Of Group Ii (i.e., Alkaline Earth, Be, Mg, Zn, Cd Or Hg) Patents (Class 502/183)
  • Patent number: 11117117
    Abstract: A method of synthesizing a doped carbonaceous material includes mixing a carbon precursor material with at least one dopant to form a homogeneous/heterogeneous mixture; and subjecting the mixture to pyrolysis in an inert atmosphere to obtain the doped carbonaceous material. A method of purifying water includes providing an amount of the doped carbonaceous material in the water as a photocatalyst; and illuminating the water containing the doped carbonaceous material with visible light such that under visible light illumination, the doped carbonaceous material generates excitons (electron-hole pairs) and has high electron affinity, which react with oxygen and water adsorbed on its surface forming reactive oxygen species (ROS), such as hydroxyl radicals and superoxide radicals, singlet oxygen, hydrogen peroxide, that, in turn, decompose pollutants and micropollutants.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: September 14, 2021
    Assignee: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Anindya Ghosh, Bijay P. Chhetri
  • Patent number: 9669391
    Abstract: The present invention relates to a catalyst composition comprising cobalt molybdenum and optionally one or more elements selected from the group consisting of alkali metals and alkaline earth metals on a carbon support wherein said cobalt and molybdenum are in their metallic form. It was surprisingly found that the selectivity for alcohols can be increased by using the carbon supported cobalt molybdenum catalyst as described herein in a process for producing alcohols from a feed stream comprising hydrogen and carbon monoxide. Furthermore, it was found that the catalyst of the present invention has a decreased selectivity for CO2 and can be operated at relatively low temperature when compared to conventional catalysts. Moreover, a method for preparing the carbon supported cobalt molybdenum catalyst composition and a process for producing alcohols using said carbon supported cobalt molybdenum catalyst composition is provided.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: June 6, 2017
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Graham Hutchings, Sarwat Iqbal
  • Patent number: 9381499
    Abstract: The present invention relates to a catalyst composition comprising cobalt molybdenum and optionally one or more elements selected from the group consisting of alkali metals and alkaline earth metals on a carbon support wherein said cobalt and molybdenum are in their metallic form. It was surprisingly found that the selectivity for alcohols can be increased by using the carbon supported cobalt molybdenum catalyst as described herein in a process for producing alcohols from a feed stream comprising hydrogen and carbon monoxide. Furthermore, it was found that the catalyst of the present invention has a decreased selectivity for CO2 and can be operated at relatively low temperature when compared to conventional catalysts. Moreover, a method for preparing the carbon supported cobalt molybdenum catalyst composition and a process for producing alcohols using said carbon supported cobalt molybdenum catalyst composition is provided.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: July 5, 2016
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Graham Hutchings, Sarwat Iqbal
  • Patent number: 9006127
    Abstract: The present invention relates to a support for silver catalyst used in the ethylene oxide production, a preparation method for the same, a silver catalyst prepared from the same, and its use in the ethylene oxide production. The silver catalyst produced from the silver catalyst support has an improved activity, stability and/or selectivity in the production of ethylene oxide by epoxidation of ethylene.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 14, 2015
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Jun Jiang, Jianshe Chen, Jinbing Li, Shuyun Li, Zhixiang Zhang, Wei Lin, Qian Xue
  • Patent number: 9000242
    Abstract: The invention is directed to a catalyst for the gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene with HF to give 1-chloro-2,2-difluoroethane which catalyst is prepared by co-depositing FeCl3 and MgCl2 on chromia-alumina, or co-depositing Cr(NO3)3 and Ni(NO3)2 on active carbon, or by doping alumina with ZnCl2, and to a process for the preparation of 1-chloro-2,2-difluoroethane comprising a catalytic gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene wherein one of the catalysts according to claim 2 or 3 is used.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 7, 2015
    Assignee: Bayer Intellectual Property
    Inventors: Norbert Lui, Shanthan Rao Pamulaparthy, Srinivas Pvss, Thomas Vijaya, Sridhar Madabhushi, Rambabu Yadla, Narsaiah Banda, Sergii Pazenok
  • Patent number: 8940453
    Abstract: An electrode catalyst for a fuel cell includes a complex support including at least one metal oxide and carbon-based material; and a palladium (Pd)-based catalyst supported by the complex support. A method of manufacturing the electrode catalyst includes dissolving a precursor of a palladium (Pd)-based catalyst in a solvent and preparing a mixture solution for a catalyst; adding a complex support including at least one metal oxide and a carbon-based material to the mixture solution for a catalyst and stirring the mixture solution to which the complex support is added; drying the mixture solution for a catalyst, to which the complex support is added, in order to disperse the precursor of the Pd-based catalyst on the complex support; and reducing the precursor of the Pd-based catalyst dispersed on the complex support. A fuel cell includes the electrode catalyst.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seon-ah Jin, Chan-ho Pak, Kyung-jung Kwon, Kang-hee Lee, Dae-jong Yoo, Jong-won Lee
  • Patent number: 8906822
    Abstract: This disclosure describes a coating composition comprising: MnxOy, MnCr2O4, or combinations thereof in a first region of a coating having a first thickness, wherein x and y are integers between 1 and 7; and X6W6(Siz, C1-z) in a second region of the coating having a second thickness, wherein X is Ni or a mixture of Ni and one or more transition metals and z ranges from 0 to 1.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: December 9, 2014
    Assignee: BASF Qtech, Inc.
    Inventors: Sabino Steven Anthony Petrone, Robert Leslie Deuis, Fuwing Kong, Yan Chen
  • Patent number: 8877673
    Abstract: A method of making a supported catalyst for reforming of steam and hydrocarbons and a steam-hydrocarbon reforming process using the supported catalyst. The supported catalyst is made from a mixture comprising 20 to 99.5 mass % of lanthanum-stabilized ?-alumina and/or lanthanum-stabilized ?-alumina, 0 to 60 mass % oalumina, 0 to 25 mass % of calcium carbonate and/or magnesium carbonate, and 0.5 to 5 mass % of graphite, a cellulose ether, and/or magnesium stearate. The supported catalyst has a porosity between 55% and 75% and a pore volume between 0.3 cc/g and 0.65 cc/g.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: November 4, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Frederick Carl Wilhelm
  • Patent number: 8816130
    Abstract: A heterogeneous catalyst that is a combination of rhodium, zinc, iron, a fourth metal and at least one metal selected from alkali metals and alkaline earth metals on a catalyst support (e.g. at least one of silica, alumina, titania, magnesia, zinc aluminate (ZnAl2O4), magnesium aluminate (MgAl2O4), magnesia-modified alumina, zinc oxide-modified alumina, zirconium oxide-modified alumina, and zinc oxide) and use of the catalyst in converting an alkylene to an oxygenate that has one more carbon atom than the alkylene.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: August 26, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Palanichamy Manikandan, Sreenivasa Rao, Phani Kiran Bollapragada, David G. Barton, Richard M. Wehmeyer, William Tenn, Gerolamo Budroni
  • Patent number: 8785343
    Abstract: This invention relates to a mesoporous carbon supported copper based catalyst comprising mesoporous carbon, a copper component and an auxiliary element supported on said mesoporous carbon, production and use thereof. The catalyst is cheap in cost, friendly to the environment, and satisfactory in high temperature resistance to sintering, with a highly improved and a relatively stable catalytic activity.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: July 22, 2014
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co., Ltd.
    Inventors: Jingwei Liu, Zezhuang Li, Shaohui Chen, Aiwu Yang, Jiye Bai, Lijuan Liu, Yingwu Wang
  • Publication number: 20140135411
    Abstract: The present invention relates to a catalyst composition comprising cobalt molybdenum and optionally one or more elements selected from the group consisting of alkali metals and alkaline earth metals on a carbon support wherein said cobalt and molybdenum are in their metallic form. It was surprisingly found that the selectivity for alcohols can be increased by using the carbon supported cobalt molybdenum catalyst as described herein in a process for producing alcohols from a feed stream comprising hydrogen and carbon monoxide. Furthermore, it was found that the catalyst of the present invention has a decreased selectivity for CO2 and can be operated at relatively low temperature when compared to conventional catalysts. Moreover, a method for preparing the carbon supported cobalt molybdenum catalyst composition and a process for producing alcohols using said carbon supported cobalt molybdenum catalyst composition is provided.
    Type: Application
    Filed: April 19, 2012
    Publication date: May 15, 2014
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Khalid Karim, Graham Hutchings, Sarwat Iqbal
  • Patent number: 8709965
    Abstract: The present invention is directed towards a process of preparing a catalyzed carbonaceous material and preventing polymerization of cracked volatile products during pyrolysis or gasification of carbonaceous materials.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: April 29, 2014
    Assignee: Nagarjuna Energy Private Limited
    Inventors: Manoj Kumar Sarkar, Banibrata Pandey, Malaiyandi Vasanthi, Koruprolu Venkata Rao, Petichimuthu Sakthipriya
  • Patent number: 8685287
    Abstract: A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: April 1, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Patent number: 8685881
    Abstract: The present invention relates to a method for producing esters from triglycerides by using solid heterogeneous catalysts comprised of calcined calcium carbonate, particularly for obtaining biodiesel.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: April 1, 2014
    Assignee: Rohm and Haas Company
    Inventors: Rajiv Banavali, Jose Trejo
  • Patent number: 8664143
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 4, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Marcus A. Worsley, Thomas Yong-Jin Han, Joshua D. Kuntz, Octavio Cervantes, Alexander E. Gash, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Publication number: 20140030171
    Abstract: The invention related to a nano-structured catalyst system for removing mercaptans and/or H2S from hydrocarbonous gas mixtures and an apparatus for removing mercaptans and H2S from gas streams utilizing the catalyst system.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: RIPI
    Inventors: Ali Mohamadalizadeh, Alimorad Rashidi, Jafar Towfighi, Ali Mohajeri, Morteza Rezapour, Kheirollah Jafarijozani, Mehdi Vahidi
  • Publication number: 20140023939
    Abstract: The present invention relates to a bifunctional catalyst for use with air metal batteries and fuel cell. The bifunctional catalyst comprising a core and a shell, where the core comprises a metal oxide and the shell comprises a carbon nanostructure. In a further aspect the bifunctional catalyst is catalytically active for oxygen reduction and oxygen evolution reactions.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 23, 2014
    Inventors: Zhongwei Chen, Zhu Chen
  • Patent number: 8629076
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicon carbide, improving the thermal stability of the carbon aerogel.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Joshua D. Kuntz, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Publication number: 20130337999
    Abstract: This disclosure describes a coating composition comprising: MnxOy, MnCr2O4, or combinations thereof in a first region of a coating having a first thickness, wherein x and y are integers between 1 and 7; and X6W6(Siz, C1-z) in a second region of the coating having a second thickness, wherein X is Ni or a mixture of Ni and one or more transition metals and z ranges from 0 to 1.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 19, 2013
    Inventors: Sabino Steven Anthony Petrone, Robert Leslie Deuis, Fuwing Kong, Yan Chen
  • Publication number: 20130310610
    Abstract: A heterogeneous catalyst that is a combination of rhodium, zinc, iron, a fourth metal and at least one metal selected from alkali metals and alkaline earth metals on a catalyst support (e.g. at least one of silica, alumina, titania, magnesia, zinc aluminate (ZnAl2O4), magnesium aluminate (MgAl2O4), magnesia-modified alumina, zinc oxide-modified alumina, zirconium oxide-modified alumina, and zinc oxide) and use of the catalyst in converting an alkylene to an oxygenate that has one more carbon atom than the alkylene.
    Type: Application
    Filed: January 12, 2012
    Publication date: November 21, 2013
    Applicant: Dow Global Technologies LLC
    Inventors: Palanichamy Manikandan, Sreenivasa Rao, Phani Kiran Bollapragada, David G. Barton, Richard M. Wehmeyer, William Tenn, Gerolamo Budroni
  • Patent number: 8551905
    Abstract: A gold-carbon compound that is a reaction product of gold and carbon, wherein the gold and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the gold when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 8, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Patent number: 8546292
    Abstract: A zinc-carbon compound that is a reaction product of zinc and carbon, wherein the zinc and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the zinc when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 1, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Patent number: 8541335
    Abstract: A lead-carbon compound that is a reaction product of lead and carbon, wherein the lead and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the lead when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Patent number: 8541336
    Abstract: A tin-carbon compound that is a reaction product of tin and carbon, wherein the tin and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the tin when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Publication number: 20130243687
    Abstract: Provided are a carbon catalyst for hydrogen production having an excellent catalytic activity, a production method therefor, and a method of producing hydrogen using the catalyst. The carbon catalyst for hydrogen production is a carbon catalyst, which is obtained by carbonizing a raw material including an organic substance and a transition metal, the catalyst being used for hydrogen production by thermal decomposition of a hydrocarbon compound and/or an oxygen-containing organic compound. Further, the carbon catalyst for hydrogen production may be obtained by loading an alkaline earth metal on a carbonized material produced by the carbonization.
    Type: Application
    Filed: November 1, 2011
    Publication date: September 19, 2013
    Applicants: NISSHINBO HOLDINGS INC., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Jun-ichi Ozaki, Rieko Kobayashi, Chihiro Fujii
  • Publication number: 20130225399
    Abstract: A method of making a supported catalyst for reforming of steam and hydrocarbons and a steam-hydrocarbon reforming process using the supported catalyst. The supported catalyst is made from a mixture comprising 20 to 99.5 mass % of lanthanum-stabilized ?-alumina and/or lanthanum-stabilized ?-alumina, 0 to 60 mass % oalumina, 0 to 25 mass % of calcium carbonate and/or magnesium carbonate, and 0.5 to 5 mass % of graphite, a cellulose ether, and/or magnesium stearate. The supported catalyst has a porosity between 55% and 75% and a pore volume between 0.3 cc/g and 0.65 cc/g.
    Type: Application
    Filed: November 8, 2011
    Publication date: August 29, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Diwakar Garg, Frederick Carl Wilhelm
  • Patent number: 8506846
    Abstract: A catalyst comprising a physical mixture of particles of a catalytic material and particles of char is provided. The catalyst can be used in various processes, including the reforming of tars present in syngas generated during biomass gasification. The catalyst is produced through a mechanical mixing of the catalytic material and char particles, which results in significant time and energy savings over methods of catalyst preparation that involve impregnation and calcining of a support material.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 13, 2013
    Assignee: Kansas State University Research Foundation
    Inventors: Wenqiao Yuan, Duo Wang
  • Publication number: 20130172601
    Abstract: A solid catalyst comprising an effective amount of iridium and at least one second metal selected from gallium, zinc, indium and germanium associated with a solid support material is useful for vapor phase carbonylation to produce carboxylic acids and esters from alkyl alcohols, esters, ethers or ester-alcohol mixtures. The iridium and at least one second metal are deposited on a support material. In some embodiments of the invention, the catalyst is useful for vapor phase carbonylation.
    Type: Application
    Filed: December 17, 2012
    Publication date: July 4, 2013
    Applicant: Eastman Chemical Company
    Inventor: Eastman Chemical Company
  • Publication number: 20130131418
    Abstract: This invention relates to a mesoporous carbon supported copper based catalyst comprising mesoporous carbon, a copper component and an auxiliary element supported on said mesoporous carbon, production and use thereof. The catalyst is cheap in cost, friendly to the environment, and satisfactory in high temperature resistance to sintering, with a highly improved and a relatively stable catalytic activity.
    Type: Application
    Filed: August 27, 2012
    Publication date: May 23, 2013
    Inventors: Jingwei LIU, Zezhuang Li, Shaohui Chen, Aiwu Yang, Jiye Bai, Lijuan Liu, Yingwu Wang
  • Publication number: 20130130888
    Abstract: The present invention relates to a multifunctional catalyst additive composition for reduction of carbon monoxide and nitrogen oxides in a fluid catalytic cracking process comprising an inorganic oxide; alumino silicate or a zeolite; a noble metal; a metal of Group I A; a metal of Group II A; a metal of Group III A; a metal of Group IV A; a metal of Group V A; a rare earth oxide; at least a metal of Group VIII. The composition is attrition resistant and is incorporated on a support. The present invention also discloses a process for preparing the multifunctional catalyst additive composition. The present invention also discloses a fluid cracking catalyst comprising the multifunctional catalyst additive composition.
    Type: Application
    Filed: May 7, 2012
    Publication date: May 23, 2013
    Applicant: BHARAT PETROLEUM CORPORATION LIMITED
    Inventors: Chiranjeevi THOTA, Dattatraya Tammannashastri GOKAK, P. S. VISWANATHAN
  • Patent number: 8404204
    Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 26, 2013
    Assignee: Rockwood Italia SpA
    Inventors: Marino Sergi, Christian Egger
  • Patent number: 8404613
    Abstract: High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: March 26, 2013
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Alexander Harris
  • Publication number: 20130071761
    Abstract: A process includes contacting a carbon support material with an oxidizing agent followed by the acid treatment to form a functionalized carbon support material including surface hydroxyl functionality; contacting the functionalized carbon support material with a solution of a catalyst precursor; and adjusting the pH of the solution to produce a carbon supported catalyst material including a metal oxide catalyst.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Inventors: Khalil Amine, Yang Qin, Zhengcheng Zhang
  • Publication number: 20130012606
    Abstract: A process for the preparation of an F-T catalyst in which the presence of alkaline earth metals is minimized in the support itself and in the processing conditions, in order to provide a catalyst with an alkaline earth metal content of less than 2000 ppm.
    Type: Application
    Filed: November 16, 2010
    Publication date: January 10, 2013
    Applicant: GTL.F1 AG
    Inventors: Erling Rytter, Øyvind Borg, Sigrid Eri, Thomas Sperle
  • Patent number: 8349759
    Abstract: A metal-carbon composition including a metal and carbon, wherein the metal and the carbon form a single phase material, characterized in that the carbon does not phase separate from the metal when the single phase material is heated to a melting temperature, the metal being selected from the group consisting of gold, silver, tin, lead, and zinc.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: January 8, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Patent number: 8309489
    Abstract: An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation ?0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000° C.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: November 13, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Beatriz Roldan Cuenya, Ahmed R. Naitabdi, Farzad Behafarid
  • Publication number: 20120277091
    Abstract: A method of preparing a catalyst using an alkali metal or an alkaline earth metal in natural cellulose fibers as a co-catalyst and a dispersant. The catalyst is prepared using an alkali metal or an alkaline earth metal as a co-catalyst and a dispersant, thus increasing the dispersibility of catalytic components and enhancing the interactions between the catalyst and the support to thereby retard agglomeration and increase the durability of the catalyst.
    Type: Application
    Filed: December 29, 2011
    Publication date: November 1, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Hee-Yeon Kim, Nam-Jo Jeong, Seong-Ok Han
  • Patent number: 8288307
    Abstract: A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: October 16, 2012
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jacqueline W. Quinn, Christian A. Clausen, Cherie L. Geiger, Brian S. Aitken
  • Publication number: 20120245394
    Abstract: In a process for preparing a supported hydrogenation catalyst with increased hydrogenation activity, which comprises a hydrogenating metal and/or an oxide of a hydrogenating metal on an Al2O3-containing support material, said calcined supported hydrogenation catalyst is treated before or after the final shaping thereof and before use thereof in the hydrogenation with a base solution having a pH of >10 at a temperature in the range from 20 to 120° C. for 1 to 300 hours.
    Type: Application
    Filed: November 16, 2010
    Publication date: September 27, 2012
    Inventors: Rolf Tompers, Heiko Urtel, Rolf Pinkos, Gerd-Dieter Tebben, Jens Heimann, Maria Guixa Guardia, Sabine Borchers
  • Publication number: 20120214664
    Abstract: The disclosed technology relates to nanotechnology, petrochemistry, gas chemistry, coal chemistry, in particular to a catalyst based on carbon nanotubes for synthesis of hydrocarbons from CO and H2 and a preparation method thereof. The carbon nanotubes fixed in the catalyst pellet pores improve mass and heat transfer in the catalyst pellet and the catalyst bed.
    Type: Application
    Filed: October 22, 2010
    Publication date: August 23, 2012
    Applicant: INFRA TECHNOLOGIES LTD.
    Inventors: Vladimir Zalmanovich Mordkovich, Aida Razimovna Karaeva, Lilia Vadimovna Sineva, Eduard Borisovich Mitberg, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev
  • Publication number: 20120203034
    Abstract: Isopropyl alcohol is a very useful chemical that is widely used in the industry as a solvent. Economical and easy process to make ispopropyl alcohol using novel composite catalyst is described in the instant application. Production of isopropyl alcohol (IPA) from dimehtyl ketone (DMK) and hydrogen (H2) in gas-phase using a ruthenium nano-particle-supported on activated charcoal/nano-zinc oxide composite catalyst is described. Gas phase production of isopropyl alcohol using DMK and hydrogen is also described using optimal time on stream, temperature, catalyst ratio and DMK/H2 ratio. Ruthenium nano-zinc oxide composite catalyst is formulated using different ratios of ruthenium activated charcoal and n-ZnO is described. CAT-IV is shown to be the best performer for the efficient production of isopropyl alcohol.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 9, 2012
    Applicant: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY (KACST)
    Inventors: ABDULAZIZ A. BAGABAS, MOHAMED MOKHTAR MOHAMED MOSTAFA, ABDULRAHMAN A. AL-RABIAH, VAGIF MALIK AKHMEDOV
  • Patent number: 8236725
    Abstract: Applicant discloses multifunctional, highly active oxidation catalysts and methods of making such catalysts. Such methods include providing nanoparticles comprising titanium-oxo and zinc-oxo compositions, such as crystalline anatase titania nanoparticles with zinc-oxo domains on their surfaces, and etching the nanoparticles. The method also includes depositing catalytically active gold onto the nanoparticles, by, for example, physical vapor deposition.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: August 7, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Duane D. Fansler, Thomas E. Wood
  • Publication number: 20120175306
    Abstract: The present invention relates to active charcoals with improved mechanical properties. They can advantageously be used in the sweetening of petroleum fractions, as oxidation catalyst support in the conversion of mercaptans to disulphides, but also in any other type of reaction, such as, for example, for the oxidation of cyanide present in water or in the synthesis of glyphosate, and in processes for purification and/or separation by selective adsorption in a liquid phase and/or in a gas phase (decolouration of liquid foodstuffs, water treatment, air treatment, recovery of solvents, and the like).
    Type: Application
    Filed: November 14, 2011
    Publication date: July 12, 2012
    Inventor: Remy LeBec
  • Publication number: 20120165184
    Abstract: The present invention is directed to a composite material of a carbonaceous substance comprising a doped catalytic compound obtained by a sol-gel method. In one embodiment, the method comprises mixing a hydrolyzed solution comprising a precursor of a catalytic material with a carbonaceous material to obtain a sol. The sol is afterwards incubated while at the same time it is mixed. After incubation the sol is condensated to form a gel. After condensation the gel formed is subjected to a first calcination carried out in an oxidizing environment followed by a second calcination carried out in a non-oxidizing environment. The non-oxidizing environment comprises a second dopant comprising precursor material. Also, a solution of a first dopant comprising precursor material is added to the solution comprising an organometallic precursor of a catalytic material before hydrolyzation or before subjecting the gel to calcination, i.e. after hydrolyzation.
    Type: Application
    Filed: June 22, 2010
    Publication date: June 28, 2012
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Teik Thye Lim, Pow Seng Yap, Madhavi Srinivasan, Anthony Gordon Fane
  • Patent number: 8197786
    Abstract: Porous carbon materials and methods of manufacturing the same are provided. One method includes forming a carbon-metal oxide composite by heating a coordination polymer to form a carbon-metal oxide composite, and then removing the metal oxide from the carbon-metal oxide composite. The porous carbon material has an average pore diameter ranging from about 10 nm to about 100 nm, and a d002 ranging from about 3.35 to 3.50 ?.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: June 12, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong-min Im, Jeong-hee Lee, Yong-nam Ham, Chan-ho Pak
  • Patent number: 8193112
    Abstract: The present disclosure relates to cationic divalent metal catalysts useful for the polymerization of cyclic esters, methods for their preparation and uses thereof.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: June 5, 2012
    Assignee: University of Lethbridge
    Inventors: Paul G. Hayes, Craig Wheaton
  • Patent number: 8143441
    Abstract: This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: March 27, 2012
    Assignee: Monsanto Technology LLC
    Inventors: Jerry R. Ebner, Mark A. Leiber, Kam-To Wan, Anthony Woods, Peter E. Rogers
  • Publication number: 20120051991
    Abstract: Sorbent bodies comprising activated carbon, processes for making them, and methods of using them. The sorbent bodies can be used to remove toxic elements from a fluid, such as from a gas stream. For instance, the sorbent bodies may be used to remove elemental mercury or mercury in an oxidized state from a coal combustion flue gas.
    Type: Application
    Filed: November 9, 2011
    Publication date: March 1, 2012
    Applicant: CORNING INCORPORATED
    Inventors: Kishor Purushottam Gadkaree, Benedict Yorkeorke Johnson, Pei Qiong Kuang, Anbo Liu, Youchun Shi
  • Patent number: 8124043
    Abstract: The present teachings are directed toward a matrix containing nanosized metal components and carbon nanotubes, with the carbon nanotubes being produced in situ by the nanosized metal components upon the contacting of the nanosized metal components with a carbon source under conditions sufficient to produce the carbon nanotubes. Also disclosed are methods of producing the matrix containing the nanosized metal components and carbon nanotubes.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: February 28, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Avetik Harutyunyan, Elena Mora
  • Patent number: 8119555
    Abstract: The invention provides a method of increasing the mesopore volume of a porous activated carbon, comprising coating a porous activated carbon with a metal oxide or metal oxide precursor to form a treated activated carbon; and calcining the treated activated carbon, in a dry atmosphere, for a time and at a temperature sufficient to increase the mesopore volume of the treated activated carbon. The invention also provides an activated carbon having a total mesopore volume of at least about 0.10 cc/g and less than about 0.25 cc/g, and a percentage of mesopore volume per total pore volume of at least about 15% and less than about 35%. Activated carbon modified according to the invention, cigarette filters incorporating such activated carbon, and smoking articles made with such filters are included in the invention.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: February 21, 2012
    Assignee: R. J. Reynolds Tobacco Company
    Inventors: Chandra Kumar Banerjee, Stephen Benson Sears, Thaddeus Jude Jackson