria Ker, Perry Montyn de Wit, Brian Stephen Kimberley, Peter Phung Ming Hoang
  • Patent number: 7202190
    Abstract: A supported catalyst system for polymerizing olefins comprising a) a support, b) a Lewis base of the formula M3R6R7R8 ??(I) wherein M3 is an element of main group III of the Periodic Table of the Elements, c) an organometallic compound of the formula II as cocatalyst, M3R6R7R8 ??(II) wherein M3 is an element of main group III of the Periodic Table of the Elements, d) at least one metallocene, e) an organometallic compound of the formula [M4R9j]kIII where M4 is an element of main groups I, II or III of the Periodic Table of the Elements, where the organometallic compound of the formula II is covalently bound to the support.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: April 10, 2007
    Assignee: Targor GmbH
    Inventors: Hans Bohnen, Cornelia Fritze
  • Patent number: 7193022
    Abstract: Disclosed is a method of polymerization and copolymerization of ethylene, which is carried out in the presence of (a) a solid titanium complex catalyst prepared by the steps of (i) preparing a magnesium solution by contacting halogenated magnesium compounds with alcohol, (ii) reacting the magnesium solution with ester compound having at least one hydroxyl group and silicon compound having alkoxy group, (iii) preparing a solid titanium catalyst component by reacting mixture of titanium compound and haloalkane compound; and (iv) producing solid titanium complex catalyst by reacting the solid titanium catalyst component with mixture of aluminum compound and haloalkane compound, or with haloalkane; and (b) organometallic compounds in Group II or III of the Periodic Table.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: March 20, 2007
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Won-Young Kim, Ho-Sik Chang
  • Patent number: 7172988
    Abstract: A catalyst component for ethylene polymerization, including an inorganic oxide support, and at least one alkyl metal compound, at least one halide, at least one dihydrocarbyl magnesium compound, at least one difunctional compound that reacts with the dihydrocarbyl magnesium compound and at least one titanium compound, wherein the difunctional compound is a mono-, di- or multi-halogenated alcohol or phenol having from 2 to 20 carbon atoms; or a mono-, di- or multi-halogenated acyl halide having from 2 to 20 carbon atoms. Also, a process for preparing the catalyst component and use thereof.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: February 6, 2007
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Kejing Gao, Dongbing Liu, Wei Chen, Guirong Fan, Xinping Lu, Jingyan An, Ying Guan, Jun Zhang, Qinfang Zhao
  • Patent number: 7153805
    Abstract: The subject invention relates to a process for preparing a catalyst system that comprises the sequential steps of (I) reacting an organometalic compound that contains a metal from Group III-B of the Periodic System with an organoaluminum compound at a temperature which is within the range of 50° C. to 100° C.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: December 26, 2006
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Wen-Liang Hsu, Adel Farhan Halasa, Chad Aaron Jasiunas
  • Patent number: 7151071
    Abstract: The present invention relates to a method for preparing a solid titanium catalyst for olefin polymerization. The method for preparing a solid titanium catalyst for olefin polymerization according to the present invention comprises: preparing a magnesium compound solution by dissolving magnesium halide compound in a solvent mixture of cyclic ether and one or more of alcohol; preparing a carrier by adding titanium halide compound to said magnesium compound solution, then elevating the temperature of the solution and aging the solution to precipitate particles, and then adding titanium halide compound thereto for further reaction; preparing a catalyst by reacting said carrier with titanium compound and electron donor; and washing said catalyst with halogenated saturated hydrocarbon.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: December 19, 2006
    Assignee: Sansung Atofina Co., Ltd.
    Inventors: Sang-Yull Kim, Ki-Hwa Lee, Chun-Byung Yang, Ho-Sik Chang
  • Patent number: 7148302
    Abstract: This invention is based upon the discovery that a catalyst system which is comprised of (a) palladium or a palladium compound and (b) a fluorinated alcohol is effective for polymerizing norbornene-functional monomers into polynorbornene-functional polymers. It has been further discovered that this catalyst system is more effective in polymerizing certain norbornene-functional monomers that are difficult to polymerize, such as norbornene ester monomers, than prior art catalyst systems. The activity of the catalyst systems of this invention can be further improved with respect to polymerizing some monomers by including a Lewis acid and/or a ligand, such as a phosphine or a carbene, in the system. In any case, the catalyst systems of this invention offer the advantage of being soluble in a wide variety of solvents, relatively inexpensive, and capable of polymerizing many norbornene-functional monomers that are difficult to polymerize with conventional catalyst systems.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: December 12, 2006
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: John-Henry Lipian
  • Patent number: 7141690
    Abstract: A transition metal complex represented by the formula (1): wherein M is a Group 4 transition metal, A is a Group 16 element, B is a Group 14 element, n is an integer of 0 or 1, R1, R2, R3 and R4 may be the same or different and each independently denotes a substituent selected from the group consisting of the groups (I) and (II): group (I): hydrogen, alkyl and so on, group (II): alkoxy, alkylthio and so on, provided that at least one of R1, R2, R3 and R4 is a substituent selected from group (II); R5, R6, R7, R8, R9, R10, X1 and X2 may be the same or different and are each hydrogen, halogen, alkyd or the like; and a catalyst for olefin polymerization comprising said complex, an organoaluminum compound and a boron compound are provided.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: November 28, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hidenori Hanaoka, Taichi Senda, Eiji Yoshikawa, Satoshi Kobayashi
  • Patent number: 7135532
    Abstract: There are disclosed a process for producing a solid catalyst component and a catalyst for ?-olefin polymerization, and a process for producing an ?-olefin polymer, wherein the process for producing a solid catalyst component comprises the steps of: (1) reducing a specific titanium compound with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond (and an ester compound), thereby obtaining a solid product, and (2) contacting the solid product with a halogeno compound of the 14 group element, at least one member selected from the group consisting of an electron donor compound and an organic acid halide, and a compound having a Ti-halogen bond, thereby obtaining the solid catalyst component.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: November 14, 2006
    Assignee: Sunitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Makoto Satoh
  • Patent number: 7084216
    Abstract: The present invention relates to a process for homopolymerization of ethylene or copolymerization of ethylene with alpha-olefins by contacting ethylene or ethylene and alpha-olefin with a catalyst composition comprising: (a) a solid catalyst precursor comprising at least one vanadium compound, at least one magnesium compound and a polymeric material or a solid catalyst precursor comprising at least one vanadium compound, at least one further transition metal compound and/or at least one alcohol, at least one magnesium compound and a polymeric material; and (b) a cocatalyst comprising an aluminum compound.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 1, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Akhlaq A. Moman, Khalid Al-Bahily, Atieh Abu-Raqabah, John Ledford, Orass M. Hamed, Raju Raghavan, Sameh Rizkallah
  • Patent number: 7081505
    Abstract: An organometallic composition which can be used as activating component in a metallocene catalyst for the (co)polymerization of ?-olefins, comprises: (A) a fluorinated di-unsaturated cyclic compound, having a relatively acid hydrogen atom, (B) an organometallic compound sufficiently basic to react with the acid hydrogen of the above compound (A), and (C) a polar aprotic organic compound, not containing metallic atoms, having a dielectric constant, in the pure state, equal to or greater than 2, and a weak coordinating capacity. Said composition allows a metallocene catalytic system of the ionic type to be obtained, with a high activity in the (co)polymerization of olefins and a reduced content of metallic residue in the polymeric product thus obtained.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: July 25, 2006
    Assignee: Polimeri Europa S.p.A.
    Inventors: Anna Sommazzi, Francesco Masi, Giampietro Borsotti, Roberto Santi, Fausto Calderazzo, Guido Pampaloni, Vincenzo Passarelli
  • Patent number: 7071138
    Abstract: A solid catalyst component for olefin polymerization in which the molar ratio of residual alkoxy groups to supported titanium is 0.60 or less is obtained by reacting the following compound (a1) with the following compound (b1) at a hydroxyl group/magnesium molar ratio of 1.0 or more, reacting the reaction mixture with the following compound (c1) at a halogen/magnesium molar ratio of 0.20 or more, reacting the resultant reaction mixture with the following compounds (d1) and (e) at a temperature of 120° C. or higher but 150° C.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: July 4, 2006
    Assignee: Idemitsu Petrochemical Co., LTD
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Patent number: 7060764
    Abstract: A method for polymerization and copolymerization of ethylene is disclosed. The polymerization is carried out in the presence of a preactivated titanium solid complex catalyst supported on a carrier containing magnesium. The resulting polymers have the advantage of high bulk density and broad molecular weight distribution.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: June 13, 2006
    Assignee: Samsung General Chemicals, Co., Ltd.
    Inventors: Chun-Byung Yang, Yong-Bok Lee, Sang-Yull Kim, Won-Young Kim
  • Patent number: 7026265
    Abstract: Process for the preparation of a particular olefin polymerisation catalyst component including magnesium dihalide, titanium tetrahalide and a carboxylic acid ester, in which the precursors of its constituents are reacted in solution from which the component is precipitated, this precipitation being accompanied by co-precipitation of one or more oligoesters of the carboxylic acid formed in a controlled manner.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: April 11, 2006
    Assignee: Borealis Technology Oy
    Inventors: Timo Leinonen, Peter Denifl
  • Patent number: 7022783
    Abstract: The subject invention relates to a technique for synthesizing rubbery non-tapered, random, copolymers of 1,3-butadiene and isoprene. These rubbery copolymers exhibit an excellent combination of properties for utilization in tire sidewall rubber compounds for truck tires. By utilizing these isoprene-butadiene rubbers in tire sidewalls, tires having improved cut growth resistance can be built without sacrificing rolling resistance. Such rubbers can also be employed in tire tread compounds to improve tread wear characteristics and decrease rolling resistance without sacrificing traction characteristics.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: April 4, 2006
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Wen-Liang Hsu, Adel Farhan Halasa, Chad Aaron Jasiunas
  • Patent number: 7015169
    Abstract: The present invention relates to catalyst systems of the Ziegler-Natta type, to a process for preparing them, to their use for the polymerization of olefins and to ethylene copolymers which can be prepared using this catalyst system.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: March 21, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Klaus Föttinger, Martin Schneider, Rainer Karer
  • Patent number: 7005399
    Abstract: An olefin polymerization catalyst comprising: (A) a solid catalyst component prepared by contacting (a) a dialkoxyl magnesium, (b) a tetra-valent titanium halide, and (c) a phthalic acid diester in (d) an aromatic hydrocarbon having a boiling point in the range of 50 to 150° C., (B) an organoaluminum compound of the formula R1pAlQ3?p, one or more compounds selected from the group consisting of (C) one or more halogen-containing organosilicon compounds selected from (C1) a halogen-containing organosilicon compound of the formula R21Si(OR3)4?l?mXm and (C2) a halogen-containing organosilicon compound of the formula R4qSi(OR5)4?q, and (D) an organosilicon compound of the formula R6sSi(OR7)4?s. The catalyst exhibits excellent activity to hydrogen and the same catalytic activity and yield performance as conventional catalysts, and possesses the capability of producing polymers with stereoregularity equivalent to conventional catalysts.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: February 28, 2006
    Assignee: Toho Titanium Co., Ltd.
    Inventor: Motoki Hosaka
  • Patent number: 6992034
    Abstract: A solid catalyst component useful for the (co)-polymerization of olefins is disclosed. The catalyst component is prepared by reacting an activated magnesium halide composite support with a halogenized transition metal compound and a chelating diamide compound in the presence of organo-magnesium as a promoting agent and halogenized silicon or boron compounds as an activator. The catalyst component can be used with an organo-aluminum compound to provide a solid catalyst system that is compatible with slurry and gas phase polymerization processes. Linear low density polyethylene (LLDPE) produced using the catalyst component of the present invention displays a low molecular weight distribution, improved co-monomer incorporation, low content of the low molecular weight component, and excellent morphological properties such as spherical shape and high bulk density.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: January 31, 2006
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Guangxue Xu, Honglan Lu, Chih-Jian Chen
  • Patent number: 6989342
    Abstract: A solid titanium complex catalyst for polymerization and copolymerization of ethylene is prepared by the process comprising: (1) preparing a magnesium solution by reacting a halogenated magnesium compound with an alcohol; (2) reacting the magnesium solution with a phosphorus compound and a silicon compound having at least one alkoxy group to produce a magnesium composition; and (3) producing a solid titanium catalyst through recrystallization by reacting the magnesium composition solution with a mixture of a titanium compound and a haloalkane compound; and optionally reacting the solid titanium catalyst with an additional titanium compound. The solid titanium complex catalyst for polymerization and copolymerization of ethylene according to present invention exhibits high polymerization activity, and may be advantageously used in the polymerization and copolymerization of ethylene to produce polymers of high bulk density and narrow molecular weight distribution.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: January 24, 2006
    Assignee: Samsung General Chemicals, Co., Ltd.
    Inventors: Chung-Byung Yang, Won-Young Kim, Ji-Yong Park, Weon Lee
  • Patent number: 6958306
    Abstract: A catalyst composition and method for preparing a supported catalyst system for olefin polymerization is provided. In one aspect, the catalyst composition includes a reaction product of a dialuminoxane and a halogen substituted aryl borane, wherein the reaction takes place on a support and at conditions sufficient to exchange one or more ligands on the dialuminoxane for one or more ligands on the halogen substituted aryl borane while on the support. In one embodiment, the method for preparing the supported catalyst system includes combining a dialuminoxane with a support to form a treated catalyst support, and combining a halogen substituted aryl borane with the treated catalyst support at conditions sufficient to exchange one or more ligands on the dialuminoxane for one or more ligands on the halogen substituted aryl borane while on the support to form a supported activator. The method further includes reacting one or more polymerization catalysts with the supported activator.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: October 25, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Matthew W. Holtcamp
  • Patent number: 6956002
    Abstract: A catalyst for olefin polymerization, comprising: a solid catalyst component comprising [A] a solid component having substantially no hydroxyl group, [B] a compound of a transition metal selected from Groups 3-11 of the Periodic Table, and [C] a mixture of an activator compound (C-1) capable of reacting with the transition metal compound [B] to form a metal complex having catalytic activity and an organoaluminum compound (C-2); and [D] an organomagnesium compound soluble in a hydrocarbon solvent which is obtained by reacting (i) an organomagnesium compound represented by the general formula: (Mt)?(Mg)?(R1)a(R2)b wherein Mt is a metal atom belonging to Groups 1-3 of the Periodic Table, R1 and R2 are hydrocarbon groups of 2-20 carbon atoms, and ?, ?, a and b are numerals satisfying the following relationship: 0??, 0<?, 0?a, 0<b, a+b>0, and r?+2?=a+b (where r is a valence of Mt) with (ii) a compound selected from an amine, an alcohol and a siloxane.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: October 18, 2005
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takashi Nozaki, Akio Fujiwara
  • Patent number: 6930071
    Abstract: A Ziegler-Natta type catalyst component can be produced by a process comprising contacting a magnesium dialkoxide compound with a halogenating agent to form a reaction product A, and contacting reaction product A with a first, second and third halogenating/titanating agents. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: August 16, 2005
    Assignee: Fina Technology, Inc.
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray
  • Patent number: 6916759
    Abstract: A method of making an olefin polymerization catalyst is disclosed. The method involves contacting a magnesium halide compound with an alcohol, adding a mineral oil to the product, reacting this product with a hydroxylated ester and an alkoxy silane, then adding a titanium compound and a second silicon compound. The titanium compound is preferably an alkoxy halide, and the second silicon compound is preferably a silicon halide.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 12, 2005
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Chun-Byung Yang, Won-Young Kim, Weon Lee
  • Patent number: 6914028
    Abstract: A method of making an olefin polymerization catalyst is disclosed. The method first combines a magnesium halide with an alcohol, then adds a hydroxylated ester and a silicon alkoxide, followed by a titanium compound and another silicon compound to result in a solid composition. This solid composition is then reacted with an aluminum compound and an alkyl halide, followed by reaction with a second titanium compound which may be the same as or different from the first. The second silicon compound is preferably a silicon halide, and the titanium compounds are preferably halides and alkoxides. The aluminum compounds preferably have chloride and alkyl ligands bonded to them.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 5, 2005
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Weon Lee
  • Patent number: 6903041
    Abstract: There are provided; (i) a solid catalyst component obtained by contacting a trivalent titanium atom-containing solid catalyst component precursor (C) with a halogeno compound (A) of the 13 or 14 group of elements in the periodic table of the elements and an electron donor (B), or a solid catalyst component obtained by contacting an intermediate product with a titanium-halogen bond-carrying compound (D), the intermediate product being obtained by contacting the solid catalyst component precursor (C) with a halogeno compound (A?) of the 14 group of elements in the periodic table of the elements and the electron donor (B), or a solid catalyst component comprising a magnesium atom, a titanium atom, a halogen atom and an electron donor and having a relative surface area of not more than 30 m2/g, the catalyst component being superior in a particle form, and (ii) a catalyst comprising the solid catalyst component and an organoaluminum compound, the catalyst being high in polymerization activity.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: June 7, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shin-ichi Kumamoto, Makoto Satoh, Hideki Ohshima
  • Patent number: 6881696
    Abstract: A solid titanium complex catalyst for polymerization and copolymerization of ethylene is prepared by the process comprising: (1) preparing a magnesium solution by reacting a halogenated magnesium compound with an alcohol; (2) reacting the magnesium solution with an ester compound having at least one hydroxyl group and a boron compound having at least one alkoxy group to produce a magnesium composition; and (3) producing a solid titanium catalyst through recrystallization by reacting the magnesium composition solution with a mixture of a titanium compound and a haloalkane compound; and optionally reacting the solid titanium catalyst with an additional titanium compound.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: April 19, 2005
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Ji-Yong Park, Yong-Bok Lee, Weon Lee
  • Patent number: 6875719
    Abstract: A catalyst composition for preparing olefin polymers. The catalyst composition includes a metallocene compound and an activating cocatalyst. In the metallocene compound, two cyclopentadienyl groups are bridged by X (carbon) in a ring structure and the bridge X forms a three-, four-, or five-member ring structure. The bite angle ? formed by the two cyclopentadienyl rings and X is equal to or greater than 100 degrees. The obtained olefin polymer has high cycloolefin conversion and a high glass transition temperature. In addition, the catalyst composition can still maintain relatively high activity at high temperature reaction conditions. The metallocene compound is represented by formula (I) below.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: April 5, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Cherng Tsai, Ming-Yuan Wu, Tung-Ying Hsieh, Yuh-Yuan Wei, Chao-Ying Yu
  • Patent number: 6867160
    Abstract: By controlling the hold up times and temperatures for mixing the components of aluminum, titanium and magnesium based catalyst for solution polymerization it is possible to prepare a catalyst having a high activity, which prepares high molecular weight polyolefins. Generally, catalyst loses activity and produces lower molecular weight polymer at higher temperatures. The catalyst of the present invention permits comparable polymers to be produced at higher reaction temperatures.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: March 15, 2005
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Jesus Vela Estrada, Vaclav George Zboril
  • Patent number: 6841633
    Abstract: A lower ?-alkene polymerization heterogeneous solid catalyst which comprises a hydrated magnesium chloride derived procatalyst, a cocatalyst comprising an organoaluminium compound and a selectivity control agent comprising an ester or ether. The procatalyst comprises a titanium tetrahalide supported on a magnesium chloride ester complex precursor. Magnesium chloride alcoholate is reacted with an activated carbonyl compound in the presence of a hydrocarbon and/or halohydrocarbon solvent to generate insitu an internal electron donor ester component of the precursor. The precursor is reacted with a titanium tetrahalide optionally in the presence of a hydrocarbon and/or halohydrocarbon solvent.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: January 11, 2005
    Assignee: Reliance Industries Limited
    Inventors: Sumit Bhaduri, Virendra Kumar Gupta
  • Patent number: 6841503
    Abstract: There are disclosed a process for producing a solid catalyst component and a catalyst for ?-olefin polymerization, and a process for producing an ?-olefin polymer, wherein the process for producing a solid catalyst component comprises the steps of: (1) reducing a specific titanium compound with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond (and an ester compound), thereby obtaining a solid product, and (2) contacting the solid product with a halogeno compound of the 14 group element, at least one member selected from the group consisting of an electron donor compound and an organic acid halide, and a compound having a Ti-halogen bond, thereby obtaining the solid catalyst component.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: January 11, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Makoto Satoh
  • Patent number: 6831033
    Abstract: A solid titanium complex catalyst for polymerization and copolymerization of ethylene is prepared by the process that includes: (1) preparing a magnesium solution by reacting a halogenated magnesium compound with an alcohol; (2) reacting the magnesium solution with an ester compound having at least one hydroxyl group and a silicon compound having an alkoxy group to produce a magnesium composition; and (3) producing a solid titanium catalyst by reacting the magnesium composition solution with a mixture of a titanium compound and a haloalkane compound; and optionally reacting the solid titanium catalyst with an additional titanium compound.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: December 14, 2004
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Weon Lee
  • Patent number: 6825146
    Abstract: A method of making a solid procatalyst composition for use in a Ziegler-Natta olefin polymerization catalyst composition, said method comprising: contacting a solid precursor composition comprising magnesium, titanium, and alkoxide moieties with a titanium halide compound and an internal electron donor in any order, in a suitable reaction medium to prepare a solid procatalyst composition, separating the solid procatalyst from the reaction medium, further exchanging residual alkoxide functionality of the solid procatalyst composition for chloride functionality by contacting the same two or more times with benzoyl chloride halogenating agent under metathesis conditions for a period of time sufficient to prepare a solid procatalyst composition having a decreased alkoxide content compared to the alkoxide content of the solid procatalyst composition before said exchange, and recovering the solid procatalyst composition.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: November 30, 2004
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Peter A. Kilty, Thomas R. Cuthbert
  • Patent number: 6818584
    Abstract: Especially homogeneous supported Ziegler-Natta catalysts may be prepared in a simple one reaction vessel process from a magnesium hydrocarbyloxy starting material which is soluble in a hydrocarbon solvent. The process comprises: (I) reacting a magnesium hydrocarbyloxy compound with a chlorine-containing compound in a non-polar hydrocarbon solvent in which said magnesium hydrocarbyloxy compound is soluble whereby to produce a solution (A); and then either: (II) contacting the solution (A) with a chlorine containing tetravalent titanium compound to produce a solution (B); (III) impregnating solution (B) into a porous particulate support; or (II) impregnating solution (A) into a porous particulate support; and (III) contacting the solid support with a chlorine containing tetravalent titanium compound; or (II) impregnating solution (A) into a porous particulate support pretreated with a chlorine containing tetravalent titanium compound.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: November 16, 2004
    Assignee: Borealis Technology OY
    Inventors: Thomas Garoff, Solveig Johansson, Paivi Waldvogel
  • Patent number: 6812303
    Abstract: A novel olefin polymerization catalyst comprising: (A) a transition metal compound comprising a transition metal having &eegr;-bonded thereto a cyclic anionic ligand; (B) a mixture of (B-1) an activator compound capable of forming, together with component (A), a metal complex having a catalytic activity and (B-2) an organometal compound, the activator compound (B-1) comprising a cation and a noncoordinating, compatible anion; (C) a solid component; and optionally (D) an organoaluminum compound, wherein the catalyst is obtained by contacting components (A) to (C) and optionally component (D).
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: November 2, 2004
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Fumio Matsushita, Akio Fujiwara
  • Patent number: 6790805
    Abstract: The invention relates to a process for the in-situ preparation of alkylated single-site transition metal catalysts by contacting a precatalyst with an alkylating agent in the presence of one or more olefin monomers in the polymerization system. The precatalyst, which is produced prior to introducing into the polymerization system, is obtained by contacting a transition metal complex and boron-containing ionizing agent, optionally, with a support.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: September 14, 2004
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Publication number: 20040152590
    Abstract: Catalyst for the polymerization of olefins CH2═CHR, wherein R is hydrogen or a hydrocarbon radical having 1-12 carbon atoms, comprising (I) a solid catalyst component comprising Mg, Ti, Cl, and OR groups, where R is a C1-C10 alkyl group optionally containing heteroatoms, in which the Ti/Mg weight radio is from 2 to 6.5 the Cl/Ti weight ratio is from 1.5 to 3.5 to and the OR/Ti weight ratio is from 0.7 to 2.5 and at least 50% of the titanium atoms are in a valence state lower than 4 and (II) an alkyaluminum halide as cocatalyst. The said catalysts allow the preparation of ethylene copolymers with a low content of xylene soluble fractions.
    Type: Application
    Filed: February 5, 2004
    Publication date: August 5, 2004
    Inventors: Gianni Collina, Diego Brita
  • Patent number: 6759361
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: July 6, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Patent number: 6730752
    Abstract: A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alpha olefin monomers with a catalyst system, which includes a catalyst and an activator (co-catalyst) in a reactant mixture. The catalyst is a transition metal catalyst, preferably titanium trichloride, and the co-catalyst may include an alkylaluminoxane, alone or in combination, with a dialkylaluminum halide or a halohydrocarbon. The polymerization of the alpha olefin monomers produces a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of at least 10 dL/g.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: May 4, 2004
    Assignee: Energy & Environmental International, L.C.
    Inventors: Gerald B. Eaton, Michael J. Monahan, Robert J. Tipton
  • Publication number: 20040053774
    Abstract: The present invention provides a method for producing a new catalyst of high catalytic activity and superior catalyst morphology for homo- or co-polymerization of ethylene, or more particularly a method for producing a titanium solid complex catalyst supported on a carrier containing magnesium, wherein said catalyst of high polymerization activity is capable of producing polymers of high bulk density.
    Type: Application
    Filed: October 27, 2003
    Publication date: March 18, 2004
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Weon Lee
  • Publication number: 20040054101
    Abstract: This process for preparing a catalyst support for the homopolymerization or copolymerization of ethylene and &agr;-olefins is characterized in that at least one organochlorine compound and a premix of at least one alkylmagnesium and of at least one organoaluminum compound chosen from aluminoxanes, aluminosiloxanes and alkylaluminums are reacted together, in the presence of at least one aliphatic diether as electron donor.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 18, 2004
    Inventors: Thierry Saudemont, Jean Malinge, Jean-Loup Lacombe
  • Patent number: 6703456
    Abstract: A process (I) for producing an &agr;-olefin polymerization catalyst whereby (1) a titanium compound is reduced by an organomagnesium compound in the presence of an organosilicon compound to produce a reduction solid, (2) the reduction solid is aged to produce a solid product, (3) the solid product is contacted with an ether compound, titanium tetrachloride and an organic acid halide compound, to produce an organic acid halide-treated solid, (4) the organic acid halide-treated solid is contacted with a mixture of an ether compound, titanium tetrachloride and an ester compound, or with a mixture of an ether compound and titanium tetrachloride to produce a solid catalyst component containing a titanium compound, and (5) the solid catalyst component is contacted with an aluminum compound and an electron donor compound to produce a catalyst for &agr;-olefin polymerization. A process (II) for producing an &agr;-olefin polymer using a catalyst produced by process (I).
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: March 9, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Jiro Mori, Tomoaki Tanaka, Yasunori Kaminaga
  • Patent number: 6699814
    Abstract: The present invention relates to catalysts particularly suitable for the sterospecific polymermerization of olefins, comprising Ti, Mg, halogen and an electron donor compound selected from heteroatoms containing esters of malonic acids. Polymers produced by the catalysts have high isotactic index expressed in terms of high xylene insolubility.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: March 2, 2004
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Yuri V. Gulevich