Organic Compound Contains Metal (e.g., Na-o-ethyl, Etc.) Patents (Class 502/171)
  • Publication number: 20030162849
    Abstract: A method of treating an untreated catalyst support includes contacting an untreated catalyst support which is partially soluble in an aqueous acid and/or a neutral aqueous solution with a modifying component precursor of the formula Me(OR)x where Me is a modifying component selected from Si, Zr, Ti, Cu, Zn, Mn, Ba, Co, Ni, Na, K, Ca, Sn, Cr, Fe, Li, TI, Mg, Sr, Ga, Sb, V, Hf, Th, Ce, Ge, U, Nb, Ta, and W, R is an alkyl or acyl group, and x is an integer having a value of from 1 to 5. The modifying component is thereby introduced onto and/or into the catalyst support to form a protected modified catalyst support which is less soluble in the aqueous acid and/or the neutral aqueous solution. No calcination of the protected modified catalyst support is effected.
    Type: Application
    Filed: January 22, 2003
    Publication date: August 28, 2003
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Peter Jacobus Van Berge, Jan Van De Loosdrecht, Sean Barradas
  • Publication number: 20030153697
    Abstract: New compositions, titanium-ligand complexes and arrays with pyridyl-amine ligands are disclosed that catalyze the polymerization of monomers into polymers. These catalysts with titanium metal centers have high performance characteristics, including high styrene incorporation into ethylene/styrene copolymers.
    Type: Application
    Filed: November 4, 2002
    Publication date: August 14, 2003
    Applicant: Symyx Technologies, Inc.
    Inventors: Thomas R. Boussie, Gary M. Diamond, Christopher Goh, Anne M. LaPointe, Margarete K. Leclerc, Cheryl Lund
  • Patent number: 6605564
    Abstract: Compositions including one or more anionic polymerization initiators and one or more additives for improving functionalizing efficiency of living polymer anions are disclosed. The present invention also provides compositions including one or more electrophiles and one or more additives for improving functionalizing efficiency of living polymer anions. Novel electrophiles and processes for improving polymer anion functionalization efficiencies are also disclosed. The additives are generally alkali metal halides or alkoxides, and the initiators are generally organs alkali metal compounds, particularly alkyl lithium compounds.
    Type: Grant
    Filed: April 28, 1999
    Date of Patent: August 12, 2003
    Assignee: FMC Corporation
    Inventors: Roderic Paul Quirk, Young Joon Lee, James Anthony Schwindeman, Robert James Letchford
  • Patent number: 6602817
    Abstract: Functionalized amine derivatives are prepared by reacting an amine, a carbonyl derivative, and an organoboron compound under mild conditions. Organoboronic acids react with amines and alpha-hydroxy aldehydes to give anti-alpha-amino alcohols with very high diastereoselectivities (>99% de). When optically pure alpha-hydroxy aldehydes are used in this process, no racemization occurs and the products are obtained with very high enantioselectivities (>99% ee). The reaction also works with unprotected glyceraldehyde to give the corresponding amino diol derivatives, while unprotected carbohydrates give the corresponding amino polyols. The chiral amino alcohol products of this process or their derivatives, react further with metals or non-metals to give adducts that are effective catalysts for a variety of asymmetric reactions. Overall, the present invention relies on the facile synthesis of the chiral amino alcohol ligands for the rapid construction of combinatorial libraries of chiral catalysts.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: August 5, 2003
    Assignee: University of Southern California
    Inventor: Nicos A. Petasis
  • Patent number: 6592991
    Abstract: A process is described for preparing structured organic-inorganic hybrid materials, using an amphiphilic block copolymer as template.
    Type: Grant
    Filed: May 24, 2000
    Date of Patent: July 15, 2003
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Ulrich Bernd Wiesner, Markus Templin
  • Publication number: 20030130112
    Abstract: Disclosed are dirhodium catalyst compositions. One such dirhodium catalyst composition includes a dirhodium catalyst and a solid support. The dirhodium catalyst includes a Rh—Rh moiety and four bridging ligand moieties. The dirhodium catalyst and the solid support are bound together, but they are not covalently bound together via one or more of the bridging ligand moieties. Another such dirhodium catalyst composition includes a dirhodium tetracarboxylate catalyst and a solid support, and the dirhodium tetracarboxylate catalyst and the solid support are bound together. Yet another such dirhodium catalyst composition includes a dirhodium catalyst and a solid support, where the dirhodium catalyst includes a Rh—Rh moiety and where the dirhodium catalyst and the solid support are bound together via at least one of the rhodiums' axial positions. The compositions can be used in a number of reactions, including insertion reactions (e.g.
    Type: Application
    Filed: August 27, 2002
    Publication date: July 10, 2003
    Inventors: Huw M. L. Davies, Tadamichi Nagashima
  • Patent number: 6583244
    Abstract: Metal salts of cyclic alcohols can be used as modifiers in lithium initiated solution polymerizations of diene monomers into rubbery polymers having a low vinyl content. For instance, such initiator systems can be used in the copolymerization of styrene and isoprene to produce low vinyl styrene-isoprene rubber having a random distribution of repeat units that are derived from styrene. It is important for such polymerizations to be conducted in the absence of polar modifiers, such as Lewis bases. The subject invention more specifically discloses an initiator system which is comprised of (a) a lithium initiator and (b) a metal salt of a cyclic alcohol, wherein said initiator system is void of polar modifiers. The present invention also discloses a process for preparing a rubbery polymer having a low vinyl content which comprises: polymerizing at least one diene monomer with a lithium initiator at a temperature which is within the range of about 5° C. to about 100° C.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: June 24, 2003
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Chad Aaron Jasiunas, John Robert Zuppo, III, Adel Farhan Halasa, Wen-Liang Hsu
  • Patent number: 6576728
    Abstract: This invention is based upon the discovery of certain anionic initiator systems can be used to initiate the solution polymerization of conjugated diolefin monomers into rubbery polymers having a low vinyl content. For instance, such initiator systems can be used in the copolymerization of styrene and isoprene to produce low vinyl styrene-isoprene rubber having a random distribution of repeat units that are derived from styrene. These initiator systems are comprised of (a) a lithium initiator and (b) a member selected from the group consisting of (1) a sodium alkoxide, (2) a sodium salt of a sulfonic acid, and (3) a sodium salt of a glycol ether. It is important for the initiator system to be free of polar modifiers, such as Lewis bases.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: June 10, 2003
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Chad Aaron Jasiunas, Adel Farhan Halasa, John Robert Zuppo, III
  • Publication number: 20030060360
    Abstract: The invention provides novel adsorbents for use in the separation of unsaturated hydrocarbons from a mixture of gases containing such hydrocarbons. The preferred adsorbents comprise metal compounds supported on high surface area carriers. The adsorbents of the invention are usable in pressure swing adsorption or temperature swing adsorption processes.
    Type: Application
    Filed: February 25, 2002
    Publication date: March 27, 2003
    Inventors: Ralph T. Yang, Joel Padin, Salil U. Rege
  • Publication number: 20030055276
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a complex that incorporates a Group 3 to 10 transition metal and at least one chelating dianionic bis(allyl) or bis(benzyl) ligand. The ligands are often easy to make, and they are readily incorporated into transition metal complexes. By modifying the structure of the dianionic ligand, polyolefin makers can control comonomer incorporation, catalyst activity, and polymer properties.
    Type: Application
    Filed: July 17, 2001
    Publication date: March 20, 2003
    Inventors: Sandor Nagy, Karen L. Neal-Hawkins, Jonathan L. Schuchardt
  • Patent number: 6528449
    Abstract: Catalyst compositions useful for olefin polymerizations comprising a Group 3-10 metal complex and a compound corresponding to the formula: AlArfQ1Q2, or a dimer, adduct, or mixture thereof and further mixtures with aluminum compounds of the formula AlArf3, where: Arf is a fluorinated aromatic hydrocarbyl moiety of from 6 to 30 carbon atoms; Q1 is Arf or a C1-20 hydrocarbyl group, optionally substituted with one or more cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsilylamino, hydrocarbylsilyl, silylhydrocarbyl, di(hydrocarbylsilyl)amino, hydrocarbylamino, di(hydrocarbyl)amino, di(hydrocarbyl)phosphino, or hydrocarbylsulfido groups having from 1 to 20 atoms other than hydrogen, or, further optionally, such substituents may be covalently linked with each other to form one or more fused rings or ring systems; and Q2 is an aryloxy, arylsulfide or di(hydrocarbyl)amido group, optionally substituted with one or more hydrocarbyl, cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsil
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: March 4, 2003
    Assignee: The Dow Chemical Comapny
    Inventors: Eugene Y. Chen, William J. Kruper, Jr., Gordon R. Roof, David J. Schwartz, Joey W. Storer
  • Patent number: 6525150
    Abstract: Olefins are homopolymerized or copolymerized in the presence of a catalyst containing a reaction product obtained from vanadium oxytrichloride and 2,2′-thiobis(6-t-butyl-4-methylphenyl), an organic aluminum compound, such as trimethylaluminum, and an ionized ionic compound, such as N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, and the like. By using this catalyst to polymerize ethylene with an &agr;-olefin, such as propylene, 1-heptene, 1-octene, and the like, or a non-conjugated diene, such as 5-ethylidene-2-norbomene, and the like, a polymer having a high degree of copolymerization is obtained.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: February 25, 2003
    Assignee: JSR Corporation
    Inventors: Toshiyuki Hayakawa, Fumio Tutumi
  • Patent number: 6521561
    Abstract: The present invention relates to a method and catalysts for the stereoselective addition of a nucleophile to a reactive &pgr;-bond of a substrate. The chiral, non-racemic catalysts of the present invention constitute the first examples of catalysts for nucleophilic additions that comprise a main-group metal and a tri- or tetra-dentate ligand.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: February 18, 2003
    Assignee: President and Fellows of Harvard College
    Inventors: Eric N. Jacobsen, Matthew S. Sigman
  • Patent number: 6512074
    Abstract: Polymerization catalysts of oxirane compounds are catalysts which are suitable to carry out suspension precipitation polymerization of the oxirane compounds in an organic solvent which cannot dissolve the polymers and comprise a reaction product of (A) an alkylaluminum compound, (B) an oxoacid compound of phosphorus having at least one OH group in its molecule and (C) a nitrogen-containing cyclic compound having pKa of 6 to 8. A process for preparing the polymers of the oxirane compounds is a process wherein the monomeric oxirane compounds are subjected to the suspension precipitation polymerization in the organic solvent which cannot dissolve the polymers in the presence of the catalysts to prepare the polymers of the oxirane compounds.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: January 28, 2003
    Assignee: Daiso Co., Ltd.
    Inventors: Shigeru Shoji, Yasumi Shimizu, Katsuhito Miura
  • Patent number: 6501000
    Abstract: The invention is directed towards a composition comprising the formula LMX(X′)n wherein n equals 0 or 1; X and X′ are independently selected from the group consisting of halides, hydride, triflate, acetates, borates, C1 through C12 alkyl, C1 through C12 alkoxy, C3 through C12 cycloalkyl, C3 through C12 cycloalkoxy, aryl, thiolates, carbon monoxide, cyanate, olefins, and any other moiety into which a monomer can insert; M is selected from the group consisting of nickel, palladium, and platinum and L is a nitrogen-containing bidentate ligand with more than two nitrogen atoms. The composition possesses a tetrahedral or pseudo-tetrahedral structure. The invention also provides a method for using the composition in conjunction with an activating cocatalyst to form short chain &agr;-olefins.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: December 31, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Robert Timothy Stibrany, Michael Gerard Matturro, Stephen Zushma, Abhimanyu Onkar Patil
  • Publication number: 20020198100
    Abstract: A novel supported ionic liquid moiety which may further comprise immobilized ionic fluids and catalytic material is described. A method for making the composition is also described.
    Type: Application
    Filed: August 3, 2001
    Publication date: December 26, 2002
    Inventors: Christian Peter Mehnert, Raymond Arnold Cook
  • Publication number: 20020198423
    Abstract: A Pd(OAc)2/diazabutadiene system has been developed for the catalytic cross-coupling of aryl halides with arylboronic acids. A combination of the diazabutadiene DAB-Cy (1, N, N′-Dicyclohexyl-1,4-dizabutadiene) and Pd(OAc)2 was found to form an excellent catalyst for the Suzuki-Miyaura cross-coupling of various aryl bromides and activated aryl chlorides with arylboronic acids.
    Type: Application
    Filed: March 7, 2002
    Publication date: December 26, 2002
    Inventors: Steven P. Nolan, Gabriela Grasa
  • Publication number: 20020193555
    Abstract: By the present invention, there are provided a catalyst for polyester preparation, which comprises a solid titanium compound containing titanium, oxygen, carbon and hydrogen and having a Ti—O bond and which has a maximum solubility in ethylene glycol, as measured when the catalyst is dissolved in ethylene glycol under heating at 150° C., of not less than 3,000 ppm in terms of a titanium atom, a catalyst for polyester preparation, which comprises a titanium-containing solution wherein a contact product of a hydrolyzate of a titanium halide or a hydrolyzate of a titanium alkoxide with a polyhydric alcohol is dissolved in ethylene glycol in an amount of 3,000 to 100,000 ppm in terms of a titanium atom, a process for preparing a polyester using the catalyst, and a polyester prepared by the process.
    Type: Application
    Filed: April 18, 2002
    Publication date: December 19, 2002
    Inventors: Hideshi Hori, Fujito Ehara, Akiyoshi Shimizu, Nobumasa Mukai, Shoji Hiraoka
  • Patent number: 6495641
    Abstract: Vanadium complex having general formula (I) (RCOO)nVXpLm  (I) wherein R is a monofunctional hydrocarbon radical having from 1 to 20 carbon atoms and from 1 to 6 halogen atoms, selected from chlorine and bromine, preferably chlorine; X is chlorine or bromine, preferably chlorine; L is an electron donor; p+n=3, 4 or 5, preferably=3; n is greater than or equal to 1; m is between 0 and 3. The preparation of the above complex is also described together with its use in the (co)polymerization of &agr;-olefins.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: December 17, 2002
    Assignee: Enichem S.p.A.
    Inventors: Francesco Masi, Liliana Gila, Roberto Santi, Antonio Proto, Evelina Ballato, Anna Maria Romano
  • Patent number: 6492570
    Abstract: The invention provides a polynuclear compound comprising two or more metal-hapto-3-capped nidocarborane groups. Also provided is the use of such a compound as a catalyst in a chemical reaction such as a hydrogenation or oxidation reaction.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: December 10, 2002
    Assignee: British Nuclear Fuels PLC
    Inventors: Nigel Dennis Tinker, Kenneth Wade, Thomas Gibson Hibbert
  • Patent number: 6486090
    Abstract: Initiator systems of the invention comprise: a complexed initiator comprising at least one of a complex of a complexing agent comprising at least one hydroxide and an initiator or a complex of a complexing agent comprising at least one alkoxide and an initiator; and a decomplexer. The initiator systems are useful for initiating polymerization of at least one monomer to form polymerized compositions. Kits of the invention useful for forming the polymerized compositions comprise a polymerizable composition and an initiator component, wherein the initiator component comprises a complexed initiator of the invention. Bonding compositions can be prepared by mixing the polymerizable composition of the kit with the respective initiator component.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: November 26, 2002
    Assignee: 3M Innovative Properties Company
    Inventor: Dean M. Moren
  • Patent number: 6465585
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) a chromium-containing compound; (b) an organomagnesium compound; and (c) a silyl phosphonate, also, a process for forming conjugated diene polymers by using the catalyst composition.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: October 15, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Publication number: 20020119889
    Abstract: A catalyst in a solid state for polymerization of a conjugated diene or copolymerization of a conjugated diene and an aromatic vinyl compound, which comprises a metallocene-type cation complex of a rare earth metal compound. The catalyst typically is a trivalent rare earth metal compound represented by the general formula (I): RaMXb wherein M represents a rare earth metal; R represents cyclopentadienyl group, a substituted cyclopentadienyl group, indenyl group, a substituted indenyl group, fluorenyl group, or a substituted fluorenyl group; X represents an anion; symbol “a” represents an integer of 1 or 2; and symbol “b” represents an integer of 1 or 2.
    Type: Application
    Filed: September 5, 2001
    Publication date: August 29, 2002
    Applicant: RIKEN
    Inventors: Shojiro Kaita, Zhaomin Hou, Yasuo Wakatsuki
  • Patent number: 6440893
    Abstract: A method and catalyst composition for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. The present invention provides a method for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a halide-free carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a first inorganic co-catalyst comprising at least one Group 14 metal source, an effective amount of a salt co-catalyst, and optionally an effective amount of a second inorganic co-catalyst selected from the group consisting of a Group 4 metal source, a Group 7 metal source, a Group 11 metal source, and a lanthanide element source, and optionally an effective amount of a base.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: August 27, 2002
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson, Donald Wayne Whisenhunt, Jr., Grigorii Lev Soloveichik
  • Publication number: 20020115560
    Abstract: 1.
    Type: Application
    Filed: January 18, 2002
    Publication date: August 22, 2002
    Inventors: Pascual Royo Gracia, Jesus Cano Sierra, Miguel Angel Flores De Paco, Begona Pena Garcia
  • Publication number: 20020111266
    Abstract: An improved nitrogen oxide catalyst for use with catalytic converters comprises a substrate material comprising a catalyst, an adsorption material layer, and an organometallic precursor comprising an organometallic precursor material and a nitrogen oxide adsorber catalyst material. The organometallic precursor reacts with a base metal oxide present in the catalyst and decomposes upon application to the substrate material, leaving a nitrogen oxide adsorption catalyst material in the adsorption material layer.
    Type: Application
    Filed: December 15, 2000
    Publication date: August 15, 2002
    Inventors: William J. Labarge, Mark David Hemingway, Joachim Kupe, Galen Bruce Fisher
  • Publication number: 20020103076
    Abstract: The present invention relates to a supported catalyst composition and a method for making the supported catalyst composition and its use in a process for polymerizing olefin(s). In particular, the invention is directed to a method for making a supported catalyst composition by combining a heated bulky ligand metallocene-type catalyst system with a carrier or an optionally heated carrier.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 1, 2002
    Inventors: Agapios K. Agapiou, Chi-I Kuo, David M. Glowczwski, Steven K. Ackerman
  • Publication number: 20020103075
    Abstract: An organic halogen compound-decomposing catalyst is provided, which affords excellent decomposing percentages even at low temperatures, while there is no fear of re-synthesizing dioxines and brominated dioxines.
    Type: Application
    Filed: December 14, 2001
    Publication date: August 1, 2002
    Applicant: NGK Insulators, Ltd.
    Inventors: Katsuhiro Tokura, Kazuyuki Oshita
  • Patent number: 6426397
    Abstract: Ionic perfluorovinyl compounds and their uses as components of ionic conductors of the polymer type, of selective membranes or of catalysts. The compounds comprise at least one perfluorovinyl group and at least one group chosen from —O or one of the groups C≡N, —C(C≡N)2, —NSO2R or —C[SO2R]2 or a pentacyclic group comprising at least one N, C—C≡N, CR, CCOR or CSO2R group. The compounds and/or their polymers are of use in the preparation of ionically conducting materials, electrolytes and selective membranes.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: July 30, 2002
    Assignees: ACEP Inc., Centre National de la Recherche Scientifique, Universite de Montreal
    Inventors: Michel Armand, Christophe Michot
  • Publication number: 20020098972
    Abstract: A composition that can be used as a catalyst is disclosed. The composition comprises, or is produced by combining, a titanium compound, a glycol, a phosphorus compound, and optionally water. Also disclosed is a process that can be used for producing a polyester. The process comprises contacting, in the presence of a catalyst composition, a carbonyl compound and an alcohol under a condition suitable for esterification, transesterification, or polymerization. The catalyst composition comprises, or is produced by combining, a titanium compound, a glycol, a phosphorus compound, and optionally water.
    Type: Application
    Filed: January 24, 2001
    Publication date: July 25, 2002
    Inventor: Jiwen F. Duan
  • Patent number: 6420302
    Abstract: The present invention generally relates to a catalyst system. The catalyst system can include a metal dioxide of titanium dioxide or hafnium dioxide, as well as a cocatalys of the general formula (IV) or (V): M′(s+)(O-isopropyl)s  (IV) R3SiX  (V) where: M′ is Al, Ca, Na, K, Si or Mg, s is an integer from 1 to 4 and is the oxidation state of the metal, R is alkyl having 1 to 10 C atoms or aryl having 6 to 20 C atoms, and X is F, Cl, Br, CN; or the general formulae (CH3)2Clsi(CH2)2SiCl(CH3)2 (CH3)2ClSi(CH2)3CN [(CH3)3Si]2O [(CH3)3Si]2NH or [(CH3)3Si]2.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: July 16, 2002
    Assignee: Merck Patent GmbH
    Inventors: Herwig Buchholz, Urs Welz-Biermann
  • Patent number: 6420308
    Abstract: A shell impregnated catalyst of Pd—Au produced on a silica support to have a Pd loading of 1.8 g/L of catalyst to about 7.2 g/L and a Au to Pd weight ratio of 0.3 to 2.0 by impregnating the support with aqueous solutions of palladium and gold salts or acids and thereafter precipitating water insoluble compounds of Pd and Au on the with alkali metal silicate or hydroxide solutions, then dried, and the surface precipitated compounds of Pd and Au are then reduced by reaction with ethylene or hydrogen at a temperature of greater than 150° C. up to 310° C. or with hydrogen up to 299° C. until substantially all of the Pd and Au contents are reduced to a free metal state, after which the support is impregnated with potassium acetate to an extent of 6 to 7 weight percent of the weight of the total catalyst.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: July 16, 2002
    Assignee: Saudi Basic Industries Corp
    Inventor: Alla Konstantin Khanmamedova
  • Patent number: 6420303
    Abstract: A process for the production of a magnesium chloride powder for use in a catalyst, the process comprising vaporizing magnesium chloride in a plasma torch and quenching the vapor with a liquid containing an electron donor to form a magnesium chloride-based powder catalyst wherein at least 80% by weight of the magnesium chloride is present as the hexagonal phase thereof. The invention also relates to a precursor for such a catalyst.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: July 16, 2002
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Alain Standaert, Hendrik D'Haese
  • Publication number: 20020091209
    Abstract: A catalyst component for addition polymerization composed of a transition metal compound (A) of the following general formula [1]:
    Type: Application
    Filed: November 8, 2001
    Publication date: July 11, 2002
    Inventors: Masanobu Hidai, Masaaki Nabika
  • Publication number: 20020087027
    Abstract: A catalyst composition suitable for use as a catalyst for the preparation of an ester comprises (a) an organometallic compound which is the reaction product of an orthoester or condensed orthoester of titanium, zirconium or aluminum, an alcohol containing at least two hydroxyl groups, an organophosphorus compound containing at least one P—OH group and preferably a base, and (b) a compound of germanium, antimony or tin. A process for the preparation of an ester comprises carrying out an esterification reaction in the presence of the catalyst composition. In a further embodiment the organometallic compound comprises the reaction product of, in addition, a 3-hydroxy carboxylic acid.
    Type: Application
    Filed: November 26, 2001
    Publication date: July 4, 2002
    Applicant: ACMA Limited
    Inventors: Charles M. Lindall, John Ridland, Neville Slack
  • Publication number: 20020086794
    Abstract: The present invention relates to MgCl2.mROH.nH2O adducts, where R is a C1-C10 alkyl, 2≦m≦4.2, 0≦n≦0.7 , characterized by an X-ray diffraction spectrum in which, in the range of 2&thgr; diffraction angles between 5° and 15°, the three main diffraction lines are present at diffraction angles 2&thgr; of 8.8±0.2°, 9.4±0.2° and 9.8±0.2°, the most intense diffraction lines being the one at 2&thgr;=8.8±0.2°, the intensity of the other two diffraction lines being at least 0.2 times the intensity of the most intense diffraction line.
    Type: Application
    Filed: November 5, 2001
    Publication date: July 4, 2002
    Applicant: Basell Technology Company BV.
    Inventors: Mario Sacchetti, Gabriele Govoni, Anna Fait
  • Patent number: 6414099
    Abstract: Single-site catalysts useful for polymerizing olefins are disclosed. The organometallic catalysts incorporate a Group 3 to 10 transition, lanthanide or actinide metal and a caged diimide ligand. The diimide ligands are made by a tandem Diels-Alder and photochemical [2+2] cycloaddition sequence to give a multicyclic dione, followed by condensation with a primary amine. Because a wide variety of caged diimide ligands are easy to prepare from commercially available dienes and dienophiles, the invention enables the preparation of a new family of single-site catalysts. Based on their unique structure and geometry, the catalysts offer polyolefin producers new ways to improve activity, control comonomer incorporation, or regulate polyolefin tacticity.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: July 2, 2002
    Assignee: Equistar Chemicals, LP
    Inventors: Gregory G. Hlatky, Jonathan L. Schuchardt
  • Patent number: 6407028
    Abstract: The present invention relates to MgCl2.mROH.nH2O adducts, where R is a C1-C10 alkyl, 2≦m≦4.2, and 0≦n≦0.7, characterized by a differential scanning calorimetry (DSC) profile in which no peaks are present at temperatures below 90° C. or, if peaks are present below said temperature, the fusion enthalpy associated with said peaks is less than 30% of the total fusion enthalpy. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and stereospecificity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: June 18, 2002
    Assignee: Basell Technology Company BV
    Inventors: Mario Sacchetti, Gabriele Govoni, Anna Fait
  • Patent number: 6399532
    Abstract: Catalyst composition for use in the polymerization of olefins comprise neutral metal complexes together with activators comprising non-aromatic boron compounds. Suitable activators are triisobutylboron together with trialkylaluminium compounds. Preferred complexes are metallocenes. The use of such activating systems obviates the need for expensive aluminoxanes or aromatic fluorine containing compounds.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: June 4, 2002
    Assignee: BP Chemicals Limited
    Inventors: Birgit Angelika Dorer, David Pratt, Christopher Sharp
  • Patent number: 6380392
    Abstract: The present invention includes array of new chiral ligands that are optically active or racemic. These ligands are bidentate, tridentate, tetradentate or pentadentate ligands which include P-P, P-N, N-N, mixed P-N, Schiff base or carbene sites. The present invention further includes a catalyst prepared by a process, which includes contacting a transition metal salt, or a complex thereof, and a ligand according to the present invention. The present invention still further includes a process for preparation of an asymmetric compound. In this process, a substrate capable of forming an asymmetric product by an asymmetric reaction and a catalyst according to the present invention are contacted to produce an asymmetric product. Transition metal complexes with these ligands are effective catalysts for asymmetric reactions.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: April 30, 2002
    Assignee: The Penn State Research Foundation
    Inventor: Xumu Zhang
  • Publication number: 20020045537
    Abstract: The present invention provides a method for producing a catalyst for the production of an ultra high molecular weight polyethylene and also a method for preparation of an ultra high molecular weight polyethylene with the use of said catalyst. The catalyst of the present invention is prepared by a process comprising: (i) producing a magnesium compound solution by contact-reacting a magnesium compound and an aluminum or boron compound with alcohol; (ii) contact-reacting the said solution with an ester compound containing at least one hydroxy group and a silicon compound containing an alkoxy group; and (iii) producing a solid titanium catalyst by adding a mixture of a titanium compound and a silicon compound thereto. The catalyst prepared by the present invention has excellent catalytic activity, and it helps to produce an ultra-high molecular weight polyethylene with large bulk density and narrow particle distribution without too large and minute particles.
    Type: Application
    Filed: March 6, 2001
    Publication date: April 18, 2002
    Inventors: Chun-Byoung Yang, Ho-Sik Chang, Weon Lee
  • Publication number: 20020039961
    Abstract: A catalyst and method for performing a Michael addition reaction between a &bgr;-dicarbonyl compound with a cyclic or acyclic enone, where the catalyst comprises a substituted or unsubstituted lanthanum-linked BINOL complex, e.g. a (R,R)-La-linked-BINOL complex (1), are described.
    Type: Application
    Filed: July 26, 2001
    Publication date: April 4, 2002
    Inventor: Masakatsu Shibasaki
  • Patent number: 6365540
    Abstract: The invention relates to a complex product containing magnesium, halogen and alkoxy, which has the following composition: MgpXq(OR)2p-q wherein X is a halogen, R is an alkyl group having from 1 to 20 carbon atoms, p is from 2 to 20 and q is from 1 to (2p−1). More specifically the complex product is a complex of the formula MgCl2.[Mg(OR)2]2 wherein R is an alkyl having from 4 to 10 carbon atoms. The complex is soluble in non-polar solvents and can be used in the preparation of transition metal components of Ziegler-Natta catalyst systems.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: April 2, 2002
    Assignee: Borealis Technology OY
    Inventors: Thomas Garoff, Timo Leinonen, Sirpa Ala-Huikku
  • Publication number: 20020035031
    Abstract: The present invention relates to a process for the polymerization and copolymerization of 1-olefins and to a catalyst to be used in said process wherein the catalyst comprises (1) a complex having formula (I) wherein M is Fe[II], Fe[III], Co[I], Co[II], Co[III], Mn[I], Mn[II], Mn[III], Mn[IV], Ru[II], Ru[III] or Ru[IV]; X represents an atom or group covalently or ionically bonded to the metal M; T is the oxidation state of the metal; b is the valency of the atom or group X; and R 1 to R 7 are each independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl, substituted heterohydrocarbyl or SiR′ 3 where each R′ is independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl, substituted heterohydrocarbyl; and when any two or more of R 1 to R 7 are hydrocarbyl, substituted hydrocarbyl, heterohydroc
    Type: Application
    Filed: April 24, 2001
    Publication date: March 21, 2002
    Inventors: Alain Berardi, John Gabriel Speakman
  • Publication number: 20020032300
    Abstract: The present invention is based upon the discovery that nontitanyl oxalates can enhance the catalytic functionality of titanyl oxalate catalysts. This invention provides a novel catalytic composition containing a titanyl oxalate catalyst and a metallic oxalate catalyst enhancer and optionally containing a metallic cocatalyst such as an antimony based catalyst. A synergistic relationship has been discovered between titanyl oxalate catalyst and the catalyst enhancer. A synergistic relationship has also been discovered between the titanyl oxalate catalyst, catalyst enhancer and a metallic cocatalyst such as antimony oxide or antimony triacetate.
    Type: Application
    Filed: June 29, 2001
    Publication date: March 14, 2002
    Inventors: Conor M. Dowling, Bin Chen, Sri R. Seshadri
  • Patent number: 6344429
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: February 5, 2002
    Assignee: Intevep, S.A.
    Inventors: Pedro Pereira, Jose Guitian, Jose Cordova, Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio
  • Publication number: 20020013220
    Abstract: A catalyst for the production of vinyl acetate by reaction of ethylene, oxygen and acetic acid comprising a porous support on the porous surfaces of which is deposited catalytically effective amounts of metallic palladium and gold, said catalyst having been prepared by steps comprising impregnating a porous support, the porous surfaces of which contain a catalytically effective amount of a prereduced metallic palladium, with a solution of potassium aurate, and reducing the potassium aurate to a catalytically effective amount of metallic gold. Alternate embodiments are also disclosed.
    Type: Application
    Filed: August 20, 2001
    Publication date: January 31, 2002
    Inventors: Tao Wang, Jerry A. Broussard
  • Publication number: 20020010082
    Abstract: Compositions including one or more anionic polymerization initiators and one or more additives for improving functionalizing efficiency of living polymer anions are disclosed. The present invention also provides compositions including one or more electrophiles and one or more additives for improving functionalizing efficiency of living polymer anions. Novel electrophiles and processes for improving polymer anion functionalization efficiencies are also disclosed.
    Type: Application
    Filed: July 2, 2001
    Publication date: January 24, 2002
    Inventors: Roderic Paul Quirk, Young Joon Lee, James Anthony Schwindeman, Robert James Letchford
  • Patent number: 6335304
    Abstract: A metal (M) alkyl acid phosphate catalyst for the reaction of an epoxy compound with a carboxyl compound to provide a coating formulation that is stable at room temperature; that is humidity resistant, and non-yellowing, wherein the alkyl acid phosphate has the formula: (RO)n—(P═O)—(OH)m and wherein: a. each R is selected from the group consisting of: i) a C1 to C18 alkly, cycloalkyl, or aryl; ii) a linear or branched C6 to C18 alkyl substituted with —(O—CH2—CH2—)o or —(O—CH—CH3—CH2—)p, wherein o or p is from 1 to 20; iii) a &bgr;-hydroxyethyl compound, R′—X—CH2—CH—OH—CH2—, wherein R′ is a C6 to C18 alkyl or cycloalkyl or aryl, X is either —CH2—, —O— or —COO—; b. n+m=3 and n is between 2 to 1; and c. M is Zn or Sn (II) in a mole equivalent of 0.7 to 1.5 moles per mole of alkyl acid phosphate.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: January 1, 2002
    Assignee: KIng Industries, INC
    Inventors: Zhiqiang Alex He, Werner J. Blank, Marie Emmanuelle Picci
  • Patent number: 6323152
    Abstract: The present invention relates to a process for the preparation of MgCl2.pROH.qH2O adducts, where R is a C1-C10 alkyl, 1≦p≦6, and 0≦q≦1, comprising the steps of (a) dispersing magnesium dichloride in an inert liquid, (b)adding the alcohol in vapour phase and maintaining the temperature at values allowing the adduct to be melted, (c)emulsifying the molten adduct in a liquid medium immiscible with and chemically inert to said adduct and, (d) contacting the adduct with an inert cooling liquid.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: November 27, 2001
    Assignee: Basell Technology Company bv
    Inventors: Mario Sacchetti, Gabriele Govoni, Anna Fait