And Group Viii Metal Containing (i.e., Iron Or Platinum Group) Patents (Class 502/252)
  • Patent number: 9029285
    Abstract: A catalyst including: a support, the support including a mixture of SiO2 and ZrO2; an active ingredient including copper; a first additive including a metal, an oxide thereof, or a combination thereof; and a second additive including Li, Na, K, or a combination thereof. The metal is Mg, Ca, Ba, Mn, Fe, Co, Zn, Mo, La, or Ce. Based on the total weight of the catalyst, the weight percentages of the different components are as follows: SiO2=50-90 wt. %; ZrO2=0.1-10 wt. %; copper=10-50 wt. %; the first additive=0.1-10 wt. %; and the second additive=0.1-5 wt. %.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 12, 2015
    Assignee: Tianjin University
    Inventors: Xinbin Ma, Jing Lv, Yujun Zhao, Shengping Wang, Jinlong Gong, Baowei Wang, Zhenhua Li, Yan Xu
  • Patent number: 8975208
    Abstract: The present invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel. The adsorbent has excellent abrasion-resistance and desulfurization activity. The adsorbent comprises from about 5 to about 35 wt % of alumina, from about 3 to about 30 wt % of silica, from about 10 to about 80 wt % of at least one oxide of metal selected from Groups IIB and VB, from about 3 to about 30 wt % of at least one metal accelerant selected from Groups VIIB and VIII, and from about 0.5 to about 10 wt % of at least one oxide of metal selected from Groups IA and IIA, based on the total weight of the adsorbent.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: March 10, 2015
    Assignees: China Petroleum Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Huiping Tian, Wei Lin
  • Publication number: 20150011749
    Abstract: Metal-accumulating plants for preparing compositions including a metal catalyst derived from the plants. The composition is substantially devoid of organic matter. Also, carrying out chemical reactions with the compositions prepared from metal-accumulating plants.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 8, 2015
    Applicants: UNIVERSITE MONTPELLIER 2 SCIENCES ET TECHNIQUES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Claude Grison, Vincent Escande
  • Publication number: 20140349844
    Abstract: A selective nickel-based hydrogenation catalyst and the preparation thereof, characterized in that: provided that the catalyst is weighed 100%, it comprises nickel oxide 14-20% as active component, lanthanum oxide and/or cerium oxide 2-8%, and VIB element oxide 1-8% as aids, 2-8% silica, 1-8% alkaline earth metal oxides, and alumina as the balance. The catalyst specific surface area is 60-150 m2/g, and the pore volume is 0.4-0.6 ml/g. The catalyst has good hydrogenation performance, especially impurity and colloid resistance and hydrogenation stability. The catalyst can be applied to the diolefin selective hydrogenation of medium or low-distillate oil, especially of the full-distillates pyrolysis gasoline.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventors: Shunqin Liang, Ying Qian, Longgang Lv, Limin Sun, Yundi Zheng, Tinghai Wang, Jie Wu, Fengxia Cao
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Publication number: 20140336041
    Abstract: [RhxMgyAlw(OH)2](3x+2y+3w?2)+(A2?)(3x+2y+3w?2)/2,k H2) (I) Hydrotalcite-like compound of the formula (I): catalyst synthesis process involving such a compound, and the use of this catalyst for hydrocarbons reforming and for ethanol reforming.
    Type: Application
    Filed: November 14, 2012
    Publication date: November 13, 2014
    Inventors: Francesco Basile, Angelo Vaccari, Giuseppe Fornasari, Irene Bersani, Pascal Del-Gallo, Daniel Gary
  • Patent number: 8841498
    Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: September 23, 2014
    Assignee: Shell Oil Company
    Inventors: Peter Birke, Reinhard Geyer, Jurgen Hunold, Peter Kraak, Rainer Schoedel
  • Patent number: 8822370
    Abstract: Aspects of the invention relate to hydrogenation catalysts, and hydrogenation processes using these catalysts, having particular characteristics, in terms of the amount and type of metal hydrogenation component (or catalytic constituent), as well as the support or substrate. The catalyst compositions, comprising both a noble metal and a lanthanide element on a substantially non-porous substrate, provide advantageous performance characteristics, including conversion, selectivity, and activity stability, as demanded in industrial hydrogenation and selective hydrogenation applications.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: September 2, 2014
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Valeria Nemeth, Simon Russell Bare
  • Patent number: 8816130
    Abstract: A heterogeneous catalyst that is a combination of rhodium, zinc, iron, a fourth metal and at least one metal selected from alkali metals and alkaline earth metals on a catalyst support (e.g. at least one of silica, alumina, titania, magnesia, zinc aluminate (ZnAl2O4), magnesium aluminate (MgAl2O4), magnesia-modified alumina, zinc oxide-modified alumina, zirconium oxide-modified alumina, and zinc oxide) and use of the catalyst in converting an alkylene to an oxygenate that has one more carbon atom than the alkylene.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: August 26, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Palanichamy Manikandan, Sreenivasa Rao, Phani Kiran Bollapragada, David G. Barton, Richard M. Wehmeyer, William Tenn, Gerolamo Budroni
  • Patent number: 8791280
    Abstract: This invention relates to catalyst carriers to be used as supports for metal and metal oxide catalyst components of use in a variety of chemical reactions. More specifically, the invention provides a process of formulating an alpha alumina carrier that is suitable as a support for silver and the use of such catalyst in chemical reactions, especially the epoxidation of ethylene to ethylene oxide. The composition comprises at least one hydrated precursor of alpha alumina; an optional alpha alumina; and a binder. The composition is substantially free of seeding particles.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: July 29, 2014
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventor: Nabil Rizkalla
  • Patent number: 8771624
    Abstract: An Object of the patent is to remove highly reducing hydrocarbon exhausted during acceleration period, and to remove efficiently hydrocarbon even after contacting with highly reducing hydrocarbon. By using a catalyst having a higher proportion of palladium having surface charge of 2-valence or 4-valence supported than that of 0-valence by supporting palladium together with magnesium oxide, hydrocarbon exhausted from an internal combustion engine especially during acceleration period can be efficiently removed.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 8, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd, Umicore Shokubai USA Inc.
    Inventors: Masanori Ikeda, Hideki Goto, Kosuke Mikita
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Patent number: 8637719
    Abstract: The invention concerns a catalyst comprising a porous support, palladium, at least one metal selected from the group constituted by alkalis and alkaline-earths, in which: the specific surface area of the porous support is in the range 50 to 210 m2/g; the palladium content in the catalyst is in the range 0.05% to 2% by weight; at least 80% by weight of the palladium is distributed in a crust at the periphery of the support, the thickness of said crust being in the range 20 to 200 ?m; the metallic dispersion D is in the range 25% to 70%; the density of the palladium particles in the crust is in the range 1500 to 4100 particles of palladium per ?m2; and said alkali and/or alkaline-earth metal is distributed homogeneously across the support. The invention also concerns the preparation of the catalyst and its use in selective hydrogenation.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 28, 2014
    Assignee: IFP Energies nouvelles
    Inventors: Lars Fischer, Carine Petit-Clair, Cecile Thomazeau, Lois Sorbier, Catherine Verdon
  • Patent number: 8609570
    Abstract: The present invention relates to a method for producing a precursor of a supported platinum catalyst. To provide a method for producing a platinum catalyst precursor, by means of which supported platinum catalysts can be produced which have a relatively high activity, a method is proposed, comprising the steps of: a) impregnating an open-pored support material with platinum sulphite acid; b) calcining the impregnated zeolite material under a protective gas.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: December 17, 2013
    Assignee: Sud-Chemie IP GmbH & Co. KG
    Inventors: Hans-Christoph Schwarzer, Arno Tissler, Markus Hutt
  • Patent number: 8518851
    Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: August 27, 2013
    Assignee: Shell Oil Company
    Inventors: Peter Birke, Reinhard Geyer, Jürgen Hunold, Peter Kraak, Rainer Schoedel
  • Patent number: 8496899
    Abstract: An exhaust gas purifying catalyst 1 has a catalyst substrate 3 and catalyst coating layers 5, 7 that are formed on the catalyst substrate 3 and contain (a) Rh, (b) Pt, (c) an alkali metal or alkaline earth element, and (d) an inorganic oxide. The catalyst coating layers 5, 7 has a layered structure including an inside layer 5 where the component (a) is substantially locally existing, and an outside layer 7 where the component (b) is substantially locally existing. The inside layer 5 also contains a zirconia oxide.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: July 30, 2013
    Assignee: Cataler Corporation
    Inventor: Hiroto Imai
  • Patent number: 8486853
    Abstract: An exhaust gas purifying catalyst (1) according to the present invention includes noble metal particles (6), a first compound (7) supporting the noble metal particles (6), and a second compound (9) disposed not in contact with the noble metal particles (6) and having an oxygen storage capacity. An average distance between the first compound (7) and the second compound (9) is between 5 nm and 300 nm.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 16, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hiroto Kikuchi, Tetsuro Naito, Jun Ikezawa
  • Publication number: 20130172177
    Abstract: A catalyst comprising (i) a support, (ii) metal particles and (iii) a shell which is arranged between the metal particles, wherein the shell (iii) comprises silicon oxide.
    Type: Application
    Filed: September 13, 2011
    Publication date: July 4, 2013
    Applicant: BASF SE
    Inventors: Imme Domke, Wolfgang Rohde, Piotr Antoni Bazula, Norbert Mronga, Yong Liu, Martin Dieterle, Stanley Roth, Curtis Zimmermann, Xinyi Wei, Philipp Raff, Stephan Andreas Schunk, Olga Gerlach, Andreas Strasser, Michael Paul
  • Publication number: 20130158325
    Abstract: This invention relates to a method of preparing a mixed manganese ferrite coated catalyst, and a method of preparing 1,3-butadiene using the same, and more particularly, to a method of preparing a catalyst by coating a support with mixed manganese ferrite obtained by co-precipitation at 10˜40° C. using a binder and to a method of preparing 1,3-butadiene using oxidative dehydrogenation of a crude C4 mixture containing n-butene and n-butane in the presence of the prepared catalyst. This mixed manganese ferrite coated catalyst has a simple synthetic process, and facilitates control of the generation of heat upon oxidative dehydrogenation and is very highly active in the dehydrogenation of n-butene.
    Type: Application
    Filed: May 26, 2011
    Publication date: June 20, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Yong Tak Kwon, Tae Jin Kim, Young Min Chung, Ok Youn Kim, Seung Hoon Oh
  • Patent number: 8461373
    Abstract: Disclosed is a catalyst for use in production of carboxylic acid ester by reacting (a) aldehyde and alcohol, or (b) one or more types of alcohols, in the presence of oxygen; wherein oxidized nickel and X (wherein X represents at least one element selected from the group consisting of nickel, palladium, platinum, ruthenium, gold, silver and copper) are loaded onto a support within the range of the atomic ratio of Ni/(Ni+X) of from 0.20 to 0.99.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: June 11, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Ken Suzuki, Tatsuo Yamaguchi
  • Patent number: 8415267
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 9, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8389430
    Abstract: Porous spodumene-cordierite honeycomb bodies of high strength but low volumetric density, useful for the manufacture of close-coupled engine exhaust converters, gasoline engine particulate exhaust filters, and NOx integrated engine exhaust filters, are provided through the reactive sintering of batches comprising sources of magnesia, alumina and silica together with a lithia source, such as a spodumene or petalite ore.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: March 5, 2013
    Assignee: Corning Incorporated
    Inventors: Gregory Albert Merkel, Cameron Wayne Tanner
  • Patent number: 8343888
    Abstract: Precursor cations of A and B elements of an ABO3 perovskite in aqueous solution are formed as an ionic complex gel with citric acid or other suitable polybasic carboxylic acid. The aqueous gel is coated onto a desired catalyst substrate and calcined to form, in-situ, particles of the crystalline perovskite as, for example, an oxidation catalyst on the substrate. In one embodiment, a perovskite catalyst such as LaCoO3 is formed on catalyst supporting cell walls of an extruded ceramic monolith for oxidation of NO in the exhaust gas of a lean burn vehicle engine.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: January 1, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, Wei Li, Kevin A Dahlberg
  • Publication number: 20120322650
    Abstract: One exemplary embodiment can be a layered catalyst for use in a selective hydrogenation of acetylenes and diolefins to olefins. The layered catalyst may include an inner core having an inert material, an outer layer including a metal oxide bonded to the inner core, and a metal deposited on the outer layer. Generally, the metal is an IUPAC Group 8-10 metal and the layered catalyst has an accessibility index of about 3- about 500.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: UOP, LLC
    Inventors: Gregory J. Gajda, Bryan K. Glover, Antoine Negiz, John Joseph Senetar, Erik Holmgreen, Mark G. Riley
  • Patent number: 8309487
    Abstract: An exhaust gas purifying catalyst (1) is composed of: a noble metal (2); a first compound (3); and a second compound (4). The noble metal (2) is supported on the first compound (3). The exhaust gas purifying catalyst (1) includes units having a structure in which the first compound (3) supporting the noble metal (2) is surrounded by the second compound (4), and the first compound (3) supporting the noble metal (2) is isolated from one another by the second compound (4). The noble metal (2) is one or more selected from [Pt, Pd and Rh], the first compound (3) contains Ti as a main component, and the second compound (4) contains, as a main component, one or more selected from [Al and Si].
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 13, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Masanori Nakamura, Hironori Wakamatsu, Katsuo Suga
  • Publication number: 20120258037
    Abstract: A catalytic membrane reactor assembly for producing a hydrogen stream from a feed stream having liquid hydrocarbons, steam, and an oxygen source through the use of an autothermal reforming reaction, a water-gas-shift reaction, and a hydrogen permeable membrane.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: Saudi Arabian Oil Company
    Inventors: Thang V. Pham, Sai P. Katikaneni, Jorge N. Beltramini, Moses O. Adebajo, Joao Carlos Diniz Da Costa, G.Q. Lu
  • Patent number: 8216961
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 10, 2012
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8207327
    Abstract: The invention relates to a shell catalyst containing ruthenium as an active metal, alone or together with at least one other metal of the auxiliary group IB, VIIB or VIII of the periodical system of the elements (CAS version), and applied to a carrier containing silicon dioxide as a carrier material. The invention also relates to a method for producing said shell catalyst, and to a method for hydrogenating an organic compound containing hydrogenable groups, preferably for hydrogenating a carbocyclic aromatic group to form the corresponding carbocyclic aliphatic groups or for hydrogenating aldehydes to form the corresponding alcohols, using the inventive shell catalyst. The invention further relates to the use of the inventive shell catalyst for hydrogenating an organic compound containing hydrogenable groups, preferably for hydrogenating a carbocyclic aromatic group to form the corresponding carbocyclic aliphatic groups or for hydrogenating aldehydes to form the corresponding alcohols.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: June 26, 2012
    Assignee: BASF SE
    Inventors: Frederik Van Laar, Michael Becker, Ekkehard Schwab, Jochem Henkelmann, Peter Polanek
  • Patent number: 8207083
    Abstract: The present invention relates to a catalyst nickel, silica, alumina and magnesium, wherein the nickel to magnesium atomic ratio is 5-75. In particular the present invention relates to a catalyst comprising nickel, silica, alumina and magnesium, wherein the nickel to silicium atomic ratio (Ni/Si) is 2 to 30 to nickel to aluminum atomic ratio (Ni/Al) is 9 to 40 and the nickel to magnesium atomic ratio (Ni/Mg) is 5-75. The invention further relates to a method for preparing such a catalyst. The invention further relates to a process for hydrogenating unsaturated organic compounds.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: June 26, 2012
    Assignee: BASF Corporation
    Inventors: Pieter Hildegardus Berben, Tjalling Rekker
  • Patent number: 8158554
    Abstract: A high heat-resistant catalyst includes: noble metal particles; first compounds which contact the noble metal particles and suppress movement of the noble metal particles; and second compounds which envelop the noble metal particles and the first compounds, suppress the movement of the noble metal particles, and suppress coagulation of the first compounds following mutual contact of the first compounds. The first compounds support the noble metal particles, and single piece or aggregate of the first compounds supporting the noble metal particles are included in a section partitioned by the second compounds. A coefficient of linear thermal expansion of the second compounds is 1.2×10?5 [K?1] or less.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: April 17, 2012
    Assignees: Nissan Motor Co., Ltd., RENAULT s.a.s.
    Inventors: Hironori Wakamatsu, Masanori Nakamura, Masahiro Takaya, Katsuo Suga, Hiroto Kikuchi, Jun Ikezawa
  • Publication number: 20120079768
    Abstract: A catalyst includes an olivine substrate on which an iron compound layer is deposited, produced by impregnating the olivine substrate with a solution including an iron salt, and then heat-treating. The catalyst is useful for steam-reforming tar, in particular in gaseous media from the steam gasification of biomass. Further, the catalyst can be used alone for catalyzing the steam gasification of organic compounds from biomass while limiting the amount of tar produced in the synthesized gases.
    Type: Application
    Filed: May 19, 2010
    Publication date: April 5, 2012
    Applicants: Centre National DE La Recherche Scientifique (C.N.R.S.), UNIVERSITE DE STRASBOURG
    Inventors: Alain Kiennemann, Claire Courson, Mirella Virginie
  • Patent number: 8137591
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube containing multi-component support materials of amorphous Si, Mg and Al as well as a bulk scale preparation process for preparing carbon nanotube using said catalyst composition. More specifically, this invention relates to a process for preparing carbon nanotube using the catalyst composition comprising a transition metal catalyst and support materials of amorphous Si, Mg and Al.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: March 20, 2012
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Dong Hwan Kim, Sang-Hyo Ryu, Wan Sung Lee, Namsun Choi, Hyun-Kyung Sung, Youngchan Jang
  • Patent number: 8133837
    Abstract: Decreasing HC emission is made possible. An exhaust gas-purifying catalyst includes a substrate, a hydrocarbon-adsorbing layer covering the substrate, and a catalytic layer covering the hydrocarbon-adsorbing layer. The catalytic layer includes a layered structure of a first catalytic layer including a precious metal and a carrier supporting it, and a second catalytic layer including the same precious metal as the precious metal of the first catalytic layer and a carrier supporting it and having a concentration of the precious metal higher than that in the first catalytic layer.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: March 13, 2012
    Assignee: Cataler Corporation
    Inventors: Yuji Yabuzaki, Akimasa Hirai, Kenichi Taki
  • Publication number: 20120040186
    Abstract: The present invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method. More particularly, this invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube comprising the steps of i) dissolving multi-component metal precursors of catalyst composition in de-ionized water; ii) spraying obtained catalytic metal precursor solution into the high temperature reactor by gas atomization method; iii) forming the catalyst composition powder by pyrolysis of gas atomized material; and iv) obtaining the catalyst composition powder, wherein said catalyst composition comprises i) main catalyst selected from Fe or Co, ii) Al, iii) optional co-catalyst at least one selected from Ni, Cu, Sn, Mo, Cr, Mn, V, W, Ti, Si, Zr or Y, iv) inactive support of Mg. Further, the catalyst composition prepared by this invention has a very low apparent density of 0.01˜0.
    Type: Application
    Filed: May 11, 2011
    Publication date: February 16, 2012
    Applicant: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Sang-Hyo Ryu, Hyun-Kyung Sung, Namsun Choi, Wan Sung Lee, Dong Hwan Kim, Youngchan Jang
  • Patent number: 8105973
    Abstract: Chemical combination (C) between an active solid phase which is covalently bound to the surface of an inert solid phase, characterized in that said solid active phase essentially consists in a solid solution of a mixture of at least a magnesium oxide type phase compound and at least a magnesium silicate type phase compound in which Al, and Rh and/or Ni cations are soluted and characterized in that said inert solid phase is either a compound represented by the general formula (I): AlaNibRhcMgdSieOf??(I) wherein a, b, c, d, and e are integers which are greater than or equal to 0, f is an integer greater than 0, the sum a+b+c+d?0, and wherein (3a+2b+3c+2d+4e)/2=f, or a mixture of compounds represented by the said general formula (I), provided that at least one of the Si, Al, Mg, Rh or Ni elements, which is present in the solid active phase, is also present in the solid inert phase. Use of a catalyst in chemical reactions involving the conversion of hydrocarbonaceous feedstocks.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: January 31, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploiation des Procedes Georges Claude
    Inventors: Francesco Basile, Pascal Del Gallo, Giuseppe Fornasari, Daniel Gary, Valentina Rosetti, Angelo Vaccari
  • Patent number: 8092716
    Abstract: Process for the preparation of a catalytic specie consisting essentially of a metallic support, which is coated with a ceramic active phase layer, mainly compound of the general formula (I): [RhxNiyMglAlm(OH)2]z+(An?z/n)kH2O,??(I) wherein An? is mainly a silicate or a polysilicate anion; 0?x?0.3; 0?y?0.9; 0?l?0.9; 0?m?0.5; 0?k?10; x+y>0; 0.5?y+l?0.9; x+y+l+m=1; and z is the total electrical charge of the cationic element or a compound of the general formula (II): [AzA?1-z][B1-x-yNixRhy]O3-???(II) wherein A and A? are different and are selected from the Lanthanide or the Actinide families or from the group IIa of the Mendeleev's periodical table of elements; B is selected from the transition metal groups of columns IIIb, IVb, Vb, VIb, VIIb, Ib and IIb and group VIIIb of the Mendeleev's periodical table of elements; 0?x?0.7, 0?y?0.5, 0?x+y?0.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 10, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Daniel Gary, Pascal Del-Gallo, Francesco Basile, Angelo Vaccari, Giuseppe Fornasari, Valentina Rosetti, Erika Scavetta, Domenica Tonelli
  • Patent number: 8088707
    Abstract: A supported catalyst with a solid sphere structure of the present invention includes an oxide supporting body and a metal such as Ni, Co, Fe, or a combination thereof distributed on the surface and inside of the supporting body. The supported catalyst with a solid sphere structure can maintain a spherical shape during heat treatment and can be used with a floating bed reactor due to the solid sphere structure thereof.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 3, 2012
    Assignee: Cheil Industries Inc.
    Inventors: Byeong Yeol Kim, Yun Tack Lee, Seung Yong Bae, Young Sil Lee
  • Patent number: 8071655
    Abstract: A catalyst applicable to the synthesis gas conversions especially E-T slurry processes, said catalyst comprising: a) a support containing at least a first aluminate element of mixed spinel structure of formula MxM?(1?x)Al2O4/Al2O3.SiO2, x ranging between and excluding 0 and 1, or of simple spinel structure of formula MAl2O4/Al2O3.SiO2, said support being calcined in an at least partly oxidizing atmosphere, at a temperature ranging between 850° C. and 900° C., and b) an active phase deposited on said support, which contains one or more group VIII metals, selected from among cobalt, nickel, ruthenium or iron. Said catalyst is used in a fixed bed or suspended in a three-phase reactor for hydrocarbon synthesis from a CO, H2 mixture.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: December 6, 2011
    Assignees: IFP Energies Nouvelles, ENI S.p.A.
    Inventors: Fabrice Diehl, François Hugues, Marie-Claire Marion, Denis Uzio
  • Publication number: 20110224451
    Abstract: The invention relates to a process for producing alkyl esters, the process comprising reacting a feedstock that includes one or more fatty acid glycerol esters or one or more fatty acid or mixture thereof with a C1 to C4 alcohol in the presence of a catalyst at a temperature substantially 100° C. or more, the catalyst including a catalyst composition comprising oxides, mixed oxides, silicates or sulphates of two or more of silica, aluminium, iron, calcium, magnesium, sodium and potassium.
    Type: Application
    Filed: June 11, 2008
    Publication date: September 15, 2011
    Inventors: Rajiv Kumar Chaturvedi, Nawalkishor Mal, Kyatanahalli Srinivasa Nagabhushana, Debabrata Rautaray, Tushar R. Shinde
  • Patent number: 8003565
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 23, 2011
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Freeslate, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Publication number: 20110184206
    Abstract: Disclosed is a catalyst for use in production of carboxylic acid ester by reacting (a) aldehyde and alcohol, or (b) one or more types of alcohols, in the presence of oxygen; wherein oxidized nickel and X (wherein X represents at least one element selected from the group consisting of nickel, palladium, platinum, ruthenium, gold, silver and copper) are loaded onto a support within the range of the atomic ratio of Ni/(Ni+X) of from 0.20 to 0.99.
    Type: Application
    Filed: July 31, 2008
    Publication date: July 28, 2011
    Inventors: Ken Suzuki, Tatsuo Yamaguchi
  • Patent number: 7981274
    Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 19, 2011
    Assignee: Pall Corporation
    Inventors: Manfred Nacken, Steffen Heidenreich
  • Publication number: 20110143933
    Abstract: Embodiments of present inventions are directed to an advanced catalyst. The advanced catalyst includes a honeycomb structure with an at least one nano-particle on the honeycomb structure. The advanced catalyst used in diesel engines is a two-way catalyst. The advanced catalyst used in gas engines is a three-way catalyst. In both the two-way catalyst and the three-way catalyst, the at least one nano-particle includes nano-active material and nano-support. The nano-support is typically alumina. In the two-way catalyst, the nano-active material is platinum. In the three-way catalyst, the nano-active material is platinum, palladium, rhodium, or an alloy. The alloy is of platinum, palladium, and rhodium.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 16, 2011
    Applicant: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
  • Publication number: 20110118112
    Abstract: Chemical combination (C) between an active solid phase which is covalently bound to the surface of an inert solid phase, characterized in that said solid active phase essentially consists in a solid solution of a mixture of at least a magnesium oxide type phase compound and at least a magnesium silicate type phase compound in which Al, and Rh and/or Ni cations are soluted and characterized in that said inert solid phase is either a compound represented by the general formula (I): AlaNibRhcMgdSieOf??(I) wherein a, b, c, d, and e are integers which are greater than or equal to 0, f is an integer greater than 0, the sum a+b+c+d?0, and wherein (3a+2b+3c+2d+4e)/2=f, or a mixture of compounds represented by the said general formula (I), provided that at least one of the Si, Al, Mg, Rh or Ni elements, which is present in the solid active phase, is also present in the solid inert phase. Use of a catalyst in chemical reactions involving the conversion of hydrocarbonaceous feedstocks.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 19, 2011
    Inventors: Francesco Basile, Pascal Del Gallo, Giuseppe Fornasari, Daniel Gary, Valentina Rosetti, Angelo Vaccari
  • Patent number: 7915196
    Abstract: A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: March 29, 2011
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Yves O. Parent, Kim Magrini, Steven M. Landin, Marcus A. Ritland
  • Patent number: 7909986
    Abstract: Reduced emissions of gas phase reduced nitrogen species in the off gas of an FCC regenerator operated in a partial or incomplete mode of combustion is achieved by contacting the off gas with an oxidative catalyst/additive composition having the ability to reduce gas phase nitrogen species to molecular nitrogen and to oxidize CO under catalytic cracking conditions. The oxidative catalyst/additive composition is used in an amount less than the amount necessary to prevent afterburn. Fluidizable particles of the oxidative catalyst/additives are circulated throughout the partial or incomplete burn FCC unit along with the FCC catalyst inventory. The flue gas having a reduced content of gas phase reduced nitrogen species and NOx is passed to a downstream CO boiler, preferably a low NOx CO boiler. In the CO boiler, as CO is oxidized to CO2, a reduced amount of gas phase reduced nitrogen species is oxidized to NOx, thereby providing an increase in the overall reduction of NOx emitted into the environment.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: March 22, 2011
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 7906015
    Abstract: Reduced emissions of gas phase reduced nitrogen species in the off gas of an FCC regenerator operated in a partial or incomplete mode of combustion is achieved by contacting the off gas with an oxidative catalyst/additive composition having the ability to reduce gas phase nitrogen species to molecular nitrogen and to oxidize CO under catalytic cracking conditions. The oxidative catalyst/additive composition is used in an amount less than the amount necessary to prevent afterburn. Fluidizable particles of the oxidative catalyst/additives are circulated throughout the partial or incomplete burn FCC unit along with the FCC catalyst inventory. The flue gas having a reduced content of gas phase reduced nitrogen species and NOx is passed to a downstream CO boiler, preferably a low NOx CO boiler. In the CO boiler, as CO is oxidized to CO2, a reduced amount of gas phase reduced nitrogen species is oxidized to NOx, thereby providing an increase in the overall reduction of NOx emitted into the environment.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: March 15, 2011
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Publication number: 20110017953
    Abstract: Process for the preparation of a catalytic specie consisting essentially of a metallic support, which is coated with a ceramic active phase layer, mainly compound of the general formula (I): [RhxNiyMglAlm(OH)2]z+(An?z/n)kH2O,??(I) wherein An? is mainly a silicate or a polysilicate anion; 0?x?0.3; 0?y?0.9; 0?l?0.9; 0?m?0.5; 0?k?10; x+y>0; 0.5?y+l?0.9; x+y+l+m=1; and z is the total electrical charge of the cationic element or a compound of the general formula (II): [AzA?1-z][B1-x-yNixRhy]O3-???(II) wherein A and A? are different and are selected from the Lanthanide or the Actinide families or from the group IIa of the Mendeleev's periodical table of elements; B is selected from the transition metal groups of columns IIIb, IVb, Vb, VIb, VIIb, Ib and IIb and group VIIIb of the Mendeleev's periodical table of elements; 0?x?0.7, 0?y?0.5, 0?x+y?0.
    Type: Application
    Filed: January 10, 2007
    Publication date: January 27, 2011
    Inventors: Daniel Gary, Pascal Del-Gallo, Francesco Basile, Angelo Vaccari, Giuseppe Fornasari, Valentina Rosetti, Erika Scavetta, Domenica Tonelli
  • Patent number: 7855162
    Abstract: The present invention provides a needle-shaped ceramic body and needle-shaped ceramic catalyst body in which a base material is a high specific surface area porous cordierite body that is stable at high temperatures, and also provides methods of producing this needle-shaped ceramic body and needle-shaped ceramic catalyst body. The present invention relates to a needle-shaped ceramic body and needle-shaped ceramic catalyst body in which a base material is a high temperature-stable, high specific surface area porous cordierite body comprising a porous structure having a prescribed porosity and formed of a needle-shaped cordierite crystal phase, and further relates to methods of producing this needle-shaped ceramic body and needle-shaped ceramic catalyst body, and by using porous cordierite constituted of needle-shaped crystals as a catalyst-supporting honeycomb structure, the present invention is able to inhibit sintering-induced reduction in the specific surface area.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: December 21, 2010
    Assignees: National Institute of Advanced Industrial Science and Technology, Denso Corporation, Nippon Soken, Inc.
    Inventors: Jayaseelan Daniel Doni, Hideki Kita, Naoki Kondo, Shunkichi Ueno, Tatsuki Ohji, Shuzo Kanzaki, Kazuhiko Koike, Takumi Suzawa, Tomohiko Nakanishi
  • Publication number: 20100247424
    Abstract: Materials based on nanoporous inorganic network materials and associated devices and methods for solid state storage of hydrogen and other gases are capable of greater storage capacity with improved availability of stored gases. Coated active oxide networks such as TiO2 and SiO2 aerogels as network materials are coated with selected inorganic catalytic materials and/or high gas storage capacity materials. A variety of coated nanoporous inorganic network materials are disclosed with material formulas X—Y; X being an inorganic coating, including one or more of nanoparticles, layered structure materials and intercalated materials; and Y being the inorganic nanoparticle network. At least one of the network and the coating comprises a catalyst for enhanced sorption of a gas to be stored, such as hydrogen.
    Type: Application
    Filed: May 22, 2008
    Publication date: September 30, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Samuel S. Mao, Xiaobo Chen, Arlon Hunt