Magnesium Compound Patents (Class 502/133)
  • Patent number: 5436213
    Abstract: It is known that an electron donor together with a compound of tetravalent titanium on a magnesium halide carrier is usable if it is a mono- or polyester of an unsaturated polycarboxylic acid in which at least two carboxyl groups are joined to contiguous carbon atoms which form double bonds. It has now been observed that activity and stereospecificity increase if at least one of the said carbon atoms, or a carbon atom joined thereto by a double bond, is substituted by a hydrocarbon group having 1-20 carbon atoms. Maleic and fumaric acid esters substituted with the said hydrocarbon group can be mentioned as examples.
    Type: Grant
    Filed: August 2, 1993
    Date of Patent: July 25, 1995
    Assignee: Borealis Holding A/S
    Inventors: Eero Iiskola, Katriina Mills, Thomas Garoff, Timo Leinonen
  • Patent number: 5420090
    Abstract: A transition metal containing catalyst useful for the polymerization of .alpha.-olefins is prepared by (A) forming in an inert atmosphere which excludes oxygen and moisture a slurry of (1) a porous inorganic oxide support material selected from the group consisting of silica, alumina, or a combination of silica and alumina, said support material containing not greater than about 5 millimoles of hydroxyl groups per gram of support material and a particle size not greater than about 10 microns and a surface area of from about 50 to about 800 m.sup.2 /g in an inert organic liquid medium; (B) mixing said slurry with (2) an alkoxide and stirring the resultant mixture at a temperature of from about -20.degree. C. to about 120.degree. C. for a time sufficient to saturate the surface of the support material: (C) mixing the product form (B) with (3) a titanium compound or a combination of a titanium compound and (4) a vanadium compound and stirring the resultant mixture at a temperature of from about -20.degree. C.
    Type: Grant
    Filed: February 24, 1993
    Date of Patent: May 30, 1995
    Assignee: The Dow Chemical Company
    Inventors: Lee Spencer, Brian W. S. Kolthammer
  • Patent number: 5405817
    Abstract: Catalysts useful in olefin polymerization are a mixture of (a) a titanium-containing compound which is (i) Ti(Z.sup.1).sub.t (OZ.sup.2).sub.p-t, (ii) the product of reacting Z.sup.3 --Mg--N(--Z.sup.5)--Si(Z.sup.4).sub.3 or Z.sup.3 --Mg--N(--Z.sup.5)--Si(Z.sup.4).sub.2 --N(--Z.sup.5)--Mg--Z.sup.3 with Ti(Z.sup.1).sub.t (OZ.sup.2).sub.p-t, or (iii) the product of reacting Mg metal, Mg dihalide and Ti(OZ.sup.2).sub.4, wherein Z.sup.1 is halide, Z.sup.2 is C.sub.1-18 hydrocarbyl, p is 3-4, t is 0-p, and Z.sup.3, Z.sup.4 and Z.sup.5 can be C.sub.1-18 alkyl or C.sub.6-14 aryl, and Z.sup.4 can be hydrogen, and Z.sup.5 can be --Si(Z.sup.4).sub.3 ; (b) one or more of V(X.sup.2).sub.c (OR.sup.2).sub.b-c, VO(X.sup.3).sub.d (OR.sup.3).sub.3-d, or VO(X.sup.4).sub.2, wherein X.sup.2, X.sup.3 and X.sup. 4 are halogen, R.sup.2 and R.sup.3 are C.sub.1-18 hydrocarbyl, b is 3-4, c is 0-b, and d is 0-3; and (c) Zn(X.sup.1).sub.2.2Al(R.sup.1).sub.3 and/or both of Zn(X.sup.1).sub.2 and one or more of M(R.sup.5).sub.e (X.sup.5).
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: April 11, 1995
    Assignee: Quantum Chemical Corporation
    Inventors: Chi-I Kuo, Michael W. Lynch
  • Patent number: 5399540
    Abstract: A catalyst useful in the polymerization of olefins, especially ethylene, is disclosed. The catalyst is obtained by admixing a zinc composition, a zirconium composition and a vanadium composition. The catalyst may be combined with a co-catalyst and, optionally, a modifier to yield an olefin polymerization system. The catalyst exhibits extremely high activity, good hydrogen response and produces polymers having broad molecular weight distribution ("MWD") and manifesting bimodal MWD profile.
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: March 21, 1995
    Assignee: Quantum Chemical Corporation
    Inventors: Chi-I Kuo, Michael W. Lynch
  • Patent number: 5356848
    Abstract: Process for the preparation of a catalytic composition for the polymerization of olefins. At least partial electrochemical oxidation of aluminum in a solvent of .alpha.,.omega.-dihalogeno-alkane and simultaneously the electrochemical reduction of a compound of titanium (IV) occur in process.The catalytic composition comprises at least one titanium compound, at least one halogenated organo-aluminum compound and at least one inorganic magnesium compound in suspension in at least one .alpha.,.omega.-dihalogeno-alkane. The titanium compound is essentially a titanium (III) compound. The overall content of titanium (II) and titanium (IV) is less than or equal to 15% of the total titanium content.
    Type: Grant
    Filed: September 7, 1993
    Date of Patent: October 18, 1994
    Assignee: Norsolor
    Inventors: Jean M. Brusson, Karel Bujadoux, Francis Petit, Jean M. Fuchs, Andre Mortreux
  • Patent number: 5328877
    Abstract: A solid catalyst component for alkene polymerization comprising a magnesium halide, an electron donor and a phenoxy-titanium halide, the latter being a dihalophenoxy-titanium halide or a dialkoxyphenoxy-titanium halide in which the alkoxy groups each have from 1 to 8 carbon atoms.
    Type: Grant
    Filed: January 19, 1993
    Date of Patent: July 12, 1994
    Assignee: Shell Oil Company
    Inventors: John C. Chadwick, Alan Villena, Ronald P. C. Van Gaalen
  • Patent number: 5300470
    Abstract: Solid catalyst components for the preparation of catalysts capable of producing polymers and copolymers of ethylene with ultra high molecular weight are obtained in the form of particles having an average diameter of less than 10 micrometers, by way of reaction, in the presence of H.sub.2 O, between:1) a liquid obtained by reacting:A) a titanium compound containing at least one Ti--OR bond, where R is a C.sub.1 -C.sub.20 alkyl, C.sub.3 -C.sub.20 cycloalkyl, or C.sub.6 -C.sub.20 aryl radical; withB) a magnesium compound selected from the group consisting of: halides; compounds comprising at least one --OR or--OCOR group bonded to the magnesium, where R is a C.sub.1 -C.sub.20 alkyl, C.sub.3 -C.sub.20 cycloalkyl, or C.sub.6 -C.sub.20 aryl radical; organometallic compounds; products of the reaction between the above mentioned compounds and electron-donor compounds; and2) a compound or composition capable of halogenating and optionally reducing (A).
    Type: Grant
    Filed: July 15, 1992
    Date of Patent: April 5, 1994
    Assignee: Himont Incorporated
    Inventors: Illaro Cuffiani, Umberto Zucchini
  • Patent number: 5300597
    Abstract: A method is disclosed for preparing an olefin polymerization catalyst of improved particle size from a solution of magnesium containing component and a transition metal containing component which is reacted with an organoaluminum halide compound. The improved particle size is provided by employing the organoaluminum halide compound in conjunction with a silicon compound, such as for example an alkyl silicate or a polysiloxane.
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: April 5, 1994
    Assignee: Phillips Petroleum Company
    Inventor: Nemesio D. Miro
  • Patent number: 5244855
    Abstract: Catalyst components for the polymerization of olefins obtained by reacting a tetravalent titanium halide or halogen alcoholate and an electron-donor compound with a porous polymer support on which is supported a magnesium dihalide or a magnesium compound which does not contain Mg--C bonds and can be transformed into a dihalide, characterized in that the Mg content before and after the reaction with titanium compound ranges from 6 to 12% by weight.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: September 14, 1993
    Assignee: Himont Incorporated
    Inventors: Giampiero Morini, Enrico Albizzati
  • Patent number: 5244854
    Abstract: Catalyst components for the polymerization of olefins, obtained by reacting a tetravalent titanium halide or halogen alcoholate and an electron-donor compound with a solid comprising a porous metallic oxide containing hydroxyl groups on the surface, on which is supported a magnesium dihalide or a magnesium compound which does not contain Mg-C bonds and can be transformed into a dihalide, characterized in that the quantity of Mg supported on the oxide prior to the reaction with titanium compound, and present in the catalyst component after the reaction with the Ti compound, is from 5% to 12% weight with respect to the weight of the catalyst component.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: September 14, 1993
    Assignee: Himont Incorporated
    Inventors: Luciano Noristi, Antonio Monte
  • Patent number: 5238891
    Abstract: A method is disclosed for preparing an olefin polymerization catalyst of improved particle size from a solution of magnesium containing component and a transition metal containing component which is reacted with an organoaluminum halide compound. The improved particle size is provided by employing the organoaluminum halide compound in conjunction with a silicon compound, such as for example an alkyl silicate or a polysiloxane.
    Type: Grant
    Filed: June 15, 1989
    Date of Patent: August 24, 1993
    Assignee: Phillips Petroleum Company
    Inventor: Nemesio D. Miro
  • Patent number: 5221650
    Abstract: A novel catalyst support and a method for preparation thereof, characterized by the presence of selected amounts of a hydrocarbon soluble magnesium-containing compound applied to the support relative to solvent, wherein a surface uniformly and essentially continuously moistened with the solvated magnesium compound is achieved in a condition of incipient precipitation to permit the formation of a regular essentially continuous distribution of the magnesium compound onto and conforming to the support material The drying process under these conditions is effective in maintaining to a high degree the effective surface area and pore volume of the material. The support containing the adsorbed magnesium is then dried in a controlled manner to essential incipient wetness conditions providing a regular spatial distribution of stacked reticular magnesium values at a level of one to five molecular monolayers on the support.
    Type: Grant
    Filed: March 20, 1992
    Date of Patent: June 22, 1993
    Assignee: Quantum Chemical Corporation
    Inventor: Charles K. Buehler
  • Patent number: 5219961
    Abstract: Catalytic components for copolymerizing ethylene with alpha-olefins, or alpha-olefins with one another, and possibly with a diene as a termonomer, suitable for producing saturated and unsaturated elastomeric copolymers are disclosed. The catalytic components are compounds obtained by the reaction of:(1) a magnesium compound having the formula:R'.sub.y MgX.sub.n (OR).sub.2-n(wherein R, R'=alkyl, cycloalkyl, aryl; X=Cl, Br; n is from 0 to 1.8, y is from 0 to 1, and n+y=2), or(2) a Mg-alcohol adduct;with a titanium compound having the formula:Ti(OR).sub.Z X.sub.4-Z'wherein X and R are as defined above and Z is from 0 to 1, the compounds being charcterized by a Mg/Ti ratio of from 0.5 to 50 and an OR/Ti ratio of from 0.7 to 10. The copolymers produced using these catalytic components are endowed with improved tension-set characteristics in the vulcanized state.
    Type: Grant
    Filed: December 11, 1991
    Date of Patent: June 15, 1993
    Assignee: Ausimont S.p.A.
    Inventors: Umberto Zucchini, Viviano Banzi, Illaro Cuffiani
  • Patent number: 5212133
    Abstract: Porous particles of MgCl.sub.2 which have essentially the shape of two truncated right cones connected by their larger bases, which truncated cones are incurved towards the axis of symmetry perpendicular to the bases, at the intersection of the envelope of the truncated cones with two orthogonal planes passing through the said axis of symmetry. These particles are impregnated with a transition metal compound and employed as a catalytic component in the polymerization of olefins. The resultant polyolefins, especially polyethylene, polypropylene and their copolymers, are comprised of particles with a distinctive structure.
    Type: Grant
    Filed: February 19, 1991
    Date of Patent: May 18, 1993
    Assignee: Atochem
    Inventors: Laurent Duranel, Jean-Pierre Roche
  • Patent number: 5126301
    Abstract: A solid catalyst for polymerizing an olefin is prepared from an organometallic compound, a fine-particle carrier, an aluminoxane, a compound of group IVB transition metal in periodic table, and an olefin polymer produced in a preliminary polymerization. The catalyst has a high polymerization activity and is capable of producing an olefin polymer having a narrow molecular- weight distribution. When the catalyst is used for producing an olefin copolymer, the resulting copolymer has both narrow molecular-weight distribution and composition distribution.
    Type: Grant
    Filed: March 12, 1990
    Date of Patent: June 30, 1992
    Assignee: Mitsui Petrochemical Industries, Inc.
    Inventors: Toshiyuki Tsutsui, Ken Yoshitsugu, Akinori Toyota, Norio Kashiwa
  • Patent number: 5122494
    Abstract: A high activity olefin polymerization catalyst, useful in the polymerization of lower .alpha.-olefins, comprises the solid product resulting from contacting a complex magnesium-containing, titanium-containing alkoxide compound with alkylaluminum halide, optionally employed in conjunction with a selectivity control agent.
    Type: Grant
    Filed: February 19, 1991
    Date of Patent: June 16, 1992
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 5112786
    Abstract: A catalyst for polymerization of olefin monomers, comprising Component (A) which is a solid catalytic compound obtained by subjecting at least the following three compounds to a contact reaction; Sub-component (i) which is a component for Ziegler catalysts comprising titanium, magnesium and a halogen; Sub-component (ii) which is a silicon compound represented by the formula R.sup.1 .sub.4-n SiX.sub.n wherein R.sup.1 is a hydrocarbyl group having 1 to 20 carbon atoms, X is a halogen, and n is a number in the range of 0<n.ltoreq.4, and Sub-component (iii) which is divinylbenzene, the amount of said Sub-component (iii) polymerized in the course of the contact reaction being from 0.01 to 10 g per 1 g of the Sub-component (i), and Component (B) which is an organoaluminum compound.When polymerizing .alpha.
    Type: Grant
    Filed: June 19, 1991
    Date of Patent: May 12, 1992
    Assignee: Mitsubishi Petrochemical Company Limited
    Inventor: Takashi Fujita
  • Patent number: 5106806
    Abstract: Improved lower .alpha.-olefin polymerization catalysts are produced from an organoaluminum cocatalyst, a selectivity control agent and a specified magnesium-containing, titanium-containing, halide-containing procatalyst. The procatalyst is produced from an electron donor, tetravalent titanium halide and a complex alkoxide compound formed from magnesium alkoxide, titanium alkoxide and a phenolic compound. The catalyst is utilized produce poly-.alpha.-olefin in good yield, which polymer is characterized by a relatively low xylene solubles content and a relatively high bulk density.
    Type: Grant
    Filed: October 18, 1990
    Date of Patent: April 21, 1992
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 5104837
    Abstract: A catalyst useful for polymerizing olefins is prepared by contacting a highly porous magnesium-containing aluminum oxide support with an alcohol, then contacting the resulting solid with a mixture of titanium tetrachloride and dialkyl phthalate, and then contacting the resulting solid with additional titanium tetrachloride.
    Type: Grant
    Filed: March 16, 1990
    Date of Patent: April 14, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Gil R. Hawley, Max P. McDaniel
  • Patent number: 5091353
    Abstract: An improved process for producing an ethylene copolymer composed of a major proportion of ethylene and a minor proportion of an alpha-olefin having 3 to 10 carbon atoms and having a density of 0.910 to 0.945 g/cm.sup.3 and an ethylene content of 85 to 99.5 mole %. The use of a titanium catalyst component (A) which meets a parametric combination of specific requirements is essential in this process. The process can industrially advantageously give a low to medium density ethylene copolymer of high quality with high productivity while advantageously circumventing the operational troubles which have been difficult to avoid by conventional processes.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: February 25, 1992
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Mamoru Kioka, Norio Kashiwa
  • Patent number: 5081090
    Abstract: A solid hydrocarbon-insoluble, alpha-olefin polymerization catalyst component with superior activity, stereospecificity and morphology characteristics comprising the product formed by A) forming a solution of a magnesium-containing species from a magnesium alkyl (or hydrocarbyl) carbonate or a magnesium carboxylate; B) precipitating solid particles from such solution by treatment with a transition metal halide; C) reprecipitating such solid particles from a mixture containing a cyclic ether; D) treating the reprecipitated particles with a transition metal compound and an electron donor; and E) drying the resulting solid particles such that the residual volatile hydrocarbon content is between 0.1 and 0.9 weight percent.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: January 14, 1992
    Assignee: Amoco Corporation
    Inventors: Gregory G. Arzoumanidis, Habet M. Khelghatian, Linda Ornellas
  • Patent number: 5064798
    Abstract: This invention provides new supported catalyst compositions for the polymerization of 1-olefins, together with processes for preparing and using the catalysts. The catalyst compositions include two catalyst components. The first catalyst component is formed by reacting a halogen-containing compound of the formula: H.sub.a M.sup.1 X.sup.1.sub.b R.sup.1.sub.(c-b-a) wherein M.sup.1 is boron, carbon, silicon or mixtures thereof; X.sup.1 is Cl, Br or mixtures thereof; R.sup.1 is a hydrocarbyl or alkoxy radical; with a mixture produced by contacting a finely divided porous inorganic oxide support in an inert solvent with a solution made by combining a magnesium dihydrocarbyloxide dissolved in an inert solvent, and of the formula: Mg(OR.sup.2).sub.2 wherein R.sup.2 is a hydrocarbyl radical, with a transition metal hydrocarbyloxide of the formula: M.sup.2 (OR.sup.3).sub.y wherein M.sup.2 is a transition metal from Group IVB, VB, and VIB of the Periodic Table; and R.sup.3 is a hydrocarbyl radical.
    Type: Grant
    Filed: March 12, 1990
    Date of Patent: November 12, 1991
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Main Chang
  • Patent number: 5049534
    Abstract: Silica supports for use in the production of catalysts for olefin polymerization, in particular where the surface is substantially free from reactive hydroxyl groups, comprise (RCOO).sub.2 Mg deposited on the surface of the silica and/or groups of the general formula R(CO.sub.2 MgO).sub.n linked to surface silicon atoms, where R is a hydrocarbon radical and n=1 to 6. Such supports are suitable for the production of stereospecific catalysts of high activity in the polymerization of olefins especially propylene.
    Type: Grant
    Filed: November 28, 1989
    Date of Patent: September 17, 1991
    Assignee: Imperial Chemical Industries plc
    Inventor: John W. Kelland
  • Patent number: 5034361
    Abstract: Normally sparingly soluble magnesium alkoxide is solubilized in alkanol by the additional presence of certain acidic materials. The resulting solution is used to produce a mixture of substantially spherical particles, substantially free of fines, containing an adduct magnesium alkoxide. The particles are converted by conventional methods to a procatalyst precursor of an olefin polymerization catalyst of good activity and good selectivity to stereoregular polymer whenever appropriate, which catalyst produces polymer product of good morphology.
    Type: Grant
    Filed: May 24, 1990
    Date of Patent: July 23, 1991
    Assignees: Shell Oil Company, Union Carbide Chemicals and Plastics Company, Inc.
    Inventors: Robert C. Job, Daniel P. Zilker, Jr., John C. Chadwick
  • Patent number: 5015612
    Abstract: An olefin polymerization catalyst component subjected to successive preliminary polymerization treatment using each of a straight chain alpha-olefin having 2 to 5 carbon atoms and 3-methyl-1-butene; an olefin polymerization catalyst using the olefin polymerization catalyst component; a process for polymerizing olefin(s) which comprises polymerizing or copolymerizing olefin(s) in the presence of the olefin polymerization catalyst; and a film and an injection-molded article of polypropylene which is prepared by the process are also provided.
    Type: Grant
    Filed: September 14, 1989
    Date of Patent: May 14, 1991
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Mamoru Kioka, Masao Nakano, Kenji Doi, Akinori Toyota
  • Patent number: 5013702
    Abstract: A solid hydrocarbon-insoluble, alpha-olefin polymerization catalyst component with superior activity, stereospecificity and morphology characteristics comprises the product formed by (A) forming a solution of a magnesium-containing species from a magnesium carbonate or a magnesium carboxylate; (B) precipitating solid particles from such magnesium-containing solution by treatment with a transition metal halide and an organosilane; (C) reprecipitating such solid particles from a mixture containing a cyclic ether; and (D) treating the reprecipitated particles with a transition metal compound and an electron donor.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: May 7, 1991
    Assignee: Amoco Corporation
    Inventors: Gregory G. Arzoumanidis, Nicholas M. Karayannis, Habet M. Khelghatian, Sam S. Lee, Bryce V. Johnson
  • Patent number: 5006499
    Abstract: A process for the preparation of a solid catalyst of the Ziegler-Natta type comprises precipitating the solid catalyst in a liquid hydrocarbon medium by reacting (A) a solution of a soluble magnesium alkoxide and (B) a transition metal halide which is a halide of Ti (IV), a halide of V (IV) or a halide of VO (III) in the presence of (C) at least one transition metal alkoxide which is free from halogen and soluble in liquid hydrocarbon. The precipitated solid catalyst consists of spheroidal particles having a mean diameter by mass of from 10 to 70 microns and a narrow particle size distribution such that the ratio of mean diameter by mass to the mean diameter by number is greater than 1.2 and smaller than 2.0.
    Type: Grant
    Filed: November 21, 1988
    Date of Patent: April 9, 1991
    Assignee: BP Chemicals Limited
    Inventor: Eric Daire
  • Patent number: 4988656
    Abstract: A solid hydrocarbon-insoluble, alpha-olefin polymerization catalyst component with superior activity, stereospecificity and morphology characteristics comprises the product formed by (A) forming a solution of a magnesium-containing species from a magnesium carbonte or a magnesium carboxylate; (B) precipitating solid particles from such magnesium-containing solution by treatment with a transition metal halide and an organosilane; (C) reprecipitating such solid particles from a mixture containing a cyclic ether; and (D) treating the reprecipitated particles with a transition metal compound and an electron donor.
    Type: Grant
    Filed: May 12, 1989
    Date of Patent: January 29, 1991
    Assignee: Amoco Corporation
    Inventors: Gregory G. Arzoumanidis, Nicholas M. Karayannis, Habet M. Khelghatian, Sam S. Lee, Bryce V. Johnson
  • Patent number: 4946816
    Abstract: In a solid hydrocarbon-insoluble, alpha-olefin polymerization catalyst component with superior activity, stereospecificity and morphology characteristics comprising the product formed by (A) forming a solution of a magnesium-containing species from a magnesium alkyl (or hydrocarbyl) carbonate or a magnesium carboxylate; (B) precipitating solid particles from such magnesium-containing toluene-based solvent by treatment with a transition metal halide and an organosilane; (C) reprecipitating such solid particles from a mixture containing a cyclic either; and (D) treating the reprecipitated particles with a transition metal compound and an electron donor, the morphology of such component is modified by incorporating a morphology-affecting amount of C.sub.8 -C.sub.10 aromatics within the toluene-based solvent in Step B, Step A, in Step C prior to addition of ether, or combinations thereof.
    Type: Grant
    Filed: August 21, 1989
    Date of Patent: August 7, 1990
    Assignee: Amoco Corporation
    Inventors: Steven A. Cohen, Gregory G. Arzoumanidis, Nicholas M. Karayannis, Habet M. Khelghatian, Sam S. Lee
  • Patent number: 4940682
    Abstract: A solid catalyst component for olefin polymerization which comprises a catalyst component comprising at least titanium and chlorine fixed onto a porous substance of which the pore volume, at a pore radius in a range of from 200 to 2,000 .ANG., is 0.3 cc/g or more, said pore volume is 35% or more of the pore volume at a pore radius in a range of from 35 to 75,000 .ANG., the average particle diameter is from 5 to 300 .mu.m, the geometrical standard deviation of the particle size distribution is 2 or less and the solubility in toluene at 100.degree. C. is 30 wt. % or less.
    Type: Grant
    Filed: October 26, 1988
    Date of Patent: July 10, 1990
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshio Sasaki, Takeshi Ebara, Kiyoshi Kawai
  • Patent number: 4918037
    Abstract: A catalyst component for polymerization catalyst of .alpha.-olefines, the polymerization catalyst comprising an organoaluminum compound, an electron donor, as well as the solid catalyst component which is obtained when a compound containing magnesium reacts with a titanium halogen compound. A method for producing the catalyst component is also provided. The catalyst component is manufactured by reacting with a titanium halogen compound in the presence of an internal electron donor, a solid catalyst component which has been produced by the steps of(a) reacting a magnesium alkyl compound with a chlorinating compound,(b) dissolving the chlorinated magnesium alkyl compound in alcohol, after possible washing,(c) adding into the solution, magnesium silicate which has not been calcinated,(d) adding the mixture obtained in step (c) into a cold medium, to precipitate the magnesium compound into and onto the magnesium silicate carrier, and(e) separating the thus-obtained solid carrier component.
    Type: Grant
    Filed: March 8, 1989
    Date of Patent: April 17, 1990
    Assignee: Neste Oy
    Inventor: Hanneli Seppanen
  • Patent number: 4894424
    Abstract: The present invention relates to a process for the polymerisation or copolymerisation of alpha-olefins in the presence of a Ziegler-Natta catalyst system comprising on the one hand a catalyst solid comprising compounds of halogens, transition metals of Groups IV, V, VI of the Periodic Table of Elements, magnesium and optionally aluminum, free from a metal/carbon bond and on the other hand a catalyst consisting of organometallic compounds of metals of Group II or III of the said Table. This process is characterised in that before its use in polymerisation or copolymerisation, the catalyst solid is treated by water in a given quantity, this treatment making it possible to improve the conditions for obtaining polymers, particularly in a process of polymerisation or copolymerisation in the gas phase.
    Type: Grant
    Filed: June 8, 1988
    Date of Patent: January 16, 1990
    Assignee: BP Chemicals Limited
    Inventor: Dominique Lassalle
  • Patent number: 4892852
    Abstract: A transition metal composition is obtained by reacting the magnesium salt of a cycloalkyl carboxylic acid with a transition metal compound, and optionally a Lewis Base compound. The product may be used to produce an olefin polymerization catalyst by addition of for example an aluminium trialkyl and the resulting catalyst has a high activity and stereospecificity in an olefin polymerization process.
    Type: Grant
    Filed: April 13, 1988
    Date of Patent: January 9, 1990
    Assignee: Imperial Chemical Industries PLC
    Inventors: Roy J. Sampson, John W. Kelland, Frank T. Kiff
  • Patent number: 4888318
    Abstract: A catalyst composition for polymerizing alpha-olefins is prepared by reacting a transition metal compound, e.g., titanium, with trimethylaluminum catalyst activator. In a preferred embodiment, the catalyst is supported on a porous refractory support and is prepared by additionally reacting a magnesium compound or an organomagnesium composition with the support.Also disclosed is a process for polymerizing alpha-olefins in the presence of the catalyst of the invention. The polymer products have higher bulk density and produce films of greater strength than polymers prepared with similar catalysts utilizing different alkyl-aluminum activators, e.g., triethylaluminum and tri-isobutylaluminum.
    Type: Grant
    Filed: December 24, 1987
    Date of Patent: December 19, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Luanne M. Allen, Robert O. Hagerty, Richard O. Mohring
  • Patent number: 4876230
    Abstract: A process is disclosed for improving the morphology of a polymerization catalyst formed from a magnesium alkoxide with bound alcohol. The process comprises treating the magnesium alkoxide with an unreactive solvent at or above the temperature at which the alcohol dissociates from the alkoxide prior to subjecting the magnesium alkoxide to metathesis.
    Type: Grant
    Filed: September 6, 1988
    Date of Patent: October 24, 1989
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 4874737
    Abstract: A process is disclosed for improving the productivity of a polymerization catalyst formed from a magnesium alkoxide which normally undergoes poor metathesis towards production of magnesium chloride. The process comprises treating the magnesium alkoxide with a silane alkoxide at or above the temperature at which the alcohol which is formed dissociates from the alkoxide prior to subjecting the magnesium alkoxide to metathesis.
    Type: Grant
    Filed: September 6, 1988
    Date of Patent: October 17, 1989
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 4871704
    Abstract: A catalyst for olefin polymerization which comprises: (A) a catalyst component obtained by reacting (a) pentadiene or a derivative thereof with (b) an alkali metal and susequently reacting the reaction product with (c) a titanium compound or zirconium compound, and (B) aluminoxane.
    Type: Grant
    Filed: October 7, 1988
    Date of Patent: October 3, 1989
    Assignee: Toa Nenryo Kogyo K.K.
    Inventors: Tadanao Kohara, Satoshi Ueki
  • Patent number: 4866022
    Abstract: A solid hydrocarbon-insoluble, alpha-olefin polymerization catalyst component with superior activity, stereospecificity and morphology characteristics comprises the product formed by (A) forming a solution of a magnesium-containing species from a magnesium carbonate or a magnesium carboxylate; (B) precipitating solid particles from such magnesium-containing solution by treatment with a transition metal halide and an organosilane; (C) reprecipitating such solid particles from a mixture containing a cyclic ether; and (D) treating the reprecipitated particles with a transition metal compound and an electron donor.
    Type: Grant
    Filed: April 25, 1988
    Date of Patent: September 12, 1989
    Assignee: Amoco Corporation
    Inventors: Gregory G. Arzoumanidis, Nicholas M. Karayannis, Habet M. Khelghatian, Sam S. Lee, Bryce V. Johnson
  • Patent number: 4863886
    Abstract: MgO treated with an organic acid, e.g., 2-ethyoxybenzoic acid, is used as a support for an Al-Ti Ziegler catalyst in which the Ti component is the product of an alkanol having 5 to 12 carbon atoms and TiCl.sub.4 to give HDPE with narrow MWD and large particle size for injection molding.
    Type: Grant
    Filed: December 29, 1987
    Date of Patent: September 5, 1989
    Assignee: Mobil Oil Corporation
    Inventor: John T. T. Hsieh
  • Patent number: 4839321
    Abstract: A solid catalyst component for olefin polymerization catalysts prepared by subjecting diethoxymagnesium (a), calcium chloride (b) and a silicon compound (c) of the general formula: Si(OR).sub.4 (wherein R is an alkyl or aryl group) together to a contact treatment in the presence of an organic solvent (d), suspending the treated composition in an aromatic hydrocarbon (e) which is liquid at normal temperature and bringing the suspension into a first contact with titanium tetrachloride (f) to form a product and bringing it to a second contact with titanium tetrachloride (f) in such manner that a diester (g) of an aromatic dicarboxylic acid is allowed to coexist at any stage of the above suspending and/or contacts with the exception of the contact treatment, the calcium chloride (b) being used in an amount of 1-2 g per gram of the diethoxymagnesium (a).
    Type: Grant
    Filed: January 7, 1988
    Date of Patent: June 13, 1989
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Atsushi Murai, Minoru Terano, Kohei Kimura, Masuo Inoue
  • Patent number: 4814309
    Abstract: Catalyst for polymerization of .alpha.-olefines, comprising an organoaluminum compound, an electron donor, as well as a solid catalyst component which is obtained when a compound containing magensium reacts with a titanium halogen compound. A method for producing the catalyst is also provided. The catalyst component is manufactured by reacting with a titanium halogen compound in the presence of an internal electron donor, a solid catalyst component which has been produced by the steps of(a) reacting a magnesium alkyl compound with a chlorinating compound,(b) dissolving the chlorinated magnesium alkyl compound in alcohol, after possible washing,(c) adding into the solution, magnesium silicate which has been calcinated by heating at about 200.degree.-600.degree. C.,(d) adding the mixture obtained in step (c) into a cold medium, to precipitate the magnesium compound into and onto the magnesium silicate carrier, and(e) separating the thus-obtained solid carrier component.
    Type: Grant
    Filed: September 29, 1987
    Date of Patent: March 21, 1989
    Assignee: Neste Oy
    Inventors: Hanneli Seppanen, Outi Krause
  • Patent number: 4808561
    Abstract: An olefin polymerization supported catalyst comprising a support and the reaction product of a metallocene of Group 4b, 5b or 6b of the Periodic Table and an alumoxane, said reaction product formed in the presence of a support.
    Type: Grant
    Filed: March 18, 1988
    Date of Patent: February 28, 1989
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Howard C. Welborn, Jr.
  • Patent number: 4804648
    Abstract: Crystalline magnesium olefin polymerization catalyst components capable of producing polymer with improved activity and morphological properties are disclosed and claimed. In particular, the components are prepared by reacting a crystalline alkoxy magnesium compound with a halide of tetravalent titanium.
    Type: Grant
    Filed: November 24, 1987
    Date of Patent: February 14, 1989
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 4780442
    Abstract: A catalyst component for alpha olefine-polymerizing catalysts which comprise an organoaluminum compound, an external electron donor, and a solid catalyst compound obtained when a solid carrier component containing magnesium has reacted with a titanium halide compound, in addition to a procedure for manufacturing the same. The catalyst component is produced by reacting a solid carrier component with a titanium halide compound with or without the presence of an internal electron donor. The solid carrier component is prepared by(a) precipitating a water-soluble magnesium compound from an aqueous solution thereof by adding an alkali thereto,(b) separating the thus-precipitated magnesium component and dissolving the same in hydrochloric acid,(c) evaporating the solution until dry,(d) heating the obtained salt mixture at 130.degree. to 150.degree. C.
    Type: Grant
    Filed: April 1, 1987
    Date of Patent: October 25, 1988
    Assignee: Neste Oy
    Inventor: Thomas Garoff
  • Patent number: 4780439
    Abstract: A catalyst component for alpha olefine-polymerizing catalysts which comprise an organoaluminum compound, an external electron donor, and a solid catalyst compound obtained when a solid carrier component containing magnesium has reacted with a titanium halide compound, in addition to a procedure for manufacturing the same. The catalyst component is produced by reacting a solid carrier component with a titanium halide compound with or without the presence of an internal electron donor. The solid carrier component is prepared by(a) dissolving, in hydrochloric acid, a magnesium compound selected from the group consisting of magnesium hydroxide, magnesium carbonate, magnesium oxide, and natural and/or synthetic minerals containing the same,(b) evaporating the solution until dry,(c) heating the obtained salt mixture at 130.degree. to 150.degree. C.
    Type: Grant
    Filed: April 1, 1987
    Date of Patent: October 25, 1988
    Assignee: Neste Oy
    Inventor: Thomas Garoff
  • Patent number: 4780441
    Abstract: A catalyst component for alpha olefine-polymerizing catalysts which comprise an organoaluminum compound, an external electron donor, and a solid catalyst component obtained when a solid carrier component containing magnesium has reacted with a titanium halide compound, in addition to a procedure for manufacturing the same. The catalyst component is produced by reacting a solid carrier component with a titanium halide compound with or without the presence of an internal electron donor. The solid carrier component is prepared by(a) dissolving or suspending a magnesium compound in ethanol or water,(b) adding to the solution or suspension, hydrochloric acid in a substantially stoichiometric quantity to the magnesium, to completely dissolve the same,(c) drying the magnesium solution with the aid of periodic azeotropic distillation, and(d) precipitating the solid carrier component from the thus-dried solution.
    Type: Grant
    Filed: April 1, 1987
    Date of Patent: October 25, 1988
    Assignee: Neste Oy
    Inventor: Thomas Graroff
  • Patent number: 4780440
    Abstract: A catalyst component for alpha olefine-polymerizing catalysts which comprise an organoaluminum compound, an external electron donor, and a solid catalyst compound obtained when a solid carrier component containing magnesium has reacted with a titanium halide compound, in addition to a procedure for manufacturing the same. The catalyst component is produced by reacting a solid carrier component with a titanium halide compound with or without the presence of an internal electron donor. The solid carrier component is prepared by:(a) mixing an aqueous solution or alcoholic suspensions of magnesium sulfate with an equeous or alcoholic solution of barium or calcuim chloride,(b) separating the undissolved material therefrom,(c) evaporating the remaining solution until dry,(d) heating the obtained residue at 130.degree. to 150.degree. C.
    Type: Grant
    Filed: April 1, 1987
    Date of Patent: October 25, 1988
    Assignee: Neste Oy
    Inventor: Thomas Garoff
  • Patent number: 4780438
    Abstract: A catalyst component for alpha olefine-polymerizing catalysts which comprise an organo-aluminum compound, an external electron donor, and a solid catalyst component obtained when a solid carrier component containing magnesium has reacted with a titanium halide compound, in addition to a procedure for manufacturing the same. The catalyst component is produced by reacting a solid carrier component with a titanium halide compound with or without the presence of an internal electron donor. The solid carrier component is prepared by(a) dissolving a natural or synthetic mineral containing magnesium and aluminum in hydrochloric acid,(b) evaporating the solution until dry,(c) calcinating the obtained salt mixture from the evaporated solution by heating the same at a temperature of about 130.degree.-150.degree. C.
    Type: Grant
    Filed: April 1, 1987
    Date of Patent: October 25, 1988
    Assignee: Neste Oy
    Inventors: Thomas Garoff, Barbro Lofgren, Luciano Luciani
  • Patent number: 4771024
    Abstract: Olefin polymerization catalyst components having improved activity and morphological properties are disclosed and claimed. In particular, the components are prepared by reacting a carbonized magnesium alkoxide or aryloxide component with a halogenated tetravalent titanium component, a halohydrocarbon component and an electron donor.
    Type: Grant
    Filed: May 7, 1987
    Date of Patent: September 13, 1988
    Assignee: Shell Oil Company
    Inventors: Steven M. Nestlerode, Israel G. Burstain, Robert C. Job
  • Patent number: 4742139
    Abstract: In a process for producing olefin polymer or copolymer by using a catalyst composed of (A) a solid titanium catalyst component containing magnesium, titanium, halogen and an electron donor and derived from a magnesium-containing solid carrier obtained by contacting a magnesium compound in the liquid state with a precipitant, and (B) an organometallic compound of a metal selected from the group consisting of metals of Groups I to III of the periodic table; the improvement wherein(I) said catalyst component (A) is a reaction product of (iv) a titanium compound in the liquid state and a magnesium-containing solid carrier formed by contacting(i) a magnesium compound in the liquid state having no reducing ability and not containing a tetraalkoxy-, tetracycloalkoxy- or tetraaryloxy-titanium compound, said magnesium compound being selected from the specified group, with(ii) a precipitant other than a titanium compound, in the presence or absence of (iii) an electron donor having no active hydrogen, and(II) said reac
    Type: Grant
    Filed: January 15, 1987
    Date of Patent: May 3, 1988
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Mamoru Kioka, Norio Kashiwa