Nitrogen Compound Containing Patents (Class 502/200)
  • Patent number: 7091152
    Abstract: A process of contacting at least one isoparaffin and at least one C5 olefin in the presence of a catalyst composition under conversion conditions to provide for converting the at least one isoparaffin and the at least one C5 olefin is provided. The catalyst composition contains a heteropoly acid, zinc, and a support component.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: August 15, 2006
    Assignee: ConocoPhillips Company
    Inventor: Bruce B. Randolph
  • Patent number: 7081434
    Abstract: The invention provides compositions to remove mercury and other pollutants from a fluid stream,, particularly flue gases containing them. The composition is a mixture consisting of (a) polyhydroxy compound selected essentially from the group consisting of mono, di, poly saccharides and mixture thereof; (b) a catalyst selected essentially from the group of ammonium compounds, sulfuric acid, phosphoric acid and salts, zinc chloride, and mixture thereof; and (c) specificity producing compound selected from the group of elemental sulfur, sullides and polysulfides of ammonia and alkalies, compounds and metals of copper, silver, tin, gold, and mixture thereof. The polyhydroxy compound in (a) above, either alone or in conjunction with the third group (c), above is also shown effective to remove mercury and other pollutants from fluid streams. The composition can be liquid or dry powder. Methods are provided for applying the formulation.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: July 25, 2006
    Inventor: Rabindra K. Sinha
  • Patent number: 7071139
    Abstract: Oxynitride nanoparticles, methods of preparation thereof, and methods of use thereof are disclosed. One representative oxynitride nanoparticle includes a MxOyNz nanoparticle, where x is in the range of about 1 to 3, y is in the range of about 0.5 to less than 5, and z is in the range of about 0.001 to 0.5.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 4, 2006
    Assignee: Georgia Tech Research Corporation
    Inventor: James L. Gole
  • Patent number: 7053158
    Abstract: Disclosed is a Ziegler-Natta catalyst for olefin polymerization comprising a metal cation of Group 4 or 14 of the Periodic Table (IUPAC 1976) that is coordinated to a. a carborane dianion group; b. a heteroatom anion, said heteroatom being preferably in the terminal position of a hydrocarbyl bridge comprising at least two carbon atoms, wherein at least one bridging carbon atom may be replaced by Si; and c. a valence group.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: May 30, 2006
    Assignee: Agency for Science, Technology and Research
    Inventor: Yinghuai Zhu
  • Patent number: 7049265
    Abstract: Disclosed herein are compositions useful for introducing metal carboxylate salts as catalysts into systems useful for producing polyurethane and polyisocyanurate foams. The methods permit the introduction of such catalysts in the absence of substantial amounts of water which otherwise cause inferior foams to be produced. A method for producing foam employing the catalysts are also described.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: May 23, 2006
    Assignee: Huntsman Petrochemical Corporation
    Inventors: Robert A. Grigsby, Jr., Robert L. Zimmerman, Ernest L. Rister, Jr.
  • Patent number: 7025944
    Abstract: Process for the preparation of ammonia comprising contacting ammonia synthesis gas with one or more catalysts, at least one catalyst having supported ruthenium as the active catalytic material supported on a nitride on a secondary support. A catalyst for use in the above process is provided.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: April 11, 2006
    Assignee: Häldor Topsoe A/S
    Inventors: Svend Erik Nielsen, Claus J. H. Jacobsen, Henrik Udesen, Tine Shim, Niels Kegel Sørensen
  • Patent number: 7015171
    Abstract: A photo-catalyst containing titanium fluoride nitride comprising, Ti(IV)OaNbFc or a compound represented by MeTi(IV)OaNbFc prepared by doping at least one metal Me selected from the group consisting of alkali or alkaline earth metals on Ti(IV)OaNbFc. (wherein, b is 0.1 to 1, c is 0.1 to 1 and a is a value to maintain Ti(IV) and is decided in relation to b and c.). The photo-catalyst containing titanium fluoride nitride is especially characterized by loading at least one promoter selected from the group consisting of Pt, Ni and Pd.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: March 21, 2006
    Assignee: Japan Science & Technology Agency
    Inventors: Kazunari Domen, Michikazu Hara, Tsuyoshi Takata, Kota Nukimizu
  • Patent number: 7015364
    Abstract: A process for preparing polyether polyols includes a precipitation step, a recrystallization step, and a reaction step. In the precipitation step, a multimetal cyanide compound is precipitated by reaction of a metal salt with a cyanometalate compound. In the recrystallization step, the multimetal cyanide compound precipitated above is recrystallized by adding further metal salt and/or further cyanometalate compound. The recrystallization forms a multimetal cyanide catalyst compound. In the reaction step, an initiator and one or more alkylene oxide are reacted in the presence of the multimetal cyanide catalyst compound.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 21, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Dirk Franke, Manfred Munzinger, Kathrin Harre, Eva Baum, Michael Stösser
  • Patent number: 7005402
    Abstract: The invention is to provide (i) a catalyst which does not require an activation of catalyst components by means of a calcination which has become a hindrance in the way of obtaining a catalyst having a high activity through a conventional technology and in which catalyst the compositing of vanadium with molybdenum is contemplated more than enough; ii) a method for producing the catalyst; (iii) a catalyst having an activity, especially having an activity at low temperatures and a durability both greatly increased; (iv) a catalyst compound for purifying an exhaust gas, in which compound the ratio of vanadium atom to molybdenum atom (V/Mo) is 3/2 or close thereto and which compound is expressed by the rational formula (NH4)xMo2VxO(3x+6) wherein x is 2.8 to 3.2; and (v) a method for producing the catalyst compound through a step for reacting molybdenum oxide (MoO3) with ammonium metavanadate (NH4VO3) in the co-presence of water for a prescribed period of time.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: February 28, 2006
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Kouichi Yokoyama, Masatoshi Fujisawa
  • Patent number: 6977236
    Abstract: The present invention relates to a process for the preparation of a double metal cyanide (DMC) catalyst, which process involves: (a) combining an aqueous solution of metal salt with an aqueous solution of a metal cyanide salt and reacting these solutions; and (b) recovering the DMC catalyst from the reaction mixture, in which process the DMC catalyst is prepared in the presence of from 0.03 to 0.4 mole of alkaline metal compound, based on amount of metal salt. Further, the present invention relates to DMC catalyst obtainable by such process, to DMC catalyst prepared from a metal salt and a metal cyanide salt in which the molar ratio of metal derived from the metal salt to metal derived from the metal cyanide salt is at least 2.25 and to a process for polymerization of alkylene oxides which process involves reacting initiator with alkylene oxide in the presence of at most 15 ppm of DMC catalyst.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: December 20, 2005
    Assignee: Shell Oil Company
    Inventors: Michiel Barend Eleveld, Robert Adrianus Wilhelmus Grotenbreg, Ronald van Kempen
  • Patent number: 6919304
    Abstract: Novel bleaching compositions comprising organic catalyst compounds, preferably branched organic catalyst compounds, and an anionic surfactant, methods for laundering fabrics using such bleaching compositions, and laundry additive products containing such bleaching compositions are provided.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: July 19, 2005
    Assignee: Procter & Gamble Company
    Inventors: Robert Richard Dykstra, Marc Eric Gustwiller, Tonya Ann Howard
  • Patent number: 6916954
    Abstract: The invention relates to a catalyst system for carbonylating olefinically or acetylenically unsaturated compounds with carbon monoxide and a nucleophile compound, containing (a) palladium; (b) a phosphine and (c) a polymer containing nitrogen which is soluble in the reaction mixture, with the exception of polyvinyl polymers with aromatic radicals containing nitrogen on the polymer chain. The invention also relates to a method for carbonylation in the presence of one such catalyst system.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: July 12, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Schäfer, Michael Slany, Edgar Zeller, Michael Röper, Michael Schulz, Günther Grimm
  • Patent number: 6903060
    Abstract: The present invention relates to formulation components, such as organic catalyst compounds having increased stability, compositions and laundry methods employing such organic catalyst compounds. More particularly, this invention relates to organic catalysts compounds such as quaternary imine bleach boosting compounds, quaternary oxaziridinium bleaching species, modified amines and amine oxides, compositions and laundry methods employing such organic catalyst compounds.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: June 7, 2005
    Assignee: Procter & Gamble Company
    Inventors: Robert Richard Dykstra, Penny Sue Weed
  • Patent number: 6903044
    Abstract: Disclosed is a new catalyst composition comprising a bimetallic Co—Ru catalyst complexed with a N-heterocylcic ligand that is effective, economical, and provides improvements in oxidative stability in the one step synthesis of 1,3-propanediol (1,3-PDO) from ethylene oxide and synthesis gas. For example, cobalt-ruthenium-2,2?-bipyrimidine, 2,2?-dipyridyl, or 2,4,6-tripridyl-s-triazine catalyst precursors in cyclic ether solvents, such as 1,3-dioxolane, 1,4-dioxolane, 1,4-dioxane, and 2-ethyl-2-methyl-1,3-dioxolane, provide good yields of 1,3-PDO in a one step synthesis.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: June 7, 2005
    Assignee: Shell Oil Company
    Inventors: John Frederick Knifton, Talmadge Gail James, Kevin Dale Allen, Paul Richard Weider, Joseph Broun Powell, Lynn Henry Slaugh, Timothy Williams
  • Patent number: 6897178
    Abstract: Catalysts for the water gas shift reaction contain a variety of late transition metals. The catalytic compositions contain a late transition metal carried on a support which is a carbide, nitride, or mixed carbide nitride of a group 6 metal such as molybdenum, tungsten, and mixtures thereof. The late transition metal includes ruthenium, cobalt, nickel, palladium, platinum, copper, silver, or gold. The water gas shift reaction may be catalyzed by contacting a gaseous stream containing carbon monoxide and water with such a solid catalyst composition. In some embodiments, the catalysts are several times more active than known commercial catalysts for the water gas shift reaction.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: May 24, 2005
    Assignee: The Regents of The University of Michigan
    Inventors: Levi T. Thompson, Shyamal K. Bej, Jeremy J. Patt, Chang H. Kim
  • Patent number: 6894172
    Abstract: Chiral chelating agents and chiral catalysts, which are formed from the chiral chelating agents and metal, are described. One chiral chelating agent has a general formula (1) as illustrated below: wherein R represents H, methyl, ethyl, a primary, secondary or tertiary straight, branched or cyclic alkyl group having 3-7 carbon atoms, a heterocyclic or aromatic group, an aromatic group substituted at the 2-, 3- or 4-position, an aromatic-like group, or a naphthyl or naphthyl-derived group, and n is an integer between 0 and 4.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: May 17, 2005
    Assignee: National Taiwan Normal University
    Inventors: Kwunmin Chen, Kung-Shou Yang, Wei-Der Lee, Jia-Fu Pan
  • Patent number: 6894139
    Abstract: Catalysts contain, as structural units, at least one tertiary amino group and at least one group which, after its decomposition, is capable of complexing or protonating the tertiary amino group.
    Type: Grant
    Filed: July 4, 2001
    Date of Patent: May 17, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Kreyenschmidt, Hauke Malz, Dieter Rodewald, Thomas Flug, Ansgar Frericks
  • Patent number: 6878666
    Abstract: A photo-catalyst comprising of oxynitride of at least one transition metal and oxynitride of transition metal further containing at least one element selected from the group consisting of alkali, alkali earth and IIIB group. Especially, the transition metal contained in said photo-catalyst comprising of oxynitride of transition metal is selected from the group consisting of La, Ta, Nb, Ti and Zr, and further containing metal is selected from the group consisting of Ca, Sr, Ba, Na, K and Rb. Desirably, a promoter comprising Pt or Ni is loaded on said oxynitride of transition metal.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: April 12, 2005
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Michikazu Hara, Junko Nomura
  • Patent number: 6878661
    Abstract: The invention relates to novel double metal cyanide (DMC) catalysts for the preparation of polyether polyols by polyaddition of alkylene oxides to starter compounds containing active hydrogen atoms, wherein the catalyst contains a) double metal cyanide compounds, b) organic complex ligands other than c), and c) complex ligands formed by introduction of a glycidyl ether into the catalyst. The catalysts according to the invention have greatly increased activity in the preparation of polyether polyols.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: April 12, 2005
    Assignee: Bsyer Aktiengesellschaft
    Inventors: Pieter Ooms, Jörg Hofmann, Pramod Gupta, Walter Schäfer
  • Patent number: 6875734
    Abstract: The use of compounds of the formula (1) M(L)nXm??(1) where M is a metal atom from the group Mn, Fe, Co, Ni, Mo, W, L is a ligand from the group of nitrogen-containing heterocycles, X is chloride, bromide, nitrate, perchlorate, sulfate, ammonia, tetrafluoroborate, hexafluorophosphate or an anion of an organic acid having 1 to 22 carbon atoms, n is a number from 2 to 4 and m is a number from 0 to 4, as catalyst for peroxygen compounds, in particular in washing, bleaching and cleaning compositions is claimed.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: April 5, 2005
    Assignee: Clariant GmbH
    Inventors: Gerd Reinhardt, Ekaterina Jonas, Daniel Kewitz, Aylin Karadag, Hans Prehler
  • Patent number: 6869902
    Abstract: A silicon nitride porous body (5) obtained by nitriding a molded body having metallic silicon (3) as a main component, the porous body having a porous structure with an average pore diameter of 3 ?m or above, and wherein the total content of silicon and nitrogen is 95% or above and the nitridation ratio of silicon is 90% or above. The silicon nitride porous body has a porous structure with a large average pore diameter, with a test specimen cut out from the porous body exhibiting large thermal conductivity and a small thermal expansion coefficient, and can be suitably used in a component for purifying gas and/or solution such as a ceramic filter.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: March 22, 2005
    Assignee: NGK Insulators, Ltd.
    Inventors: Katsuhiro Inoue, Kenji Morimoto, Masaaki Masuda, Shinji Kawasaki, Hiroaki Sakai
  • Patent number: 6867162
    Abstract: The present invention is directed to double metal cyanide catalysts (“DMC”) which are prepared by combining i) at least one metal salt; ii) at least one metal cyanide salt; iii) at least one organic complexing ligand; iv) at least one alkali metal salt; and, optionally, v) at least one functionalized polymer under conditions sufficient to form a catalyst; and adding a sufficient amount of the at least one alkali metal salt to the catalyst so formed in an amount such that the catalyst includes the at least one alkali metal salt in an amount of from about 0.4 to about 6 wt. % based on the total weight of the catalyst. The polyols produced in the presence of the catalysts of the present invention have reduced levels of high molecular weight tail.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: March 15, 2005
    Assignees: Bayer MaterialScience LLC, Bayer Antwerpen, J.V.
    Inventors: Bi Le-Khac, Wie Wang
  • Patent number: 6864211
    Abstract: A photocatalyst which contains at least rhombic tantalum nitride or consists of rhombic tantalum nitride. A photocatalyst wherein said photocatalyst loads a promoter composed of transition metal, in particular, the photocatalyst wherein a transition metal is platinum, further the photocatalyst for decomposition of water comprising any of these photocatalysts.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: March 8, 2005
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Michikazu Hara, Tsuyoshi Takata, Go Hitoki
  • Patent number: 6846764
    Abstract: A silicon nitride porous body which is obtained by nitriding a molded body having metallic silicon as a main component and by performing a high temperature heating treatment at a temperature higher than the nitriding temperature, and which has a porous structure with an average pore diameter of 3 ?m or above, and contains at least one kind of element selected from the group consisting of the groups 2A, 3A, 3B inclusive of lanthanoid elements, and 4B. The silicon nitride porous body has a porous structure with a large average pore diameter, a test specimen cut out from the porous body exhibiting a high thermal conductivity and a small thermal expansion coefficient, and can be suitably used in a component for purifying gas and/or solution such as a ceramic filter.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: January 25, 2005
    Assignee: NGK Insulators, Ltd.
    Inventors: Katsuhiro Inoue, Kenji Morimoto, Masaaki Masuda, Shinji Kawasaki, Hiroaki Sakai
  • Patent number: 6846772
    Abstract: Production of nickel/silica hydrogenation catalyst precursors by heating a slurry of particulate silica, e.g. kieselguhr, in an aqueous nickel ammine carbonate solution for a total period of at least 200 minutes at a pH above 7.5, followed by filtration, washing, drying, and optionally calcination.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: January 25, 2005
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Cornelis Martinus Lok, Gavin Gray, Stephen Derek Rogers, Stephen Bailey
  • Patent number: 6841706
    Abstract: Hydrofluorination catalyst based on a chromium oxide which is poor in ammonium salts.
    Type: Grant
    Filed: October 11, 1999
    Date of Patent: January 11, 2005
    Assignee: Solvay (Societe Anonyme)
    Inventors: Vincent Wilmet, Georges Lejeune
  • Patent number: 6835688
    Abstract: A photocatalytic material, which exhibits photocatalytic activity when exposed to visible light, the material containing Ti—O—N containing nitrogen in lattices of titanium oxide crystal.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: December 28, 2004
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takeshi Morikawa, Ryoji Asahi, Takeshi Ohwaki, Yasunori Taga
  • Patent number: 6835687
    Abstract: The invention provides an improved process for the preparation of double metal cyanide (DMC) catalysts for the preparation of polyether polyols by polyaddition of alkylene oxides on to starter compounds containing active hydrogen atoms, in which aqueous solutions of a metal salt and a metal cyanide salt are first reacted in the presence of an organic complexing ligand and optionally one or more further complex-forming components to form a DMC catalyst dispersion, this dispersion is then filtered, the filter cake is subsequently washed with one or more aqueous or non-aqueous solutions of the organic complexing ligand and optionally one or more further complex-forming components by a filter cake washing and the washed filter cake is finally dried, after an optional pressing out or mechanical removal of moisture.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: December 28, 2004
    Assignee: Bayer Aktiengesellschaft
    Inventors: Jörg Hofmann, Stephan Ehlers, Bernd Klinksiek, Thorsten Fechtel, Matthias Ruhland, Jürgen Scholz, Franz Föhles, Ulrich Esser
  • Patent number: 6833343
    Abstract: A bleaching detergent formulation comprising the components of: (A) particles comprising 0.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: December 21, 2004
    Assignee: Kao Corporation
    Inventors: Muneo Aoyagi, Hiroshi Danjo, Masakazu Furukawa, Kazuyoshi Ozaki
  • Patent number: 6828293
    Abstract: Water-soluble granules of salen-type manganese complexes that are suitable as catalysts in reactions with peroxy compounds are described. The granules are used especially in washing agents. They are distinguished by retarded dissolution and improved action of the manganses complexes.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: December 7, 2004
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Menno Hazenkamp, Frank Bachmann, Cornelia Makowka, Petr Kvita, Rolf Kuratli, Anita Schmidlin
  • Publication number: 20040242812
    Abstract: In one embodiment the invention is a polymerizable composition comprising a) an organoborane amine complex; b) one or more of monomers, oligomers or polymers having olefinic unsaturation which is capable of polymerization by free radical polymerization; c) one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization; and d) a catalyst for the polymerization of the one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization. This composition may further comprise a compound which causes the organoborane amine complex to disassociate.
    Type: Application
    Filed: June 9, 2004
    Publication date: December 2, 2004
    Inventors: Mark F. Sonnenschein, Steven P. Webb, Benjamin L. Wendt, Daniel R. Harrington
  • Patent number: 6825162
    Abstract: Water soluble granules or particles of saldimine-type manganese complexes that are suitable as catalysts in reactions with peroxy compounds are described. The granules are used especially in washing agents. They are distinguished by retarded disssolution of and improved action of the manganese complexes.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: November 30, 2004
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Menno Hazenkamp, Bryan David Grey, Kishor Kumar Mistry, Frank Bachmann, Josef Dannacher, Kenneth Charles Symes, Petr Kvita, Susanne Maier
  • Patent number: 6825160
    Abstract: The present invention relates to cationic organic catalyst compound bleach systems and methods using such bleach systems to increase color safety during laundering fabrics, especially colored fabrics. More particularly, this invention relates to bleach systems comprising cationic, quaternary imine bleach boosting compounds, cationic, quarternary oxaziridinium bleaching species and mixtures thereof, and methods employing such bleach systems in the laundering of fabrics, especially colored fabrics.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: November 30, 2004
    Assignee: Procter & Gamble Company
    Inventor: Robert Richard Dykstra
  • Patent number: 6821921
    Abstract: The present invention relates to catalyst systems, processes for making such catalysts, intermediates for such catalysts, and olefin polymerization processes using such catalysts wherein such catalyst includes a component represented by the following formula IA: wherein R and R′ independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl or organosilyl radical; R1, R2, and R3 independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl radical; M is a group IIIB, IVB, VB, VIB, VIIB or VIII transition metal; T independently represents a univalent anionic ligand such as a hydrogen atom, or a substituted or unsubstituted hydrocarbyl, halogeno, aryloxido, arylorganosilyl, alkylorganosilyl, amido, arylamido, phosphido, or arylphosphido group, or two T groups taken together represent an alkylidene or a cyclometallated hydrocarbyl bidentate ligand; L independently represents a sigma donor
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: November 23, 2004
    Assignee: Chevron Chemical Co.
    Inventors: Klaus H. Theopold, Woo-Kyu Kim, Leonard A. MacAdams, John M. Power, Javier M. Mora, Albert P. Masino
  • Patent number: 6821935
    Abstract: The present invention relates to zwitterionic organic catalyst compound bleach systems and methods for using such bleach systems to increase color safety during laundering of fabrics, especially colored fabrics.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: November 23, 2004
    Assignee: Procter & Gamble Company
    Inventors: Robert Richard Dykstra, Patti Jean Kellett
  • Patent number: 6818587
    Abstract: The invention relates to double-metal cyanide (DMC) catalysts for preparing polyether polyols by the polyaddition of alkylene oxides on to starter compounds containing active hydrogen atoms, wherein the DMC catalysts are composed of: a) at least one DMC compound; b) at least one organic complexing ligand which is not a cyclic polyol; and c) at least one cyclic polyol. The DMC catalysts of the present invention have increased activity compared to known catalyst.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: November 16, 2004
    Assignee: Bayer Aktiengesellschaft
    Inventors: Walter Schäfer, Jörg Hofmann, Pieter Ooms
  • Patent number: 6812308
    Abstract: Initiator systems of the present invention include both a complexed initiator and a carboxylic acid decomplexer. For example, dicarboxylic acid decomplexer, carboxylic acid ester decomplexers, and monocarboxylic acid decomplexers (preferably those comprising an alkyl group having at least nine carbon atoms for low odor compositions) are useful in the present invention.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: November 2, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Edward J. Deviny, Dean M. Moren
  • Publication number: 20040210015
    Abstract: In one embodiment the invention is a polymerizable composition comprising a) an organoborane amine complex; b) one or more of monomers, oligomers or polymers having olefinic unsaturation which is capable of polymerization by free radical polymerization; c) one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization; and d) a catalyst for the polymerization of the one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization. This composition may further comprise a compound which causes the organoborane amine complex to disassociate.
    Type: Application
    Filed: June 1, 2004
    Publication date: October 21, 2004
    Inventors: Mark F. Sonnenschein, Steven P. Webb, Benjamin L. Wendt, Daniel R. Harrington
  • Patent number: 6806348
    Abstract: A method of removing and reclaiming a double metal cyanide (DMC) catalyst from a polyol is disclosed. A polymeric acid that is soluble in the polyol is introduced into the polyol during or after the polymerization reaction. The polymeric acid reacts with the double metal cyanide catalyst thereby causing the double metal cyanide catalyst and the polymeric acid to form an agglomeration in the polyol. The agglomeration is easily separated from the polyol via filtration, for example. The recovered agglomerated DMC catalyst can then be reconstituted using an acid solution.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: October 19, 2004
    Assignee: BASF Corporation
    Inventors: Werner Hinz, Edward Michael Dexheimer
  • Patent number: 6806393
    Abstract: In multimetal cyanide complexes, more than 30% by weight of the primary particles have a platelet-like habit, i.e. the length and width of the primary particles is at least three times the thickness of the particles.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: October 19, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Kathrin Harre, Jörg Erbes, Reinhard Lorenz, Stephan Bauer, Thomas Ostrowski, Eva Baum, Dieter Junge
  • Patent number: 6800583
    Abstract: Catalyst suspensions for the ring-opening polymerization of alkylene oxides comprise a) at least one multimetal cyanide compound having a crystalline structure and a content of platelet-shaped particles of at least 30% by weight, based on the multimetal cyanide compound, and b) at least one organic complexing agent c) water and/or d) at least one polyether and/or e) at least one surface-active substance, with the proviso that at least component a) and at least two of the components b) to e) have to be present.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: October 5, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Kathrin Harre, Jörg Erbes, Reinhard Lorenz, Stephan Bauer, Thomas Ostrowski, Eva Baum, Dieter Junge, Edward Michael Dexheimer
  • Patent number: 6797665
    Abstract: The invention relates to double-metal cyanide catalysts for preparing polyols by the polyaddition of alkylene oxides on to starter compounds containing active hydrogen atoms, wherein the DMC catalysts are composed of: a) at least one double-metal cyanide compound; b) at least one organic complexing ligand; and, optionally, c) at least one functionalized polymer, wherein the organic complexing ligand is a mixture of a C3-C7 aliphatic alcohol and from about 2 to about 98 mole %, based on the total amount of organic complexing ligand, of a cyclic, aliphatic, cycloaliphatic or aromatic ketone. The DMC catalysts of the present invention have increased activity compared to known catalysts. Additionally, the DMC catalysts of the present invention can be used to prepare polyols with reduced high molecular weight components.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: September 28, 2004
    Assignee: Bayer Antwerpen
    Inventor: Bi Le-Khac
  • Publication number: 20040186010
    Abstract: This invention relates to late transition metal catalyst precursors and catalysts for olefin dimerizations and oligomerizations, and to methods for making and using these catalysts.
    Type: Application
    Filed: March 18, 2003
    Publication date: September 23, 2004
    Inventors: Baiyi Zhao, Kevin R. Squire, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 6783856
    Abstract: Metal oxyanion coated substrates are disclosed comprising a three dimensional inorganic porous substrate having a coating of metal oxyanion on at least a portion of all three dimensions thereof, produced by a unique process having particular applicability to the manufacture of metal oxysulfide, oxycarbide and oxynitride coated three dimensional substrates. Certain novel coated substrates, such as diatomite porous substrates are disclosed. The coated substrates are useful in polymers, catalysis, heat dissipation and shielding applications.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: August 31, 2004
    Assignee: Ensci Inc
    Inventor: Thomas J. Clough
  • Patent number: 6784302
    Abstract: An optically active lactone compound is produced by using a Zr(salen) complex of the following formula (I) or its enantiomer as a catalyst and subjecting a cyclic ketone compound to a Baeyer-Villiger reaction with at least one oxidizer selected from hydrogen peroxide, aqueous hydrogen peroxide and urea-hydrogen peroxide adduct in a solvent: wherein Ar1 is an aryl group having a carbon number of 10 to 16 and Y is a phenoxy group or an alkoxy group having a carbon number of 1 to 10.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: August 31, 2004
    Assignee: Kyushu University
    Inventors: Tsutomu Katsuki, Akira Watanabe, Tatsuya Uchida
  • Patent number: 6780961
    Abstract: A new method of converting oligomeric chloroformates to high molecular weight polycarbonate is presented. By carefully controlling the relative concentrations and amounts of hydroxyl and chloroformate groups present in the oligomeric polycarbonate, the method of the invention provides for the efficient preparation of polycarbonate while minimizing phosgene usage. The product polycarbonates prepared by the method of the invention are fully capped with no additional phosgene required beyond that needed to prepare the oligomeric chloroformate starting material. The method of the present invention provides polycarbonates having non-detectable levels (<5 ppm) of aromatic hydroxyl endgroups, low polydispersity, and low levels of residual monomer and endcap, thereby obviating the need for monomer and endcap recycle.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: August 24, 2004
    Assignee: General Electric Company
    Inventors: James Manio Silva, Pierre-Andre Bui, Thomas Joseph Fyvie, David Michel Dardaris
  • Patent number: 6780813
    Abstract: The invention relates to an improved method of producing double-metal cyanide (DMC) catalysts for the production of polyether polyols by polyaddition of alkylene oxides to starter compounds containing active hydrogen atoms, in which the DMC catalyst dispersion is produced using a mixing nozzle, preferably a jet disperser. The DMC catalysts produced in this way have an increased activity in polyether polyol production, reduced particle size and narrower particle size distribution.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: August 24, 2004
    Assignee: Bayer Aktiengesellschaft
    Inventors: Jörg Hofmann, Bernd Klinksiek, Stephan Ehlers, Thorsten Fechtel, Franz Föhles, Pieter Ooms
  • Patent number: 6777512
    Abstract: In one embodiment the invention is a polymerizable composition comprising a) an organoborane amine complex; b) one or more of monomers, oligomers or polymers having olefinic unsaturation which is capable of polymerization by free radical polymerization; c) one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization; and d) a catalyst for the polymerization of the one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization. This composition may further comprise a compound which causes the organoborane amine complex to disassociate.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: August 17, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Mark F. Sonnenschein, Steven P. Webb, Benjamin L. Wendt, Daniel R. Harrington
  • Patent number: 6767929
    Abstract: A catalyst for producing a polyurethane, comprising a dialkylaminoalkyl alcohol represented by the formula (I): R1R2N—X—OH  (I) wherein each of R1 and R2 is independently an alkyl group having 1 to 4 carbon atoms; and X is a branched alkylene group having 4 to 8 carbon atoms; a process for producing a polyurethane, comprising reacting a polyol component with an isocyanate component in the presence of the above-mentioned catalyst for producing a polyurethane; and a process for producing a polyurethane foam, comprising reacting a polyol component with an isocyanate component in the presence of the above-mentioned catalyst for producing a polyurethane, and a compound having a primary amino group and a tertiary amino group in its molecule, and a blowing agent.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: July 27, 2004
    Assignee: Kao Corporation
    Inventors: Atsushi Ishikawa, Mitsuru Sakai, Masayoshi Morii
  • Patent number: 6764978
    Abstract: The invention relates to DMC catalysts which comprise at least 10% by weight, based on the weight of the DMC catalysts, of a crystalline multimetal cyanide compound whose X-ray diffractogram shows sharp reflections at least at the d values of 11.4 ű0.5 Å 8.9 ű0.5 Å 6.3 ű0.5 Å 5.8 ű0.5 Å 5.5 ű0.5 Å 4.5 ű0.5 Å 4.4 ű0.5 Å 3.9 ű0.4 Å 3.7 ű0.4 Å 3.4 ű0.4 Å.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: July 20, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Edward Bohres, Raimund Ruppel, Kathrin Harre, Eva Baum, Michael Stösser, Jeffery T. Miller, Richard B. Prager