Molybdenum Containing Patents (Class 502/220)
  • Patent number: 8597496
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor is condensed to produce a liquid hydrocarbon-containing product. The hydrocarbon-containing feedstock is continuously or intermittently provided to the mixing zone at a rate of at least 350 kg/hr per m3 of the mixture volume in the mixing zone.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8551907
    Abstract: The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: October 8, 2013
    Assignee: Intevep, S.A.
    Inventors: Pedro Pereira, Guaicaipuro Rivas, Jose Cordova, Francisco Granadillo, Roger Marzin, Bruno Solari, Luis Zacarias
  • Publication number: 20130239469
    Abstract: The present invention provides a transition metal chalcogenide photocatalyst, a reactor using the transition metal chalcogenide photocatalyst, and methods of making and using a transition metal chalcogenide photocatalyst for reforming CH4 with CO2.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 19, 2013
    Applicant: Board of Regents, The University of Texas System
    Inventors: Russell R. Chianelli, Brenda Torres
  • Patent number: 8530370
    Abstract: The present invention is directed to a composition comprising a solid material comprised of a first metal/metalloid comprised of a metal or metalloid selected from the group consisting of Cu, Fe, Ag, Co, Mn, Zr, Zn, Sn, Re, Rh, Ru, Pd, Ir, Pt, B, Al, Ce, La, Pb, Cd, Sb, Ge, Ga, In, Bi, and Au; and a second metal selected from molybdenum, tungsten, or vanadium, where the first metal/metalloid and the second metal form a bimetallic tetrathiometallate or a bimetallic tetraselenometallate with sulfur or with selenium. The solid material is comprised of particles and has a particle size distribution, where the mean particle size of the particle size distribution is from about 50 nm to about 5 ?m.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: September 10, 2013
    Assignee: Shell Oil Company
    Inventors: Charles Roy Donaho, Michael Anthony Reynolds
  • Patent number: 8500992
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product. The catalyst is comprised of a material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Bi, Ag, Mn, Zn, Sn, Ru, La, Pr, Sm, Eu, Yb, Lu, Dy, Pb, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 6, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8496803
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a catalyst to produce a hydrocarbon-containing product. The catalyst is comprised of a tetrathiometallate material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Ni, Co, Bi, Ag, Mn, Zn, Sn, Ru, La, Pr, Sm, Eu, Yb, Lu, Dy, Pb, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 30, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8491783
    Abstract: A process for treating a hydrocarbon-containing feed in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a catalyst to produce a hydrocarbon-containing product, where hydrogen sulfide is provided at a mole ratio relative to hydrogen of at least 0.5:9.5. The catalyst is comprised of a bimetallic tetrathiometallate material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Ni, Co, Bi, Ag, Mn, Zn, Sn, Ru, La, Ce, Pr, Sm, Eu, Yb, Lu, Dy, Ph, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott-Lee Wellington
  • Patent number: 8491782
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8491784
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product. The catalyst is prepared by mixing a first salt and a second salt in an aqueous mixture under anaerobic conditions at a temperature of from 15° C. to 150° C., where the first salt comprises a cationic component in any non-zero oxidation state selected from the group consisting of Cu, Fe, Ag, Co, Mn, Ru, La, Ce, Pr, Sm, Eu, Yb, Lu, Dy, Ni, Zn, Bi, Sn, Pb, and Sb, and where the second salt comprises an anionic component selected from the group consisting of MoS42?, WS42?, SnS44?, and SbS43.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8475650
    Abstract: The present invention relates to a pre-passivation process for a continuous reforming apparatus prior to the reaction, or a passivation process for a continuous reforming apparatus during the initial reaction, comprising loading a reforming catalyst into the continuous reforming apparatus, starting the gas circulation and raising the temperature of a reactor, injecting sulfide into the gas at a reactor temperature ranging from 100-650° C., controlling the sulfur amount in the recycle gas within a range of 0.5-100×10?6 L/L so as to passivate the apparatus.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: July 2, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jieguang Wang, Aizeng Ma, Jianqiang Ren, Changqing Ji, Xinkuan Zhang, Hengfang Chen, Yajun Zhao
  • Patent number: 8476182
    Abstract: A method to obtain a catalyst of transition metals supported on a carbonaceous material, via impregnation, with a solution of metal-thiourea complex, obtained from precursor salts. The formation of the sulfur on the surface of the support occurs through the thermal decomposition of the complex. The obtained catalysts are applicable toward the direct liquefaction of coal.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: July 2, 2013
    Inventors: Jose De Jesus Diaz Velasquez, Yazmin Yaneth Agamez Pertuz, Luis Ignacio Rodriguez Varela, Orlando Hernandez Fandino, Oscar Andres Villaba Varon, Jose Alexandre Jimenez Sanchez
  • Publication number: 20130153467
    Abstract: A hydrodesulfurization catalyst is produced by pre-sulfurizing a hydrodesulfurization catalyst Y including a support containing silica, alumina and titania and at least one metal component supported thereon and selected from VIA and VIII groups of the periodic table (comprising at least Mo), in which the total area of the diffraction peak area indicating the crystal structure of anatase titania (101) planes and the diffraction peak area indicating the crystal structure of rutile titania (110) planes in the support, measured by X-ray diffraction analysis being ¼ or less of the alumina diffraction peak area assigned to ?-alumina (400) planes. The molybdenum is formed into molybdenum disulfide crystal disposed in layers on the support by the pre-sulfurization, and having an average length of longer than 3.5 nm and 7 nm or shorter in the plane direction and an average number of laminated layers of more than 1.0 and 1.9 or fewer.
    Type: Application
    Filed: June 21, 2011
    Publication date: June 20, 2013
    Applicants: JGC CATALYSTS AND CHEMICALS LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hiroyuki Seki, Masanori Yoshida, Shogo Tagawa, Tomoyasu Kagawa
  • Publication number: 20130130893
    Abstract: Methods are provided for liquid phase activation of dewaxing and/or hydrofinishing catalysts that include a molecular sieve or other acidic crystalline support. The methods are compatible with activating the catalysts as part of a catalyst system that also includes a hydrotreating catalyst.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 23, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: ExxonMobil Research and Engineering Company
  • Patent number: 8431510
    Abstract: A hydrocarbon oil-impregnated composition that comprises a support material having incorporated therein a metal component and impregnated with a hydrocarbon oil. The hydrocarbon oil-impregnated composition is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the hydrocarbon oil-impregnated composition is first treated with hot hydrogen, and, optionally, a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: April 30, 2013
    Assignee: Shell Oil Company
    Inventors: Alexei Grigorievich Gabrielov, John Anthony Smegal, Salvatore Philip Torrisi
  • Patent number: 8431511
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0<e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 30, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jinyi Han
  • Patent number: 8420564
    Abstract: A method of producing a MoS2 catalyst. The method begins by the decomposition of ammonium tetrathiomolybdate in an organic solvent. This decomposition is done in the presence of a solution comprising: a solvent and a promoter, and done under gaseous pressure.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: April 16, 2013
    Assignee: Phillips 66 Company
    Inventors: Madhu Anand, Joe D. Allison
  • Patent number: 8420565
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0<e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 16, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 8399715
    Abstract: The present invention provides methods and compositions for the chemical conversion of syngas to alcohols. The invention includes catalyst compositions, methods of making the catalyst compositions, and methods of using the catalyst compositions. Certain embodiments teach compositions for catalyzing the conversion of syngas into products comprising at least one C1-C4 alcohol, such as ethanol. These compositions generally include cobalt, molybdenum, and sulfur. Preferred catalyst compositions for converting syngas into alcohols include cobalt associated with sulfide in certain preferred stoichiometries as described and taught herein.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 19, 2013
    Assignee: Albemarle Corporation
    Inventors: Karl Kharas, Jason P. Durand
  • Patent number: 8389433
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0<e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 5, 2013
    Assignee: Chevron U.S.A.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jinyi Han
  • Patent number: 8383543
    Abstract: The invention relates to a bulk multi-metallic catalyst for hydrotreating heavy oil feeds and to a method for preparing the catalyst. The bulk multi-metallic catalyst is prepared by sulfiding a catalyst precursor having a poorly crystalline structure with disordered stacking layers, with a type IV adsorption-desorption isotherms of nitrogen with a hysteresis starting point value of about 0.35, for a sulfided catalyst that will facilitate the reactant's and product's diffusion in catalytic applications. In another embodiment, the precursor is characterized as having a type H3 hysteresis loop. In a third embodiment, the hysteresis loop is characterized as having a well developed plateau above P/Po of about 0.55. The mesapores of the precursor can be adjustable or tunable.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 26, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
  • Patent number: 8383691
    Abstract: This invention improves prior methods of making cobalt-molybdenum-sulfide catalysts for alcohol production from syngas. In one aspect, improved methods are provided for making preferred cobalt-molybdenum-sulfide compositions. In another aspect, processes utilizing these catalysts for producing at least one C1-C4 alcohol, such as ethanol, from syngas are described.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 26, 2013
    Assignee: Albemarle Corporation
    Inventors: Karl Kharas, Jason P. Durand, William A. May
  • Patent number: 8372775
    Abstract: A method of producing a catalyst for oxygen reduction and a gas diffusion electrode.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: February 12, 2013
    Assignee: Industrie de Nora S.p.A.
    Inventors: Andrea F. Gulla, Robert J. Allen, Emory S. De Castro
  • Patent number: 8372776
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0 <e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 12, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 8354357
    Abstract: The present invention provides methods and compositions for the chemical conversion of syngas to alcohols. The invention includes catalyst compositions, methods of making the catalysts, and methods of using the catalysts including techniques to maintain catalyst stability. Certain embodiments teach compositions for catalyzing the conversion of syngas into products comprising at least one C1-C4 alcohol, such as ethanol. These compositions generally include cobalt, molybdenum, and sulfur, and avoid metal carbides both initially and during reactor operation.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: January 15, 2013
    Assignee: Albemarle Corporation
    Inventors: Karl Kharas, William A. May
  • Patent number: 8344184
    Abstract: Improved methods of introducing promoters to catalysts are described. The present invention provides a convenient method of uniformly distributing a catalyst promoter, to provide for intimate contact between the promoter and the active catalyst sites. This intimate contact can enhance the activity and/or product selectivity of the promoted catalyst. In some embodiments, the method includes reacting an alkali metal with an alcohol in a non-aqueous medium, contacting the resulting solution with a starting catalyst, and depositing the alkali metal onto the starting catalyst to form an alkali-promoted catalyst.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: January 1, 2013
    Assignee: Albemarle Corporation
    Inventor: Ronald C. Stites
  • Patent number: 8343887
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor is disclosed. In one embodiment, the catalyst precursor is of the general formula Av[(MP)(OH)x(L)ny]z(MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP:MVIB has an atomic ratio between 100:1 and 1:100; v?2+P*z?x*z+n*y*z=0; and 0?y??P/n; 0?x?P; 0?v?2; 0?z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 1, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Publication number: 20120322653
    Abstract: A sulfidable catalyst containing at least one metal or metal oxide is sulfided under aqueous conditions.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Kimberly Ann JOHNSON, Joseph Broun Powell, John Anthony SMEGAL
  • Publication number: 20120323026
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and, deposited thereon, silver, a rhenium promoter, a first co-promoter, and a second co-promoter; wherein the quantity of the rhenium promoter deposited on the carrier is greater than 1 mmole/kg, relative to the weight of the catalyst; the first co-promoter is selected from sulfur, phosphorus, boron, and mixtures thereof; the second co-promoter is selected from tungsten, molybdenum, chromium, and mixtures thereof; the total quantity of the first co-promoter and the second co-promoter deposited on the carrier is at most 5.0 mmole/kg, relative to the weight of the catalyst; and wherein the carrier has a monomodal, bimodal or multimodal pore size distribution, a pore diameter of 0.01-200 ?m, a specific surface area of 0.03-10 m2/g, a pore volume of 0.2-0.7 cm3/g, wherein the median pore diameter is 0.1-100 ?m, and a water absorption of 10-80%.
    Type: Application
    Filed: February 24, 2011
    Publication date: December 20, 2012
    Inventors: John Robert Lockemeyer, Marek Matusz, Randall Clayton Yeates
  • Patent number: 8323597
    Abstract: Provided are a catalyst for removing mercury metal, which has high activity for a long time even in an exhaust gas containing SO2, and a method for oxidizing mercury metal using the catalyst. A method for purifying exhaust gas, including bringing an exhaust gas containing mercury metal into contact with a catalyst containing titanium oxide as a first component and a sulfate or phosphate of nickel (Ni), manganese (Mn) or vanadium as a second component, at a temperature of from 100° C. to 200° C., and thereby oxidizing the mercury metal.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: December 4, 2012
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventor: Yasuyoshi Kato
  • Patent number: 8318986
    Abstract: The invention herein provides methods of activating a catalyst composition. These methods include annealing a catalyst with an inert gas, under effective conditions, and then contacting the annealed catalyst with syngas to produce an activated catalyst. These steps can also be reversed. The activated catalysts can be employed to convert syngas into products, such as alcohols, with improved selectivities and yields.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: November 27, 2012
    Assignee: Albemarle Corporation
    Inventors: Patrick J. Alsum, Esther M. Wilcox, Jesse E. Hensley, Karl Kharas
  • Patent number: 8304363
    Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: November 6, 2012
    Assignee: University of Calgary
    Inventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez
  • Patent number: 8298982
    Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: October 30, 2012
    Assignee: University of Calgary
    Inventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez
  • Publication number: 20120261311
    Abstract: New sulfided metal catalysts are described, containing a metal X selected from Ni, Co and mixtures thereof, a metal Y selected from Mo, W and mixtures thereof, an element Z selected from Si, Al and mixtures thereof, and possibly an organic residue, obtained by the sulfidation of mixed oxide precursors, also new, having general formula (A) XaYbZcOd.
    Type: Application
    Filed: September 23, 2010
    Publication date: October 18, 2012
    Applicant: ENI S.p.A.
    Inventors: Giuseppe Bellussi, Angela Carati, Maria Federica Gagliardi, Stefano Zanardi, Marcello Marella, Roberto Scattolin, Michele Tomaselli
  • Patent number: 8283278
    Abstract: The present invention relates to a process for sulfurizing a hydrocarbon treatment catalyst, comprising: at least a first step of depositing, on the surface of the catalyst, one or more sulfurization auxiliaries of formula (I): and at least a second step of placing the catalyst in contact with a sulfur-containing gaseous mixture containing hydrogen and a sulfur compound.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: October 9, 2012
    Assignee: Eurecat S.A.
    Inventors: Pierre Dufresne, Eric Nagy, Pauline Galliou
  • Patent number: 8283279
    Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: October 9, 2012
    Assignee: University of Calgary
    Inventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez
  • Publication number: 20120252660
    Abstract: The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.
    Type: Application
    Filed: February 27, 2012
    Publication date: October 4, 2012
    Applicant: INTEVEP, S.A.
    Inventors: Guaicaipuro Rivas, Jose Cordova, Francisco Granadillo, Roger Marzin, Bruno Solari, Luis Zacarias, Carmen Elena López de Rivas
  • Patent number: 8263812
    Abstract: The present invention describes improved methods of introducing promoters to catalysts. This invention provides a method for dispersal of a promoter onto a solid surface. A catalyst material and a deliquescent material can together be contacted with a gas phase comprising a solvent under conditions effective for deliquescence whereby the promoter is dispersed onto the solid surface. This invention combines practical benefits of dry-mixing with the enhanced dispersion that can be realized by solvent-based methods.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: September 11, 2012
    Assignee: Albemarle Corporation
    Inventor: George Meitzner
  • Patent number: 8258072
    Abstract: The invention relates to a sulphide catalyst for electrochemical reduction of oxygen particularly stable in chemically aggressive environments such as chlorinated hydrochloric acid. The catalyst of the invention comprises a noble metal sulphide single crystalline phase supported on a conductive carbon essentially free of zerovalent metal and of metal oxide phases, obtainable by reduction of metal precursor salts and thio-precursors with a borohydride or other strong reducing agent.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: September 4, 2012
    Assignee: Industrie de Nora S.p.A.
    Inventors: Andrea F. Gulla, Robert J. Allen
  • Publication number: 20120215047
    Abstract: Cellulose and hemicellulose from biomass can be broken down to C6 and C5 sugars and further converted to corresponding sugar alcohols. It is now found that a new catalyst, MoS2, is active for the hydrogenation of sugar alcohols to hydrocarbons. Combining the technologies listed above allows us to convert the cellulose/hemicellulose to liquid hydrocarbons.
    Type: Application
    Filed: September 15, 2011
    Publication date: August 23, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Madhu ANAND, Jianhua YAO, Edward L. SUGHRUE, II
  • Publication number: 20120208904
    Abstract: The present invention relates to a sulphided multi-metallic catalyst, a process for obtaining it by preparing a metal mixture and subsequent sulphidation thereof and its use in a process for producing higher alcohols (C2+), mainly ethanol, through the catalytic conversion of synthesis gas.
    Type: Application
    Filed: August 12, 2010
    Publication date: August 16, 2012
    Applicant: ABENGOA BIOENERGIA NUEVAS TECNOLOGLAS S.A.
    Inventors: Gonzalo Prieto González, José Manuel Serra Alfaro, Agustin Martínez Feliu, Juan Luis Yagüe, José Caraballo Bello, Ricardo Arjona Antolín
  • Patent number: 8242043
    Abstract: A process for production of a supported catalyst that, when used for production of lower aliphatic carboxylic acids from oxygen and lower olefins, improves yields of the lower aliphatic carboxylic acids and minimizes production of carbon dioxide gas (CO2) by-product compared to the prior art. A compound comprising at least one element selected from elements of Groups 8, 9 and 10 of the Periodic Table, at least one chloride of an element selected from copper, silver and zinc, and a chloroauric acid salt, are loaded on a carrier, after which there are further loaded a compound comprising at least one element selected from gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, sulfur, selenium, tellurium and polonium, and a heteropoly acid.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: August 14, 2012
    Assignee: Showa Denko K.K.
    Inventor: Atsuyuki Miyaji
  • Publication number: 20120202898
    Abstract: The present invention relates to a sulphided multi-metallic catalyst, the process for obtaining it by sulphidation of a multi-metallic solid and use thereof in a process for producing higher alcohols (C2+), mainly ethanol, through the catalytic conversion of synthesis gas.
    Type: Application
    Filed: August 12, 2010
    Publication date: August 9, 2012
    Applicant: Abengoa Bioenergia Nuevas Technologias ,S.A.
    Inventors: Gonzalo Prieto González, José Manuel Serra Alfaro, Agustin Martinez Feliu, Juan Luis Sanz Yagüe, José Caraballo Bello, Ricardo Arjona Antolín
  • Publication number: 20120189681
    Abstract: A layered heterostructured coating has functional characteristics that enable the controlled release of volatile agents. The coating has photocatalytic properties, since it uses titanium dioxide, its derivatives or materials with similar photocatalytic properties (2), which upon solar irradiation open and/or degrade nano or microcapsules (3) and subsequently releases in a controlled form the volatile agents contained in them.
    Type: Application
    Filed: December 11, 2009
    Publication date: July 26, 2012
    Inventors: Carlos José Macedo Tavares, Femando Da Silva Pina
  • Publication number: 20120168350
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs a polar aprotic solvent to mix with the inorganic metal precursor feed to form an oil-dispersible inorganic metal precursor, at a weight ratio of solvent to inorganic metal precursor of 1:1 to 10:1; the oil-dispersible inorganic metal precursor is subsequently sulfided forming the slurry catalyst. In one embodiment, the sulfiding is in-situ upon mixing the oil-dispersible inorganic metal precursor with a hydrocarbon diluent containing a heavy oil feedstock under in-situ sulfiding conditions.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Publication number: 20120152805
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is provided to the ebullated bed system containing the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from rework materials, which form a slurry catalyst in-situ upon mixing with the heavy oil feedstock.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Inventors: Julie Chabot, Bruce E. Reynolds, Erin Maris, Shuwu Yang
  • Publication number: 20120122666
    Abstract: According to the present invention, a fuel cell electrode catalyst comprising molybdenum, a different transition metal element, and a chalcogen element and having high activity is provided with an index for performance evaluation that is useful for Ogood catalyst design. Also, a fuel cell electrode catalyst is provided, such catalyst comprising at least one transition metal element (M1), molybdenum (Mo), and at least one chalcogen element (X), wherein the value of (Mo—O coordination number)/[(Mo—O coordination number)+(Mo—X coordination number)] is 0.44 to 0.66.
    Type: Application
    Filed: August 8, 2008
    Publication date: May 17, 2012
    Inventors: Yukiyoshi Ueno, Hirofumi Iisaka
  • Publication number: 20120122656
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and stay in the supernatant. In one embodiment, at least a precipitant is added to the product mixture at a molar ratio of precipitant to metal residuals in the supernatant ranging from 1.5:1 to 20:1 to precipitate at least 50 mole % of metal ions in the residuals forming additional catalyst precursor. The remaining metal residuals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of at least one of the metal residuals. In one embodiment, at least one of the metal residuals is recovered and recycled for use as a metal precursor feed in the co-precipitation reaction.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 17, 2012
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Publication number: 20120122654
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant as metal residuals. In the present disclosure, the metals can be recovered in a chemical precipitation step, wherein the supernatant is mixed with at least one of an acid, a sulfide-containing compound, a base, and combinations thereof to precipitate at least 50% of metal ions in at least one of the metal residuals, wherein the precipitation is carried out at a pre-select pH. The precipitate is isolated and recovered, yielding an effluent stream. The precipitate and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction. The process generates an effluent to waste treatment containing less than 50 ppm metals.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 17, 2012
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Publication number: 20120122655
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of metal ions in at least one of the metal residuals, and for at least one of the metal residuals is recovered as a metal precursor feed, which can be recycled for use in the co-precipitation reaction. An effluent stream from the process to waste treatment contains less than 50 ppm metal ions.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 17, 2012
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Publication number: 20120111767
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, Jean W. Beeckman, William G. Borghard