Including Phosphorus Or Sulfur Or Compound Containing Nitrogen Or Phosphorus Or Sulfur Patents (Class 502/155)
  • Patent number: 7429548
    Abstract: A This invention relates to a composition comprising a catecholate ligand, palladium or nickel, and an ancillary ligand with the following structure: where Pn is a Group-15 element; H is hydrogen; R7 and R8 are independently hydrogen or C1-C30 hydrocarbyl radicals, or both are C1-C30 hydrocarbyl radicals that form a ring structure comprising one or more aromatic or non-aromatic rings; and R13-R18 are, independently, hydrogen or C1-C30 hydrocarbyl radicals. The composition can be used to oligomerize ethylene.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: September 30, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7423101
    Abstract: The present invention is directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, mono- or di-anionic tridentate nitrogen/oxygen based ligands that are useful, with or without activators, to polymerize olefins, particularly ?-olefins, or other unsaturated monomers. For the purposes of this disclosure, “?-olefins” includes ethylene. The present invention is also directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, bidentate nitrogen/oxygen based ligands that are useful to polymerize olefins, particularly ?-olefins, or other unsaturated monomers.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 9, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gregory A. Solan, Christopher J. Davies
  • Patent number: 7417006
    Abstract: A salt of formula (I) [HEoR13]+[T1T2]? ??(I) wherein Eo is a nitrogen or phosphorous atom; R1 is hydrocarbon radical; T1 is a Lewis acid that forms a complex with T2, and T2 is a substituted pyrrolyl radical of formula (III) These salts can be used as cocatalyst in a process for the polymerization of alpha-olefins in conjunction with a transition metal organometallic compound.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: August 26, 2008
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Simona Guidotti
  • Publication number: 20080200625
    Abstract: A polymerisation catalyst comprising (1) a transition metal compound of Formula (A), and optionally (2) an activator, wherein Z is 5-membered heterocyclic containing carbon, nitrogen and at least one other selected from nitrogen, sulphur and oxygen, the remaining atoms in the ring being nitrogen and carbon; M is a metal from Group 3 to 11 or a lanthanide metal; E1 and E2 are divalent hydrocarbon, heterocyclic or heterosubstituted derivatives of these; D1 and D2 are donor atoms or groups; X is an anionic group, L is a neutral donor group; n=m=zero or 1; y and z are zero or integers so that X and L satisfy the valency/oxidation state of M, characterized in that the complex contains at least one polymerisable olefinic double bond which is present in, or substituent to, at least one of the atoms, groups or ligands represented by Z, E, D and L. The catalyst binds to the forming polymer providing product with good particle morphology.
    Type: Application
    Filed: June 23, 2005
    Publication date: August 21, 2008
    Inventors: Vernon Charles Gibson, Atanas Kostadinov Tornov, Grant Berent Jacobsen
  • Patent number: 7410927
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a catalyst composition. One aspect of this invention is the formation and use of a catalyst composition comprising a transition metal compound and an activator for olefin polymerization processes.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: August 12, 2008
    Assignee: Chevron Phillips Chemical Company, LP
    Inventor: Albert P. Masino
  • Patent number: 7410926
    Abstract: The present invention relates to a supported, treated catalyst system and its use in a process for polymerizing olefin(s). More particularly, it provides a supported, treated catalyst system produced by a process comprising the steps of: (a) forming a supported bimetallic catalyst system comprising a first catalyst component and a metallocene catalyst compound; and (b) contacting the supported bimetallic catalyst system of (a) with at least one methylalumoxane-activatable compound.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: August 12, 2008
    Assignee: Univation Technologies, LLC
    Inventor: Sun-Chueh Kao
  • Patent number: 7405262
    Abstract: A process for preparing a functionalized polymerization initiator, the process comprising combining a functionalized styryl compound and an organolithium compound.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: July 29, 2008
    Assignee: Bridgestone Corporation
    Inventors: Thomas Antkowiak, Christine Rademacher, Anthony Ramic, David F. Lawson
  • Patent number: 7399874
    Abstract: This invention relates to a catalyst compound represented by the formula: wherein: M is a Group 3 to 12 transition metal; each Ra is, independently, a hydrogen, a hydrocarbyl group, a substituted hydrocarbyl group or halogen; each of R1, R2, R3, R4, R5, R7, R8, R9, R10, and R11 is, independently a hydrogen, a hydrocarbyl group, a substituted hydrocarbyl group or halogen; R6 is hydrogen, a hydrocarbyl group, or a substituted hydrocarbyl group; x is 0, 1, 2, 3 or 4; and each Z is, independently, a group 15 atom. This invention also relates to catalyst systems comprising the above catalyst compound and a activator and the use of such catalyst systems to polymerize monomers, including olefin monomers.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 15, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew C. Kuchta, David H. McConville
  • Publication number: 20080161517
    Abstract: A transition metal ligand complex has the following formula: wherein R1 and R2 (each occurrence) independently represent an aryl, alkyl, or cycloalkyl group having up to 20 carbon atoms; R3 and R4 (each occurrence) independently represent an aryl, alkyl, or cycloalkyl group having up to 20 carbon atoms; R5 represents an aryl, alkyl, or cycloalkyl group having up to 20 carbon atoms, provided that R4 and R5 may be joined to form a cyclic structure; R6 represents an alkyl or aryl group having up to 20 carbon atoms; and Mt represents a transition metal selected from Group 7, 8, 9, 10, 11, or 12 of the Periodic Table of the Elements.
    Type: Application
    Filed: February 4, 2008
    Publication date: July 3, 2008
    Inventors: Lisa S. Baugh, Enock Berluche, Paul V. Hinkle, Francis C. Rix
  • Patent number: 7390861
    Abstract: A cationic Group 3 or Lanthanide metal complex for coordination polymerization of olefins is disclosed. The precursor metal complex is stabilized by an anionic multidentate ancillary ligand and two monoanionic ligands. The ancillary ligand and the transition metal form a metallocycle having at least five primary atoms, counting any ?-bound cyclopentadienyl group in the metallocycle as two primary atoms. Olefin polymerization is exemplified.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: June 24, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Bart Hessen, Sergio De Araujo Bambirra
  • Publication number: 20080139763
    Abstract: Supported catalyst systems for the polymerisation of olefins, comprise (a) at least two different monocyclopentadienyl transition metal compounds, (b) one or more activators comprising an ionic compound comprising (i) a cation and (ii) an anion having up to 100 non-hydrogen atoms and the anion containing at least one substituent comprising a moiety having an active hydrogen, and (c) one or more support materials. The, supported “mixed or dual site” catalyst systems comprising different monocyclopentadienyl catalysts when activated by specific ionic activators lead to catalyst systems showing an improved balance of properties which may be used to prepare LLDPE polymers having broad melt flow ratios.
    Type: Application
    Filed: November 10, 2005
    Publication date: June 12, 2008
    Inventors: Grant Berent Jacobsen, Dusan Jeremic, Sergio Mastroianni, Ian Douglas McKay
  • Patent number: 7384886
    Abstract: A method of making a catalyst for use in oligomerizing an olefin comprising a chromium-containing compound, a pyrrole-containing compound, a metal alkyl, a halide-containing compound, and optionally a solvent, the method comprising contacting a composition comprising the chromium-containing compound and a composition comprising the metal alkyl, wherein the composition comprising the chromium-containing compound is added to the composition comprising the metal alkyl.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: June 10, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald D. Knudsen, Bruce E. Kreischer, Ronald G. Abbott, Steven D. Bridges, Eduardo J. Baralt
  • Patent number: 7381679
    Abstract: The present invention relates to a catalyst combination for producing linear isotactic polymers containing an asymmetrical metal complex and also an activator.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: June 3, 2008
    Assignee: Sud-Chemie AG
    Inventors: Bernhard Rieger, Sandra Deisenhofer
  • Patent number: 7378528
    Abstract: The invention relates to a complex of ruthenium of the structural formula I, where X1 and X2 are identical or different and are each an anionic ligand, R1 and R2 are identical or different and can also contain a ring, and R1 and R2 are each hydrogen or/and a hydrocarbon group, the ligand L1 is an N-heterocyclic carbene and the ligand L2 is an uncharged electron donor, in particular an N-heterocyclic carbene or an amine, imine, phosphine, phosphate, stibine, arsine, carbonyl compound, carboxyl compound, nitrile, alcohol, ether, thiol or thioether, where R1, R2, R3 and R4 are hydrogen or/and hydrocarbon groups.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: May 27, 2008
    Assignee: Evonik Degussa GmbH
    Inventors: Wolfgang Anton Herrmann, Wolfgang Schattenmann, Thomas Weskamp
  • Patent number: 7371705
    Abstract: A catalyst system capable of catalysing the carbonylation of an olefinally unsaturated compound is described. The 5 catalyst system is obtainable by combining: (a) a metal of Group VIB or Group VIII B or a compound thereof; and (b) a bidentate phosphine of general formula (I) Ad)s(CR4R5R6)TQ2-A-(K,D)Ar(E,Z)-B-Q1(Ad)u(CR1R2R3)v. Ad represents an optionally substituted adamantyl radical bonded to the phosphorous atom via any one of its tertiary carbon atoms. A method of production of the catalyst is also illustrated.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: May 13, 2008
    Assignee: Lucite International UK Limited
    Inventors: Graham R. Eastham, Paul A. Cameron, Robert P. Tooze, Kingsley J. Cavell, Peter G. Edwards, Dennis L. Coleman
  • Publication number: 20080108765
    Abstract: The present invention discloses an active metallocene catalyst system prepared with a hafnium-based metallocene catalyst system and an activating agent comprising an aluminoxane and a sterically hindered Lewis base.
    Type: Application
    Filed: October 20, 2005
    Publication date: May 8, 2008
    Inventors: Vincenzo Busico, Roberta Cipullo, Roberta Pellecchia, Abbas Razavi
  • Publication number: 20080108766
    Abstract: The present invention discloses a catalyst system based on a metallocene catalyst component and a new single site catalyst component for the production in a single reactor of improved polyolefins having a bimodal molecular weight distribution.
    Type: Application
    Filed: October 20, 2005
    Publication date: May 8, 2008
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventor: Abbas Razavi
  • Patent number: 7365140
    Abstract: Organometallic complexes suitable as olefin metathesis catalysts are provided. The complexes are Group 8 transition metal carbenes bearing a cationic substituent and having the general structure (I) wherein M is a Group 8 transition metal, L1 and L2 are neutral electron donor ligands, X1 and X2 are anionic ligands, m is zero or 1, n is zero or 1, and R1, W, Y, and Z are as defined herein. Methods for synthesizing the complexes are also provided, as are methods for using the complexes as olefin metathesis catalysts.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: April 29, 2008
    Assignee: UTI Limited Partnership
    Inventors: Warren Edward Piers, Patricio Eduardo Romero Guajardo
  • Patent number: 7361776
    Abstract: The present invention relates to a zero-valent transition metal complex which can be used as a starting material for producing a catalyst usable for producing a polyolefin by ring-opening metathesis polymerization of an olefin and an epothilone by ring-closing metathesis reaction, and a method for efficiently producing, at low cost, an organometallic compound useful as a catalyst, using the zero-valent transition metal complex as a starting material. Provided is a method for producing a zero-valent transition metal complex (C), which comprises reacting a divalent transition metal complex (A) with an olefin (B), the complex (A) being selected from the group consisting of a divalent ruthenium complex (A1) and a divalent osmium complex (A2), thereby obtaining a zero-valent transition metal complex (C), wherein the reaction is conducted under reducing conditions and after the reaction, the resultant crude product is extracted at high temperature using a saturated hydrocarbon as an extracting solvent.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: April 22, 2008
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Hiroshi Hiraike, Takeharu Morita, Fumiyuki Ozawa, Hiroyuki Katayama
  • Patent number: 7355072
    Abstract: Transition metal complexes include a diazaphosphacycle of formula III and a transition metal. The phosphorus atom of the diazaphosphacycle is bonded to the transition metal and the diazaphosphacycle of formula III has the following structure where the variables have the values set forth herein.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 8, 2008
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Clark R. Landis, Wiechang Jin, Jonathan S. Owen, Thomas P. Clark
  • Patent number: 7355073
    Abstract: A diazaphosphacycle may be synthesized by reacting a phosphine with a diimine and optionally one or more equivalents of an acid halide, a sulfonyl halide, a phosphoryl halide, or an acid anhydride in the substantial absence of O2 to form the diazaphosphacycle. The phosphine has the formula R1—PH2 where R1 is a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, or a substituted or unsubstituted ferrocenyl group.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 8, 2008
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Clark R. Landis, Wiechang Jin, Jonathan S. Owen, Thomas P. Clark
  • Patent number: 7332609
    Abstract: Amphiphilic Group VIII metathesis catalysts, as can be used in a range of polymerization reactions and other chemical methodologies.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: February 19, 2008
    Assignee: University of Massachusetts
    Inventors: Todd S. Emrick, Kurt Breitenkamp
  • Patent number: 7329758
    Abstract: The present invention relates to novel metathesis catalysts with an imidazolidine-based ligand and to methods for making and using the same.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: February 12, 2008
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Matthias Scholl
  • Publication number: 20080027195
    Abstract: The invention relates to a process for the preparation of a metal-organic compound, comprising at least one phosphinimine ligand, characterized in that the HA adduct of a phosphinimine ligand according to formula (1) is contacted with a metal-organic reagent of formula (2) in the presence of 1, respectively 2 equivalents of a base, wherein HA represents an acid, of which H represents its proton and A its conjugate base, with Y=N?H as formula (1), and Mv(L1)k(L2)l(L3)m(L4)nX as formula (2), and wherein Y is a substituted phosphorous atom, and M represents a group 4 or group 5 metal ion, V represents the valency of the metal ion, being 3, 4 or 5 L1, L2, L3, and L4 represent a ligand or a group 17 halogen atom on M and may be equal or different, k, l, m, n=0, 1, 2, 3, 4 with k+l+m+n+1=V, and X represents a group 17 halogen atom.
    Type: Application
    Filed: August 3, 2004
    Publication date: January 31, 2008
    Inventors: Edwin Ijpeij, Henricus Arts, Gerardus Van Doremaele, Felix Beijer, Francis Van der Burgt, Martin Alexander Zuideveld
  • Patent number: 7321017
    Abstract: The present invention is directed to an amine containing catalyst system for synthesizing rubbery polymers, such as polybutadiene rubber and styrene-butadiene rubber, having a high trans microstructure. The catalyst system, in one embodiment, includes (a) an organolithium compound, (b) a group IIa metal salt, (c) an organoaluminum compound, and (d) an amine compound which can be selected from (1) a heterocyclic aromatic compound which includes a ring structure with one or more nitrogen atoms as part of the ring; (2) a heterocyclic non-aromatic compound which includes a ring structure with two or more nitrogen atoms as part of the ring; (3) an aromatic compound including a ring structure substituted with at least one amine and at least one polar functionality containing group selected from a carboxyl group or a hydroxyl group; (4) a bicyclic chelating diamine compound; or (5) an aliphatic amine which includes a C5-C20 alkyl group.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: January 22, 2008
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Adel Farhan Halasa, Wen-Liang Hsu, Chad Aaron Jasiunas, John Robert Zuppo, III, Lauire Elizabeth Austin
  • Patent number: 7319084
    Abstract: Catalyst compositions useful for the polymerization or oligomerization of olefins are disclosed. Certain of the catalyst compositions comprise N-pyrrolyl substituted nitrogen donors. Also disclosed are processes for the polymerization or oligomerization of olefins using the catalyst compositions.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: January 15, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Leslie Shane Moody, Peter Borden Mackenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Jr., Anthony Gerard Martin Barrett, Thomas William Smith, Jason Clay Pearson
  • Patent number: 7317057
    Abstract: The present invention is directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, mono- or di-anionic tridentate nitrogen/oxygen based ligands that are useful, with or without activators, to polymerize olefins, particularly ?-olefins, or other unsaturated monomers. For the purposes of this disclosure, “?-olefins” includes ethylene. The present invention is also directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, bidentate nitrogen/oxygen based ligands that are useful to polymerize olefins, particularly ?-olefins, or other unsaturated monomers.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: January 8, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gregory A. Solan, Christopher J. Davies
  • Patent number: 7312349
    Abstract: Diene-bis-aquo-rhodium(I) complex of the general formula [Rh(diene)(H2O)2]X where diene is a cyclic diene and X is a noncoordinating anion.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: December 25, 2007
    Assignee: Umicore AG & Co. KG
    Inventors: Andreas Rivas-Nass, Gerhard Peter, Jürgen Widmer, Ralf Karch, Oliver Briel
  • Patent number: 7309748
    Abstract: The present invention discloses a metallocene catalyst component of the formula (I) [(Flu-R?-Cp)2M]?[Li(ether)4]+, wherein Cp is a cyclopentadienyl, substituted or unsubstituted, Flu is a fluorenyl, substituted or unsubstitutted, M is a metal Group III of the Periodic Table, and R? is a structural bridge between Cp and Flu imparting stereorigidity to the component. It further discloses a process for preparing said metallocene catalyst component and its use in controlled polymerisation.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: December 18, 2007
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Jean-Francois Carpentier, Evgueni Kirillov, Abbas Razavi
  • Patent number: 7300903
    Abstract: The invention provides a process using olefin polymerization catalysts exhibiting excellent polymerization activities. The olefin polymerization catalysts of the invention contain a transition metal compound typified by formula (I) and at least one of an organometallic compound, an organoaluminum oxy-compound or a compound which reacts with said transition metal compound to form an ion pair.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: November 27, 2007
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Terunori Fujita, Yasushi Tohi, Makoto Mitani, Shigekazu Matsui, Junji Saito, Masatoshi Nitabaru, Kiyoaki Sugi, Haruyuki Makio, Toshiyuki Tsutsui
  • Patent number: 7301039
    Abstract: The invention comprises a process for the preparation and isolation of a non-amorphous cationic rhodium complex having the formula: [Rh(ligand)m(diolefin)]+X?, wherein the ligand is an enantiomerically enriched organic compound possessing one or two ligating phosphorus atoms.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: November 27, 2007
    Assignee: Dow Global Technologies Inc.
    Inventors: James Andrew Ramsden, Paul Henry Moran
  • Patent number: 7297806
    Abstract: Alpha-olefin are manufactured in high yield and with very high selectivity by contacting ethylene with an iron complex of a selected 2,6-pyridinedicarboxaldehyde bisimine or a selected 2,6-diacylpyridine bisimine, and in some cases a selected activator compound such as an alkyl aluminum compound. Novel bisimines and their iron complexes are also disclosed. The ?-olefin are useful as monomers and chemical intermediates.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: November 20, 2007
    Assignees: EI du Pont de Nemours and Company, University of North Carolina
    Inventors: Maurice S. Brookhart, III, Brooke L. Small
  • Patent number: 7294679
    Abstract: This invention relates to a method to support one or more catalyst compounds comprising contacting the catalyst compounds with a pretreatment agent comprising an aluminum alkyl and or an alumoxane in solution and thereafter contacting the combination with a supported activator.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: November 13, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Thomas Henry Peterson, Eric Lucas
  • Patent number: 7288500
    Abstract: A supported catalyst for hydrogenating nitro groups of halonitro compounds manufactured from a support, a solvent, and a plurality of organometallic complexes. The organometallic complexes have the formula: wherein, R1-R6, are independently an R, OR, OC(?O)R, halogen, or combination thereof, where R stands for an alkyl or aryl group; Y1-Y4 are independently an O, S, N, or P atom; and M is a metal atom. The supported catalysts show much higher selectivity and activity when used to hydrogenate nitro groups on halonitro aromatic compounds than catalyst currently being used for such hydrogenation.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: October 30, 2007
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Changkun Liu, Bing Zhou
  • Patent number: 7285609
    Abstract: This invention relates to a polymerization method comprising contacting at least one olefin monomer, at least one polar monomer, an optional activator, and a catalyst compound represented by the formula: wherein M is selected from groups 3-11 of the periodic table; L1 represents a formal anionic ligand, L2 represents a formal neutral ligand, a is an integer greater than or equal to 1; b is greater than or equal to 0; c is greater than or equal to 1, E is nitrogen or phosphorus, Ar0 is arene, R1-R4 are, each independently, selected from hydrogen, hydrocarbyl, substituted hydrocarbyl or functional group, provided however that R3 and R4 do not form a naphthyl ring, N is nitrogen and O is oxygen.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: October 23, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Lisa Saunders Baugh, Enock Berluche, Paul Veinbergs Hinkle, Francis Charles Rix, Donald Norman Schulz
  • Patent number: 7285606
    Abstract: The invention related to a process for the polymerization of at least one aliphatic or aromatic hydrocarbyl C2-20 mono- or multiolefin in the presence of a catalyst and a boron comprising co-catalyst, wherein the catalyst comprises a composition of a metal-organic reagent, a spectator ligand and optionally at least one equivalent of a hydrocarbylating agent. The invention further relates to a polymer obtainable by the process of the invention.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: October 23, 2007
    Assignee: DSM IP Assets B.V.
    Inventors: Edwin Ijpeij, Henricus Arts, Gerardus van Doremaele, Felix Beijer, Francis van der Burgt, Martin Zuideveld
  • Patent number: 7276616
    Abstract: The use of a phosphorus containing Ligand as a Ligand for a metathesis catalyst in a catalysed metathesis reaction wherein the phosphorus containing Ligand is a heterocyclic organic compound with a ligating phosphorus atom as an atom in the heterocyclic ring structure of the heterocyclic organic compound. The invention also relates to a metathesis catalyst such a phosphorus containing Ligand and to a metathesis reaction using the catalyst.
    Type: Grant
    Filed: July 4, 2003
    Date of Patent: October 2, 2007
    Assignee: Sasol Technology (UK) Limited
    Inventors: Catherine Lynn Dwyer, Ann Elizabeth Catherine McConnell, Grant Stephen Forman
  • Patent number: 7276567
    Abstract: This invention relates to compounds represented by formula: wherein M is a group 3, 4, 5 or 6 transition, lanthanide, or actinide metal atom; E is an indenyl ligand substituted in any position with at least one aromatic or pseudoaromatic heterocyclic substituent that is bonded to the indenyl ring through a nitrogen or phosphorous ring heteroatom; A is a substituted or unsubstituted cyclopentadienyl, heterocyclopentadienyl, indenyl, heteroindenyl, fluorenyl, or heterofluorenyl ligand, or other mono-anionic ligand, or A may, independently, be E; Y is an optional bridging group; y is zero or one; X are, independently, univalent anionic ligands, and provided that when A is E, and y is one, and Y is bonded to the one position of each indenyl ligand, and per indenyl ligand there is only one aromatic heterocyclic or pseudoaromatic heterocyclic that is bonded to the indenyl ligand.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: October 2, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Artyom Y. Lebedev, Vyatcheslav V. Izmer, Alexey N. Ryabov, Mikhail V. Nikulin, Jo Ann M. Canich
  • Patent number: 7268243
    Abstract: Bis(salicylaldiminato)titanium complex with optionally substituted phenyl or cyclohexyl on nitrogen catalyzes highly syndiospecific polymerization of propylene. Syndiotactic polypropylene with defects of the type rmr having [rrrr] content greater than 0.70 and block copolymer containing block(s) of the syndiotactic polypropylene and block(s) of poly(ethylene-co-propylene) and/or poly(alpha-olefin-co-propylene) are obtained. Certain of the catalysts provide living polymerization. Living olefin polymers and olefin terminated oligomers and polymers are also products.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: September 11, 2007
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Geoffrey W. Coates, Jun Tian
  • Patent number: 7268233
    Abstract: The invention relates to novel monocarbene complexes of nickel, palladium or platinum with electron-deficient olefin ligands, to their preparation and to their use in the homogeneous catalysis of organic reactions.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: September 11, 2007
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Karch, Oliver Briel, Bernd Kayser, Matthias Beller, Kumaravel Selvakumar, Anja Frisch, Alexander Zapf
  • Patent number: 7259216
    Abstract: A process for preparing highly branched ethylene polymers comprises polymerizing ethylene over a catalyst system comprising a compound of the formula Ia or Ib and an activator, where the process is carried out at from 40 to 110° C. and a pressure of from 10 to 100 bar.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: August 21, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Sharam Mihan, Dieter Lilge, Jan Göhre
  • Patent number: 7259122
    Abstract: A shelter coating comprising polyvinyl alcohol and polyethyleneimine is disclosed. The shelter coating may optionally further include a photocatalyst capable of generating singlet oxygen from ambient air. The shelter coating may optionally include a singlet oxygen scavenger.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: August 21, 2007
    Inventor: John Lombardi
  • Patent number: 7250523
    Abstract: Compounds and processes for catalytic ring-opening cyclooligomerization metathesis and ring-closing metathesis of olefins are described. The compound is a molybdenum or tungsten metal (M) complex which comprises an imido ligand (N—R) bound to the M to provide an M=N—R site, an M=C reaction site wherein the C of the M=C reaction site is tethered to the R of the imido ligand via a carbon or carbon and heteroatom (NOS) chain containing 1 to 12 carbon atoms to form a ring structure, and two to four ligands (R?) bound to the M to provide two to four M-R? sites. In particular embodiments, the M-R? sites include each of the oxygens of a dialkoxide ligand or each of the nitrogens of an ?1-pyrrolyl ligand bound to the M.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: July 31, 2007
    Assignee: Board of Trustees of Michigan State University
    Inventors: Aaron L. Odom, James T. Ciszewski
  • Patent number: 7250510
    Abstract: The present invention relates to catalysts of transition metal complexes of N-heterocyclic carbenes, their methods of preparation and their use in chemical synthesis. The synthesis, ease-of-use, and activity of the compounds of the present invention are substantial improvements over in situ catalyst generation. Further, the transition metal complexes of N-heterocyclic carbenes of the present invention may be used as precatalysts in metal-catalyzed cross-coupling reactions.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: July 31, 2007
    Assignee: Total Synthesis, Ltd.
    Inventors: Michael G. Organ, Christopher J. O'Brien, Assam (Eric) B. Kantchev
  • Patent number: 7247594
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a catalyst composition. One aspect of this invention is the formation and use of a catalyst composition comprising a transition metal compound and an activator for olefin polymerization processes.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: July 24, 2007
    Assignee: Chevron Phillips Chemical Co. LP
    Inventors: Kumi C. Jayaratne, Michael D. Jensen, Matthew G. Thorn, Max P. McDaniel, Paul Barbee, Qing Yang
  • Patent number: 7241926
    Abstract: A process for preparing polyether alcohols by addition of alkylene oxides onto H-functional starter substances in the presence of multimetal cyanide catalysts, wherein the multimetal cyanide catalysts are microporous and have a specific surface area of more than 100 m2/g, determined by nitrogen adsorption at 77 K.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: July 10, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Edward Bohres, Ulrich Müller, Raimund Ruppel, Eva Baum
  • Patent number: 7235510
    Abstract: A tethered ligand comprising the reaction product of an organofunctional silica and a ligand containing a functional group capable of reaction with said organofunctional silica, wherein the organofunctional silica is prepared from an alkyl silicate and an organofunctional silane is described. A supported catalyst is also described comprising additionally a source of catalytically-active metal. Methods for preparing the tethered ligand and supported catalyst are provided and uses of the supported catalyst for performing asymmetric reactions are claimed. The catalysts are readily separable from the reaction mixtures and may be re-used if desired.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: June 26, 2007
    Assignee: Johnson Matthey PLC
    Inventors: Graeme Bradford, legal representative, William Patrick Hems, Antony Chesney, deceased
  • Patent number: 7217676
    Abstract: This invention relates to a catalyst support comprising the result of the combination of: (a) a support comprising hydroxyl groups; (b) a capping agent comprising a boron containing Lewis acid; and (c) an ionic activator, wherein at least some of the capping agent does not form a support bound activator.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: May 15, 2007
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: George Rodriguez, Anthony N. Speca, Matthew C. Kuchta, David H. McConville, Terry J. Burkhardt
  • Patent number: 7214747
    Abstract: This invention relates to a metallocene compounds represented by formula: wherein M is a group 3, 4, 5 or 6 transition metal atom, or a lanthanide metal atom, or actinide metal atom; E is an indenyl ligand that is substituted with a PR2 group in the two position of the indenyl ligand, where each R is, independently a hydrocarbyl, substituted hydrocarbyl, halocarbyl, or substituted halocarbyl substituent, and additionally, E may be substituted with 0, 1, 2, 3, 4, 5 or 6 Rn where each Rn is, independently, a hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, silylcarbyl, substituted silylcarbyl, germylcarbyl, or substituted germylcarbyl substituent, and optionally, two or more adjacent Rn substituents may join together to form a substituted or unsubstituted, saturated, partially unsaturated, or aromatic cyclic or polycyclic substituent; A is a substituted or unsubstituted cyclopentadienyl ligand, a substituted or unsubstituted heterocyclopentadienyl ligand, a substituted or unsubstit
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 8, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Denis N. Kazyulkin, Vyatcheslav V. Izmer, Alexey N. Ryabov, Jo Ann M. Canich
  • Patent number: RE40121
    Abstract: The present invention relates to zwitterionic neutral transition metal compounds. The compounds are suitable as catalyst components for the polymerization of olefins.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: February 26, 2008
    Inventors: Gerhard Erker, Bodo Temme, Michael Aulbach, Bernd Bachmann, Frank Küber