Phosphorus Or Compound Containing Same Patents (Class 502/208)
  • Patent number: 7015173
    Abstract: A catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: March 21, 2006
    Assignee: Rohm and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Alex Pak
  • Patent number: 7015172
    Abstract: A photo-catalyst comprising a compound having structure composing a network formed by mutual connection of an unit constructing oxygen octahedra or tetrahedra containing a transition metal ion or a typical metallic ion in d10 or d0 configuration and an unit constructing PO4 tetrahedron connected to said oxygen octahedra or tetrahedra, further containing an alkali metal besides said metallic ion as a consituent element, for example, AXNb2mP4O6m+8 (wherein A is Na, K or Li, X is 2, 3 or 4 and m is 3, 3.5 or 4) AXTa2mP4O6m+8 (wherein A is Na, K or Li, X is 2, 3 or 4 and m is 3, 3.5 or 4) AXIn2mP4O6m+8 (wherein A is Na, K or Li, X is 2, 3 or 4 and m is 3, 3.5 or 4) and RuO2 is loaded on the compound. The photo-catalyst can be used for the complete decomposition of water.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: March 21, 2006
    Assignee: Japan Science and Technology Agency
    Inventor: Yasunobu Inoue
  • Patent number: 7015174
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: March 21, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 6995111
    Abstract: The invention relates to a catalyst composition, a method of making the same and its use in the conversion of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene The catalyst composition comprises a molecular sieve and at least one oxide of a metal selected from Group 3 of the Periodic Table of Elements, the Lanthanide series of elements and the Actinide series of elements.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: February 7, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Doron Levin, James Clark Vartuli
  • Patent number: 6992037
    Abstract: One aspect of the invention relates to catalyst composite containing a metal catalyst and a specifically defined carbon support containing a carbonaceous material. For example, the carbon support may have a total pore surface area of about 800 m2/g or more and about 2,000 m2/g or less where about 20% or less of the total pore surface area is micro pore surface area. Alternatively the carbon support may have a total pore volume of at least about 0.75 cc/g where about 15% or less of the total pore volume is micro pore volume. In yet another aspect of the invention, the carbon support may have a phosphorus content of about 0.75% by weight or less. In still yet another aspect of the invention, a methods of making and using the catalyst composite are disclosed.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: January 31, 2006
    Assignee: Engelhard Corporation
    Inventors: Jian Ping Chen, Charles R. Penquite, Deepak S. Thakur
  • Patent number: 6974889
    Abstract: Colloidal crystalline molecular sieve seeds are used in phosphorus-containing crystalline molecular sieve manufacture. Certain of the products have enhanced utility in oxygenate conversions.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: December 13, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, legal representative, Machteld Maria Wilfried Mertens, Wilfried Jozef Mortier, Marcel Johannes Janssen, Cornelius Maria Wilhelmus Van Oorschot, Johannes Petrus Verduijn, deceased
  • Patent number: 6962614
    Abstract: An additive to a fuel oil for a Diesel engine having a Diesel particulate filter (DPF), which comprises a molybdenum compound and having the function of improving the combustion property of a particulate matter (PM) trapped with DPF; a fuel oil comprising the additive; a lubricating oil composition for a Diesel engine having DPF, which has a sulfated ash content of 1.0% by weight or smaller, a sulfur content of 0.3% by weight or smaller and a molybdenum content of 100 ppm or greater; and DPF for removing PM in combustion gas discharged from a Diesel engine vehicle by trapping and burning PM, DPF comprising a filter supporting a molybdenum compound. The combustion property of PM trapped with the filter of DPF is improved, PM is burned at a low temperature with stability, the efficiency of removal of PM is improved and the life of DPF is increased.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: November 8, 2005
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Tadashi Katafuchi
  • Patent number: 6960328
    Abstract: A zirconium phosphate compound having a Zr:P ratio of from about 1.80-2.0 to 1, which compound's H-form exhibits a single peak at ?13.7±0.5 ppm in the 31P NMR spectra. The compound is useful as a catalyst, catalyst support and ion exchange media having a high affinity for cobalt and nickel ions.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: November 1, 2005
    Assignee: Magnesium Elektron, Inc.
    Inventors: Anatoly I. Bortun, Clive J. Butler
  • Patent number: 6958307
    Abstract: The present invention relates to a composition including an organic phosphorous-containing group bonded via an oxygen atom to a metal oxide of at least one element M. Generally, the composition is essentially amorphous, and includes an essentially monomolecular layer of an organic group directly bonded to the phosphorous atom. In addition, the composition is generally essentially free of any phosphate, phosphonate or phosphinate phase of the element M. Moreover, the composition has a ratio of the element M to phosphorous of about 15:1-200:1.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: October 25, 2005
    Assignee: Institut Francais Du Petrole
    Inventors: Alain Forestiere, P-Hubert Mutin, André Vioux, Gilles Guerrero
  • Patent number: 6953766
    Abstract: A method of ensuring the production of efficient lanthanum phosphate catalysts (LAPO's) and rare earth phosphate catalysts (REPO's), and methods of alkoxylation using said efficient catalysts.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: October 11, 2005
    Assignee: Shell Oil Company
    Inventor: Charles Lee Edwards
  • Patent number: 6951830
    Abstract: The invention relates to a catalyst composition, a method of making the same and its use in the conversion of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene The catalyst composition a molecular sieve, such as a silicoaluminophosphate and/or an aluminophosphate, hydrotalcite, and optionally a rare earth metal component
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: October 4, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Marcel J. G. Janssen
  • Patent number: 6949238
    Abstract: Novel zeolites are produced by combining a polar solute, a silicon or phosphorous source, and a structure directing agent. Surfactants and a hydrophobic solvent are added to the previously mixed three species and shaken to disperse the surfactants. The reverse microemulsion is stirred overnight, at about room temperature and then iced for five to ten minutes. A metal source is added vigorously shaken for about two minutes. The mixture is then aged for about two hours at about room temperature. A mineralizer is added and the resultant mixture aged for about two hours at about room temperature. The mixture is heated to about 180° C., for a suitable time period. The final novel product is then isolated.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: September 27, 2005
    Assignee: The Regents of the University of California
    Inventors: William Tumas, Kevin C. Ott, T. Mark McCleskey, Matthew Z. Yates, Eva R. Birnbaum
  • Patent number: 6936566
    Abstract: The invention is directed to a method for modifying a microporous metalloaluminophosphate molecular sieve, the method comprising the steps of a) introducing a compound containing at least one M-X group within the cages of said microporous molecular sieve; and b) reacting said compound containing at least one M-X group with the acid groups located in the cages of the molecular sieve, wherein the compound containing at least one M-X group is selected from the group consisting of compounds of formula MX3, compounds of formula M2X6, and mixtures thereof, M being a metal belonging to Group 13 of the Periodic Table, and each X independently being a hydrogen or halogen atom. Preferably, X is a hydrogen atom. The present invention also relates to modified metalloaluminophosphate molecular sieves, preferably modified silicoaluminophosphate molecular sieves, as well as to the use of these modified molecular sieves in catalytic processes, such as processes for the conversion of oxygenated hydrocarbon feedstocks.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: August 30, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Filip Mees, Etienne Vansant, Kun Wang, Richard B. Hall, Marcel Johannes Janssen, Luc Roger Marc Martens, An Verberckmoes, Guang Cao
  • Patent number: 6930067
    Abstract: The present invention is directed to a process for preparing a catalyst which comprises combining catalyst components or precursors thereof in an aqueous medium to form a catalyst precursor mixture, feeding the mixture to a shaping apparatus, and shaping the mixture to form particles wherein just before the shaping step the mixture is destabilized. It was found that with this process catalysts can be prepared which have both a good attrition resistance and a high accessibility. The invention further relates to catalysts obtainable by this process.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: August 16, 2005
    Assignee: Akzo Nobel NV
    Inventors: Paul O'Connor, Edwin Mark Berends
  • Patent number: 6927262
    Abstract: The invention relates to novel bridged biphosphole ligands according to the general formula: where R2, R3, R4 are chosen from hydrogen, alkyl, aryl or silyl, R1 is chosen from hydrogen, alkyl, aryl or halogen, R1 possibly being replaced with a direct bond between the two phosphorus atoms and T is a divalent group. The invention also relates to metallocenes obtained from these ligands. These metallocenes are useful as catalytic components for the polymerization of olefins.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: August 9, 2005
    Assignee: Atofina
    Inventors: Francois-Xavier Buzin, Francois Nief, Francois Mathey, Jean Malinge, Eliane Deschamps, Bernard Deschamps
  • Patent number: 6927187
    Abstract: The invention is directed to a method of synthesising silicoaluminophosphate molecular sieves and in particular those of framework type CHA and AEL. The method uses synthesis templates that comprise one or more tertiary dialkylbutylamines, wherein the alkyl groups are not butyl. The use of such templates. especially N,N-dimethylbutylamine, results in SAPO-11 of a desirable platelet morphology.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: August 9, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah, John F. Brody
  • Patent number: 6927185
    Abstract: As-prepared AlPO4—B2O3—Na2O-based glasses were placed in an autoclave together with distilled water and were treated at 150° C. for two hours. Although the specific surface area of the as-prepared glass prior to autoclave treatment was negligibly small, the autoclave treatment dissolved most of the borate component and the sodium component to obtain a mesoporous material having a specific surface area of 236 m2/g and a pore size distribution of 5 to 10 nm. This mesoporous material is hydrophobic and has weak solid acidity and small polarity.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: August 9, 2005
    Assignee: Japan Science and Technology Corporation
    Inventors: Shoji Yamanaka, Toshiyuki Sasaki
  • Patent number: 6919472
    Abstract: A catalyst composition for the selective conversion of an alkane to an unsaturated carboxylic acid having the general formula: MoVaNbbAgcMdOx wherein optional element M may be one or more selected from aluminum, copper, lithium, sodium, potassium, rubidium, cesium, gallium, phosphorus, iron, rhenium, cobalt, chromium, manganese, arsenic, indium, thallium, bismuth, germanium, tin, cerium or lanthanum; a is 0.05 to 0.99, b is 0.01 to 0.99, c is 0.01 to 0.99, d is 0 to 0.5 and x is determined by the valence requirements of the other components of the catalyst composition. This catalyst is prepared by co-precipitation of compounds of molybdenum, vanadium, niobium, silver and M to form a mixed metal oxide catalyst. This catalyst can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process or the ammoxidation of alkanes and olefins.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 19, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 6916965
    Abstract: The invention is directed to a method of stabilizing metalloaluminophosphate molecular sieves and catalysts derived therefrom. In particular, the invention is directed to a method of treating such molecular sieves with one or more nitrogen containing compounds having a kinetic diameter greater than the average pore size of the activated molecular sieve and selected from the group consisting of amines, monocyclic heterocyclic compounds, organonitrile compounds and mixtures thereof to chemisorbed and/or physisorbed the compound onto the molecular sieve. The compounds may be easily desorbed before or during use and after storage. The invention is also directed to formulating the molecular sieve into a catalyst useful in a process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: July 12, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Filip Mees, Etienne Vansant
  • Patent number: 6916757
    Abstract: A catalyst composition suitable for reacting hydrocarbons, e.g., conversion processes such as fluidized catalytic cracking (FCC) of hydrocarbons, comprises attrition resistant particulate having a high level (30-85%) of stabilized zeolites having a constraint index of 1 to 12. The stabilized zeolite is bound by a phosphorous compound, alumina and optional binders wherein the alumina added to make the catalyst is about 10% by weight or less and the molar ratio of phosphorous (P2O5) to total alumina is sufficient to obtain an attrition index of about 20 or less. The composition can be used as a catalyst per se or as additive catalyst to a conventional catalyst and is especially suitable for enhancing yields of light olefins, and particularly ethylene, produced during conversion processes.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: July 12, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael S. Ziebarth, Terry G. Roberie, Philip S. Deitz
  • Patent number: 6914029
    Abstract: An active and selective hydrocarbon partial oxidation catalyst comprises an activated partially-reduced polyoxometallate, preferably niobium polyoxomolybdate, that is prepared from a suitable polyoxoanion, which has been exchanged with a suitable cation and activated by heating to an activation effective temperature in the presence of a suitable reducing agent such as pyridinium. C3 and C4 hydrocarbons may be partially oxidized selectively to acrylic acid and maleic acid.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: July 5, 2005
    Assignee: California Institute of Technology
    Inventors: Mark E. Davis, Christopher J. Dillon, Joseph H. Holles, Jay A. Labinger, Axel Brait
  • Patent number: 6914030
    Abstract: The invention is directed to a method of synthesizing silicoaluminophosphate molecular sieves using synthesis templates that contain at least one dimethylamino moiety, selected from one or more of N,N-dimethylethanolamine, N,N-dimethylpropanolamine, N,N-dimethylbutanolamine, N,N-dimethylheptanolamine, N,N-dimethylhexanolamine, N,N-dimethylethylenediamine, N,N-dimethylbutylenediamine, N,N-dimethylheptylenediamine, N,N-dimethylhexylenediamine 1-dimethylamino-2-propanol, N,N-dimethylethylamine, N,N-dimethylpropylamine, N,N-dimethylpentylamine, N,N-dimethylhexylamine and N,N-dimethylheptylamine. The use of dimethylamino moiety containing templates results in good quality SAPO molecular sieves of CHA framework type.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: July 5, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah
  • Patent number: 6903048
    Abstract: A method for producing a hydrorefining catalyst has the steps of preparing an impregnation solution containing molybdenum, phosphorus, cobalt and/or nickel, and citric acid, bringing a carrier into contact with the impregnation solution, and then calcinating the carrier in an oxidizing atmosphere at a temperature at which citric acid is removed. In the impregnation solution, a molar ratio of molybdenum/phosphorus is 6 to 13, a molar ratio of (cobalt and nickel)/phosphorus is 0.5 to 7, and a molar ratio of (cobalt and nickel)/citric acid is 0.5 to 2. As for the hydrorefining catalyst obtained by this method, the activity of the catalyst is high, and the catalyst life is long.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: June 7, 2005
    Assignee: Japan Energy Corporation
    Inventors: Yoshiki Iwata, Chikanori Nakaoka, Yasuhito Goto
  • Patent number: 6897180
    Abstract: The invention is directed to a method of stabilizing metalloaluminophosphate molecular sieves and catalysts derived therefrom. In particular, the invention is directed to a method of treating such molecular sieves with chemisorbed ammonia, which may be easily desorbed before or during use and after storage. The invention is also directed to formulating the molecular sieve into a catalyst useful in a process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: May 24, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Filip Mees, Etienne Vansant, Marcel Johannes Janssen, Luc R. M. Martens
  • Patent number: 6897179
    Abstract: Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: May 24, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun Chong Fung, Stephen Neil Vaughn, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem
  • Patent number: 6897275
    Abstract: Transition metal complexes of selected monoanionic phosphine ligands, which also contain a selected Group 15 or 16 (IUPAC) element and which are coordinated to a Group 3 to 11 (IUPAC) transition metal or a lanthanide metal, are polymerization catalysts for the (co)polymerization of olefins such as ethylene and ?-olefins, and the copolymerization of such olefins with polar group-containing olefins. These and other nickel complexes of neutral and monoanionic bidentate ligands copolymerize ethylene and polar comonomers, especially acrylates, at relatively high ethylene pressures and surprisingly high temperatures, and give good incorporation of the polar comonomers and good polymer productivity. These copolymers are often unique structures, which are described.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: May 24, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Lin Wang, Elisabeth Hauptman, Lynda Kaye Johnson, Elizabeth Forrester McCord, Ying Wang, Steven Dale Ittel
  • Patent number: 6892473
    Abstract: This invention relates to an improvement in a process for removing water from a hydride gas, and particularly ammonia, by contacting the hydride gas with a drying agent under conditions for effecting removal of the water. The improvement for significantly reducing the water content to trace levels in said hydride gas resides in the use of at least Group 1 metal oxide and at least one Group 2 metal oxide as a drying agent.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: May 17, 2005
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Robert Ling Chiang, Roger Dean Whitley, Dingiun Wu, Chun Christine Dong, Madhukar Bhaskara Rao
  • Patent number: 6890878
    Abstract: Provided is a catalyst formulation which exhibits extended catalyst life. The formulation comprises a mixture of a ceramic foam material uniformly interspersed between the solid catalyst particles, with the volume percent of ceramic material in the mixture preferably ranging from 20 to 60 volume %. The catalyst formulation is particularly applicable to solid catalyst particles comprised of a phosphoric acid impregnated substrate, and is particularly useful for processes such as catalytic hydrocarbon condensation processes.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: May 10, 2005
    Assignee: United Refining Company
    Inventor: John H. Moore
  • Patent number: 6875722
    Abstract: A silicon-containing alumina support, a process for preparing the support, and a catalyst containing the support are provided. The alumina support includes an additive silicon enriched on its surface, with the difference between the atomic ratio of silicon to aluminum on the surface of alumina support and that of the alumina support is at least 0.10. The process for preparing the silicon-containing alumina support comprises adding a nanometer silicon compound. The inventive alumina support can be used in manufacturing a catalyst for hydrotreating hydrocarbons with good physico-chemical properties and performance.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: April 5, 2005
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum and Petroch
    Inventors: Dengling Wei, Shaozhong Peng
  • Patent number: 6872680
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a making a molecular sieve catalyst composition by forming a slurry by combining a molecular sieve, a binder and a matrix material, wherein the slurry has a pH, above or below the isoelectric point of the molecular sieve. The catalyst composition has improved attrition resistance, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: March 29, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Joseph E. Baumgartner, Stuart L. Soled, Kenneth R. Clem
  • Patent number: 6867163
    Abstract: A molybdenum-based precipitate is prepared according to a process including the first step of forming a crude precipitate by pH adjustment to 6.5 or less in the presence of an alkali metal compound, and the second step of dissolving the crude precipitate in aqueous ammonia and forming a precipitate by pH adjustment to 6.5 or less. Then, the resulting molybdenum-based precipitate is washed with an acid aqueous solution having a pH of 6.5 or less and containing not less than 0.01 mole/L of ammonium root. Thus, a change in average particle diameter can be suppressed and good workability can be achieved, so that a molybdenum-based precipitate having a high purity and a desired average particle diameter can be obtained.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: March 15, 2005
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Hideyasu Takezawa, Toru Kuroda, Seiichi Kawato, Masanori Nitta
  • Patent number: 6867165
    Abstract: Exemplary carbon dioxide absorbent compositions of the invention incorporate calcium hydroxide, water, and a phosphonic acid or salt thereof. The composition is made into a paste and formed into particles that are conveniently and efficiently processable. When hardened, the particles have excellent carbon dioxide absorbent performance, crush resistance, and pore structure.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: March 15, 2005
    Assignee: W. R. Grace & Co. -Conn.
    Inventor: David Chin
  • Patent number: 6864212
    Abstract: Bismuth- and phosphorus-containing naphtha reforming catalysts, methods of making such catalysts, and a naphtha reforming process using such catalysts.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: March 8, 2005
    Assignee: Shell Oil Company
    Inventor: Peter Tanev
  • Patent number: 6858561
    Abstract: A process for preparing a catalyst for maleic anhydride production wherein a +5 vanadium compound such as V2O5, an anhydrous phosphoric acid, and optionally promoters are admixed in an organic alcohol solvent, the admixture is rapidly brought to reflux and thereafter refluxed to reduced the vanadium compound to the desired degree, the reflux mixture is cooled, precursor crystals are separated by filtration and then dried and calcined.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: February 22, 2005
    Assignees: Scientific Design Company, Inc., Lonza S.p.A.
    Inventors: Arie Bortinger, Gianluca Mazzoni, Tiziana Monti
  • Patent number: 6849570
    Abstract: The present invention relates to a process for the production of a titanium silicalite shaped body by: (a) forming a formable composition containing titanium silicalite, a binder and a pasting agent, so that the Curd curve of the formable composition has a plateau value in the range from 20 to 90 mm; (b) shaping the composition of step (a) to form a green body; (c) optionally drying and (d) calcining the green body, to a titanium silicalite shaped body obtainable by that process, and to the use of such titanium silicalite shaped bodies in the epoxidation of olefins or the ammoximation of ketones.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: February 1, 2005
    Assignee: Degussa AG
    Inventors: Steffen Hasenzahl, Ralf Jantke
  • Patent number: 6841510
    Abstract: This invention is directed to a molecular sieve composition or a catalyst containing molecular sieve which has a relatively high residual silica index, preferably at least about 1.5. The molecular sieve or catalyst can be made by contacting a template-containing molecular sieve with a silicon containing material having an average kinetic diameter that is larger than the average pore diameter of the sieve or catalyst, and heating to leave residual silica at the sieve or catalyst surface. The molecular sieve or catalyst is particularly effective in making an olefin product from an oxygenate feedstock.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: January 11, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, John Di-Yi Ou, Jar-Lin Kao, Hsiang-Ning Sun
  • Patent number: 6841499
    Abstract: A supported catalyst comprises a cationic rhodium(I) complex of the formula wherein R1 and R2 are the same or different hydrocarbon groups of up to 30 C atoms, or R1 and R2 are linked to form a ring, and a heterogeneous support medium that provides anionic binding sites. Such a complex is particularly useful as a catalyst in a process of hydrogenating an aldehyde to produce the corresponding primary alcohol.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: January 11, 2005
    Assignee: Chirotech Technology Limited
    Inventors: Mark Joseph Burk, Arne Gerlach
  • Publication number: 20040266611
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Application
    Filed: July 16, 2004
    Publication date: December 30, 2004
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R.M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Publication number: 20040266617
    Abstract: A catalyst body comprising a catalytic material containing an alkali metal and/or an alkaline earth metal, and a carrier carrying the catalytic material, and a manufacturing method of the catalyst body are provided. The carrier comprises a cordierite binder phase 1 and aggregate phases 2 dispersed in the cordierite binder phase 1. The catalyst body can hinder a deterioration in catalyst performance.
    Type: Application
    Filed: May 20, 2004
    Publication date: December 30, 2004
    Inventors: Misako Fujii, Kenji Morimoto, Shinji Kawasaki
  • Publication number: 20040265204
    Abstract: EMM-3 (ExxonMobil Material number 3) is a new crystalline microporous material with a framework of tetrahedral atoms connected by atoms capable of bridging the tetrahedral atoms, the tetrahedral atom framework being defined by the interconnections between the tetrahedrally coordinated atoms in its framework. EMM-3 can be prepared in aluminophosphate (AlPO) and metalloaluminophosphate (MeAPO) compositions with the hexamethonium template. It has a unique X-ray diffraction pattern, which identifies it as a new material. EMM-3 is stable to calcination in air, absorbs hydrocarbons, and is catalytically active for hydrocarbon conversion.
    Type: Application
    Filed: June 8, 2004
    Publication date: December 30, 2004
    Inventors: Karl G. Strohmaier, Arthur W. Chester, William R. Harrison, James C. Vartuli
  • Patent number: 6835363
    Abstract: The invention is directed to a method of synthesizing aluminophosphate and silicoaluminophosphate molecular sieves and in particular to the synthesis of aluminophosphate and silicoaluminophosphate molecular sieves using the synthesis templates that contain two dimethylamino moieties in combination with hydrogen fluoride. The use of this template in combination with hydrogen fluoride results in good quality SAPO molecular sieves of CHA framework type with low levels of silicon that are produced in relatively short crystallization times.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: December 28, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Karl G. Strohmaier
  • Publication number: 20040260140
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 6833127
    Abstract: A structure directing agent is removed from a microporous solid at a temperature below the temperature that would cause the structure directing agent to decompose by cleaving the structure directing agent within the pores of the microporous solid, at a temperature below the temperature that would cause the structure directing agent to decompose, into two or more fragments and removing the fragments from the pores of the microporous solid at a temperature below the temperature that would cause the structure directing agent or its fragments to decompose.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: December 21, 2004
    Assignees: California Institute of Technology, Chevron U.S.A. Inc.
    Inventors: Mark E. Davis, Hyunjoo Lee, Stacey I. Zones
  • Publication number: 20040254068
    Abstract: Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 16, 2004
    Inventors: Shun Chong Fung, Stephen Neil Vaughn, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem
  • Publication number: 20040253163
    Abstract: The invention is directed to a method of synthesising silicoaluminophosphate and aluminophosphate molecular sieves using synthesis templates that contain at least one template of general formula R1R2N—R3, wherein R1 and R2 are independently selected from the group consisting of alkyl groups having from 1 to 3 carbon atoms and hydroxyalkyl groups having from 1 to 3 carbon atoms; R3 is selected from the group consisting of 4- to 8-membered cycloalkyl groups, optionally substituted by 1 to 3 alkyl groups having from 1 to 3 carbon atoms, and 4- to 8-membered heterocyclic groups having from 1 to 3 heteroatoms, said heterocyclic groups being optionally substituted by 1 to 3 alkyl groups having from 1 to 3 carbon atoms and the heteroatoms in said heterocyclic groups being selected from the group consisting of O, N, and S. In particular, the present invention relates to the synthesis of silicoaluminophosphate molecular sieves of the CHA framework type having a low silicon to aluminium atomic ratio.
    Type: Application
    Filed: June 11, 2003
    Publication date: December 16, 2004
    Inventors: Guang Cao, Matu J. Shah
  • Publication number: 20040248732
    Abstract: A catalyst composition comprising an inorganic support material, a palladium component, a silver component, and a promotor component having the formula XYFn, wherein X is an alkaline metal, Y is an element selected from the group consisting of antimony, phosphorus, boron, aluminum, gallium, indium, thallium, and arsenic, and n is an integer which makes YFn a monovalent anion. The above-described catalyst is employed as a catalyst in the selective hydrogenation of acetylene. The above-described catalyst is made by incorporating a palladium component, a silver component, and a promotor component into an inorganic support material.
    Type: Application
    Filed: December 10, 2002
    Publication date: December 9, 2004
    Applicant: Phillips Petroleum Company
    Inventor: Tin-Tack Peter Cheung
  • Patent number: 6828272
    Abstract: The invention pertains to new catalyst systems for polycondensation reactions, for example for producing polyethylene terephthalate. In accordance with the invention, complex compounds with hydrotalcite-analogous structures of general formula [M(II)1−xM(III)x(OH)2]x+(An−x/n).mH2O are used, wherein M(II) represents divalent metals, preferably Mg or Zn or NI or Cu or Fe(II) or Co, and M(III) represents trivalent metals, for example Al or Fe(III), and A represents anions, preferably carbonates or borates. These catalysts can be calcinated and can be used in combination with phosphorus compounds that contain at least one hydrolyzable phosphorus-oxygen bond.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: December 7, 2004
    Assignee: Equipolymers GmbH
    Inventors: Jens-Peter Wiegner, Rolf Eckert, Volkmar Voerckel, Gunter Feix, Marion Sela, Sarat Munjal
  • Publication number: 20040235649
    Abstract: This invention is directed to a hardened molecular sieve catalyst composition, a method of making the composition and a method of using the composition. The catalyst composition is made by mixing together molecular sieve, liquid, and an effective hardening amount of a dried molecular sieve catalyst to form a slurry. The slurry is dried, and then calcined to form the hardened molecular sieve catalyst composition. The hardened molecular sieve catalyst is highly attrition resistant.
    Type: Application
    Filed: May 21, 2003
    Publication date: November 25, 2004
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Luc R.M. Martens, Kenneth R. Clem
  • Publication number: 20040235648
    Abstract: Phosphonites I of the formula 1 or 2 1
    Type: Application
    Filed: April 8, 2004
    Publication date: November 25, 2004
    Inventors: Michael Bartsch, Robert Baumann, Dagmar Pascale Kunsmann-Keitel, Gerd Haderlein, Tim Jungkamp, Marco Atmayer, Wolfgang Siegel, Ferenc Molnar
  • Publication number: 20040224839
    Abstract: A method for the post synthesis modification of molecular sieves with organometallic reagents. The method may be used for large pore molecular sieves and small pore molecular sieves, such as SAPO-34. SAPO-34 is a useful catalyst for the conversion of oxygenates, such as methanol, to olefins. Post synthesis organometallic modification improves catalyst performance and increases light olefin selectivity in the conversion of methanol to olefins.
    Type: Application
    Filed: June 1, 2004
    Publication date: November 11, 2004
    Inventors: Kun Wang, Guang Cao, Michael Joseph Brennan, Karl G. Strohmaier, Richard B. Hall