And Group Viii Metal Containing (i.e., Iron Or Platinum Group) Patents (Class 502/252)
  • Patent number: 7855162
    Abstract: The present invention provides a needle-shaped ceramic body and needle-shaped ceramic catalyst body in which a base material is a high specific surface area porous cordierite body that is stable at high temperatures, and also provides methods of producing this needle-shaped ceramic body and needle-shaped ceramic catalyst body. The present invention relates to a needle-shaped ceramic body and needle-shaped ceramic catalyst body in which a base material is a high temperature-stable, high specific surface area porous cordierite body comprising a porous structure having a prescribed porosity and formed of a needle-shaped cordierite crystal phase, and further relates to methods of producing this needle-shaped ceramic body and needle-shaped ceramic catalyst body, and by using porous cordierite constituted of needle-shaped crystals as a catalyst-supporting honeycomb structure, the present invention is able to inhibit sintering-induced reduction in the specific surface area.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: December 21, 2010
    Assignees: National Institute of Advanced Industrial Science and Technology, Denso Corporation, Nippon Soken, Inc.
    Inventors: Jayaseelan Daniel Doni, Hideki Kita, Naoki Kondo, Shunkichi Ueno, Tatsuki Ohji, Shuzo Kanzaki, Kazuhiko Koike, Takumi Suzawa, Tomohiko Nakanishi
  • Publication number: 20100247424
    Abstract: Materials based on nanoporous inorganic network materials and associated devices and methods for solid state storage of hydrogen and other gases are capable of greater storage capacity with improved availability of stored gases. Coated active oxide networks such as TiO2 and SiO2 aerogels as network materials are coated with selected inorganic catalytic materials and/or high gas storage capacity materials. A variety of coated nanoporous inorganic network materials are disclosed with material formulas X—Y; X being an inorganic coating, including one or more of nanoparticles, layered structure materials and intercalated materials; and Y being the inorganic nanoparticle network. At least one of the network and the coating comprises a catalyst for enhanced sorption of a gas to be stored, such as hydrogen.
    Type: Application
    Filed: May 22, 2008
    Publication date: September 30, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Samuel S. Mao, Xiaobo Chen, Arlon Hunt
  • Publication number: 20100230642
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube containing multi-component support materials of amorphous Si, Mg and Al as well as a bulk scale preparation process for preparing carbon nanotube using said catalyst composition. More specifically, this invention relates to a process for preparing carbon nanotube using the catalyst composition comprising a transition metal catalyst and support materials of amorphous Si, Mg and Al.
    Type: Application
    Filed: September 29, 2009
    Publication date: September 16, 2010
    Inventors: Dong Hwan KIM, Sang-Hyo RYU, Wan Sung LEE, Namsun CHOI, Hyun-Kyung SUNG, Youngchan JANG
  • Patent number: 7772147
    Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 10, 2010
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul John Collier, Alison Mary Wagland
  • Publication number: 20100197488
    Abstract: The present invention relates to a method for producing a shell catalyst which comprises a porous shaped catalyst support body with an outer shell in which at least one catalytically active species is present.
    Type: Application
    Filed: May 30, 2008
    Publication date: August 5, 2010
    Applicant: Sud-Chemie AG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck, Sybille Ungar
  • Patent number: 7767621
    Abstract: Processes for preparing diatomaceous earth filter aids having a reduced beer soluble iron content, diatomaceous earth filter aids and compositions comprising the same, and methods for using the improved diatomaceous earth filter aids are disclosed herein. Further disclosed herein are processes for reducing beer soluble iron content by saturated steam treatment of a diatomaceous earth material in an enclosed vessel.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: August 3, 2010
    Assignee: World Minerals, Inc.
    Inventors: Qun Wang, Timothy R. Smith, Jeffrey D. Taniguchi
  • Patent number: 7713911
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a transition metal particle and a base-metal compound in a reversed micelle substantially simultaneously, and a step of precipitating a noble metal particle in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of noble metal particles even at the high temperature and is excellent in the catalytic activity.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: May 11, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hironori Wakamatsu, Masanori Nakamura, Kazuyuki Shiratori, Hirofumi Yasuda, Katsuo Suga, Toru Sekiba
  • Patent number: 7674744
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a carrier in a reversed micelle, and a step of precipitating at least one of a noble metal particle and a transition metal particle in the reversed micelle in which the carrier is precipitated. By this method, it is possible to obtain catalyst powder excellent in heat resistance and high in the catalytic activity.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: March 9, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Toru Sekiba, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hirofumi Yasuda
  • Patent number: 7635461
    Abstract: Composite combustion catalyst particles are described and disclosed. A metal core of a combustible metal can be coated with a metal oxide coating. Additionally, a catalyst coating can at least partially surround the metal oxide coating to form a composite catalyst particle. The composite catalyst particles can be dispersed in a variety of fuels such as propulsion fuels and the like to form an enhanced fuel. During initial stages of combustion, the catalyst coating acts to increase combustion of the fuel. As combustion proceeds, the metal core heats sufficiently to disturb the metal oxide coating. The metal core then combusts in highly exothermic reactions with an oxidizer and the catalyst coating to provide improved energy densities to the enhanced fuel.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: December 22, 2009
    Assignee: University of Utah Research Foundation
    Inventor: Scott L. Anderson
  • Patent number: 7605110
    Abstract: A ceramic body, a ceramic catalyst body, a ceramic catalyst body and related manufacturing methods are disclosed wherein a cordierite porous base material has a surface, formed with acicular particles made of a component different from that of cordierite porous base material, which has an increased specific surface area with high resistance to a sintering effect. The ceramic body is manufactured by preparing a slurry containing an acicular particle source material, preparing a porous base material, applying the slurry onto a surface of the porous base material and firing the porous base material, whose surface is coated with the slurry, to cause acicular particles to develop on the surface of the porous base material. A part of or a whole of surfaces of the acicular particles is coated with a constituent element different from that of the acicular particles.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 20, 2009
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Keiichi Yamada, Kazuhiko Koike, Katsumi Yoshida, Hideki Kita, Naoki Kondo, Hideki Hyuga
  • Patent number: 7597798
    Abstract: A process for removing relatively low levels of high molecular weight organic sulfur from hydrocarbon streams, particularly from streams that have picked-up such sulfur while being transported through a pipeline. The hydrocarbon stream containing the organic sulfur is passed through a bed of adsorbent material comprised of a high Ni content, high surface area material that also contains an effective amount of SiO2 or GeO2 and an alkaline earth metal.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: October 6, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph L. Feimer, Bal K. Kaul, Lawrence J. Lawlor, Jeenok T. Kim, G. Bryce McGarvey
  • Patent number: 7585812
    Abstract: A catalyst for use in the Fischer-Tropsch process, and a method to prepare the catalyst is disclosed. The catalyst of the present invention has a higher surface area, more uniform metal distribution, and smaller metal crystallite size than Fischer-Tropsch catalysts of the prior art.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: September 8, 2009
    Assignee: Sud-Chemie Inc.
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Patent number: 7582202
    Abstract: A Composition comprising one or more metal hydroxy salts and a matrix, binder or carrier material, wherein the metal hydroxy salt is a compound comprising (a) as metal either (i) one or more divalent metals, at least one of them being selected from the group consisting of Ni, Co, Ca, Zn, Mg, Fe, and Mn, or (ii) one or more trivalent metal(s), (b) framework hydroxide, and (c) a replaceable anion. This composition has various catalytic applications.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: September 1, 2009
    Assignees: Akzo Nobel N.V., Albemarle Netherlands B.V.
    Inventors: William Jones, Paul O'Connor, Dennis Stamires
  • Patent number: 7563744
    Abstract: The present invention relates to a catalyst for the purification of exhaust gases from an internal combustion engine, which comprises a catalytically active coating on an inert ceramic or metal honeycomb body, said coating comprising at least one platinum group metal selected from the group consisting of platinum, palladium, rhodium and iridium on a fine, oxidic support material. As an oxidic support material, the catalyst comprises a low-porosity material on the basis of silicon dioxide that comprises aggregates of essentially spherical primary particles having an average particle diameter of between 7 and 60 nm.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: July 21, 2009
    Assignee: Umicore AG & Co. KG
    Inventors: Harald Klein, Ulrich Neuhausen, Egbert Lox, Jürgen Gieshoff, Thomas Kreuzer
  • Publication number: 20090182181
    Abstract: The present invention relates to a catalyst nickel, silica, alumina and magnesium, wherein the nickel to magnesium atomic ratio is 5-75. In particular the present invention relates to a catalyst comprising nickel, silica, alumina and magnesium, wherein the nickel to silicium atomic ratio (Ni/Si) is 2 to 30 to nickel to aluminum atomic ratio (Ni/Al) is 9 to 40 and the nickel to magnesium atomic ratio (Ni/Mg) is 5-75. The invention further relates to a method for preparing such a catalyst. The invention further relates to a process for hydrogenating unsaturated organic compounds.
    Type: Application
    Filed: March 26, 2009
    Publication date: July 16, 2009
    Applicant: BASF CATALYSTS LLC
    Inventors: Pieter Hildegardus Berben, Tjalling Rekker
  • Publication number: 20090118119
    Abstract: A water gas shift catalyst comprising a precious metal deposited on a support, wherein the support is prepared from a mixture comprising a low surface area material, such as an aluminate, particularly a hexaaluminate, and a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and an additional dopant selected from Ga, Nd, Pr, W, Ge, Au, Ag, Fe, oxides thereof and mixtures thereof.
    Type: Application
    Filed: November 1, 2007
    Publication date: May 7, 2009
    Applicant: SUD-CHEMIE INC.
    Inventors: Chandra Ratnasamy, Jon P. Wagner
  • Patent number: 7528092
    Abstract: The present invention relates to a catalyst nickel, silica, alumina and magnesium, wherein the nickel to magnesium atomic ratio is 5-75. In particular the present invention relates to a catalyst comprising nickel, silica, alumina and magnesium, wherein the nickel to silicium atomic ratio (Ni/Si) is 2 to 30 the nickel to aluminum atomic ratio (Ni/Al) is 9 to 40 and the nickel to magnesium atomic ratio (Ni/Mg) is 5-75. The invention further relates to a method for preparing such a catalyst. The invention further relates to a process for hydrogenating unsaturated organic compounds.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: May 5, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Pieter Hildegardus Berben, Tjalling Rekker
  • Patent number: 7518023
    Abstract: The invention relates to highly active spherical metal support catalysts with a metal content of 10 to 70% by mass, and a process for their production with the use of a mixture of polysaccharides and at least one metal compound which is dropped into a metal salt solution.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: April 14, 2009
    Assignee: Shell Internationale Research Maatschappij, B.V.
    Inventors: Reinhard Geyer, Rainer Schödel, Peter Birke, Jürgen Hunold
  • Publication number: 20090075814
    Abstract: A catalyst support solution for improving the attrition resistance of a Fischer-Tropsch catalyst, the solution comprising: crystalline silica and at least one chemical promoter selected from alkali metal bases, wherein the support solution has a pH of greater than or equal to about 7. A structurally promoted catalyst comprising: crystalline silica; at least one basic chemical promoter; and iron; wherein the catalyst comprises SiO2:Fe in a ratio of from about 2:100 to about 24:100. A method of producing a structurally promoted precipitated iron catalyst, the method comprising: forming the structural support solution described above; stirring the support solution for a time to dissolve the silica in the solution; adding the support solution to a precipitated iron catalyst slurry to form an attrition resistant catalyst slurry; and drying the attrition resistant catalyst slurry to yield the structurally promoted precipitated iron catalyst.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 19, 2009
    Applicant: RENTECH, INC.
    Inventors: Dawid J. Duvenhage, Belma Demirel
  • Publication number: 20090029219
    Abstract: This invention provides a highly active and stable catalyst, which is suitable for use in fuel cells while suppressing the amount of expensive noble metals used, i.e., platinum (Pt) and ruthenium (Ru), and a process for producing the catalyst, and a membrane electrode assembly and fuel cell using the catalyst. The catalyst comprises: an electro conductive support; and catalyst particles supported on the electro conductive support and having a composition represented by formula (1) PtuRuxMgyTz ??(1) wherein u is 30 to 60 atm %, x is 20 to 50 atm %, y is 0.5 to 20 atm %, and z is 0.
    Type: Application
    Filed: May 15, 2008
    Publication date: January 29, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Taishi FUKAZAWA, Wu MEI, Tsuyoshi KOBAYASHI, Itsuko MIZUTANI, Masaaki YAMAMOTO, Yoshihiko NAKANO
  • Publication number: 20090019770
    Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds
    Type: Application
    Filed: July 21, 2008
    Publication date: January 22, 2009
    Applicant: PALL CORPORATION
    Inventors: Manfred Nacken, Steffen Heidenreich
  • Patent number: 7452844
    Abstract: The Fischer-Tropsch catalyst of the present invention is a transition metal-based catalyst having a high surface area, a smooth, homogeneous surface morphology, an essentially uniform distribution of cobalt throughout the support, and a small metal crystallite size. In a first embodiment, the catalyst has a surface area of from about 100 m2/g to about 250 m2/g; an essentially smooth, homogeneous surface morphology; an essentially uniform distribution of metal throughout an essentially inert support; and a metal oxide crystallite size of from about 40 ? to about 200 ?. In a second embodiment, the Fischer-Tropsch catalyst is a cobalt-based catalyst with a first precious metal promoter and a second metal promoter on an aluminum oxide support, the catalyst having from about 5 wt % to about 60 wt % cobalt; from about 0.0001 wt % to about 1 wt % of the first promoter, and from about 0.01 wt % to about 5 wt % of the second promoter.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: November 18, 2008
    Assignee: Süd-Chemie Inc
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Publication number: 20080233039
    Abstract: The present invention is directed to carbon monoxide oxidation reactions in the presence of an O2 containing gas, nitrogen oxide conversion reactions, volatile organic compound conversion reactions in the presence of an O2 containing gas, and combinations thereof, and catalysts for use in those reactions. The catalyst comprises cobalt, its oxides or mixtures thereof and ruthenium, its oxides or mixtures thereof.
    Type: Application
    Filed: June 1, 2006
    Publication date: September 25, 2008
    Applicant: SYMYX TECHNOLOGIES, INC.
    Inventors: Alfred Hagemeyer, Anthony F. Volpe, Valery Sokolovskii, Andreas Lesik, Guido Streukens
  • Publication number: 20080219918
    Abstract: A catalyst for fuel reforming including a metal catalyst that includes at least one active component A selected from the group consisting of Pt, Pd, Ir, Rh and Ru; and an active component B that is at least one metal selected from the group consisting of Mo, V, W, Cr, Re, Co, Ce and Fe, oxides thereof, alloys thereof, or mixtures thereof, and a carrier impregnated with the metal catalyst, and a method of producing hydrogen by performing a fuel reforming reaction using the catalyst for fuel reforming. The catalyst for fuel reforming has excellent catalytic activity at a low temperature and improved hydrogen purity. Therefore, when the catalyst for fuel reforming is used, high-purity hydrogen, which can be used as a fuel of a fuel cell, can be produced with high purity.
    Type: Application
    Filed: September 14, 2007
    Publication date: September 11, 2008
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Doo-hwan Lee, Yulia Potapova, Soon-ho Kim, Hyun-chul Lee, Kang-hee Lee
  • Patent number: 7365040
    Abstract: A process for preparing a cobalt-based Fischer-Tropsch synthesis catalyst includes introducing a soluble modifying component precursor of the formula Mc(OR)x, where Mc is a modifying component selected from the group comprising Si, Ti, Cu, Zn, Zr, Mn, Ba, Ni, Na, K, Ca, Sn, Cr, Fe, Li, Tl, Sr, Ga, Sb, V, Hf, Th, Ce, Ge, U, Nb, Ta, W or La, R is an alkyl or acyl group, and x is an integer having a value of from 1 to 5, onto and/or into a cobalt-based Fischer-Tropsch synthesis catalyst precursor, which comprises a porous pre-shaped catalyst support supporting cobalt in an oxidized form. The resultant modified cobalt-based Fischer-Tropsch synthesis catalyst precursor is reduced to obtain a cobalt-based Fischer-Tropsch synthesis catalyst.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: April 29, 2008
    Assignee: Sasoltechnology (Proprietary) Limited
    Inventors: Peter Jacobus Van Berge, Sean Barradas
  • Patent number: 7196034
    Abstract: The invention is directed to a catalyst suitable for the hydrogenation of hydrocarbon resins, comprising a supported nickel on silica and alumina catalyst, said catalyst having a nickel content of 45 to 85 wt. %, a silicon content, calculated as SiO2, of 14 to 45 wt. %, an aluminium content, calculated as Al2O3, of 1 to 15 wt. % an iron content, calculated as Fe, 0.25 to 4 wt. %, all percentages having been calculated on the basis of the reduced catalyst, and which catalyst has a volume of pores between 2 and 60 nm, as defined herein, of at least 0.35 ml/g of catalyst.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: March 27, 2007
    Assignee: Engelhard Corporation
    Inventor: Lucas Laurentius Kramer
  • Patent number: 7172990
    Abstract: The invention relates to highly active spherical metal support catalysts with a metal content of 10 to 70% by mass, and a process for their production with the use of a mixture of polysaccharides and at least one metal compound which is dropped into a metal salt solution.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: February 6, 2007
    Assignee: Shell Internationale Research Maatschappiji, B.V.
    Inventors: Reinhard Geyer, Rainer Schödel, Peter Birke, Jürgen Hunold
  • Patent number: 7137249
    Abstract: The present invention provides a method of removing harmful gases from an automobile exhaust. The method of the invention comprises contacting a thermally stable NOx trap composition with a first exhaust gas mixture at a temperature of at least 200° C. The first exhaust gas mixture includes exhaust gases from an internal combustion engine operating in a fuel-lean condition. After, NOx has been absorbed onto the NOx absorber material, the NOx trap composition is then contacted with a second exhaust gas composition. In this step, the second exhaust gas mixture includes exhaust gases from an internal combustion engine operating in a fuel-rich condition. The present invention also provides the NOx trap composition used in the method. The NOx trap of the invention includes a precious metal, a NOx absorber material, an oxide that inhibits the decrease in NOx storing ability of the NOx trap composition, and a support material.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: November 21, 2006
    Assignee: Ford Global Technologies, LLC
    Inventors: John Li, William Watkins, Christian Goralski, Jr.
  • Patent number: 7138358
    Abstract: A catalyzed diesel particulate matter exhaust filter with improved diesel particulate matter oxidation activity and thermal stability including a porous filter substrate for filtering the diesel particulate matter washcoated with high surface area support alumina, titania, silica and zirconia promoted with one of ceria, lanthanum oxide, tungsten oxide, molybdem oxide, tin oxide for catalytic materials which includes an alkaline earth metal vanadate, and a precious metal
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: November 21, 2006
    Assignee: Sud-Chemie Inc.
    Inventors: Yinyan Huang, Zhongyuan Dang, Amiram Bar-llan
  • Patent number: 7030055
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: April 18, 2006
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 6964936
    Abstract: A method of making a catalyst with monolayer or sub-monolayer metal by controlling the wetting characteristics on the support surface and increasing the adhesion between the catalytic metal and an oxide layer. There are two methods that have been demonstrated by experiment and supported by theory. In the first method, which is useful for noble metals as well as others, a negatively-charged species is introduced to the surface of a support in sub-ML coverage. The layer-by-layer growth of metal deposited onto the oxide surface is promoted because the adhesion strength of the metal-oxide interface is increased. This method can also be used to achieve nanoislands of metal upon sub-ML deposition. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 15, 2005
    Assignee: Sandia Corporation
    Inventor: Dwight R. Jennison
  • Patent number: 6881390
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: April 19, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 6878667
    Abstract: A nickel-rhodium alloy based catalyst for catalyzing the production of synthesis gas from a light hydrocarbon and O2 by a net catalytic partial oxidation process is disclosed. Preferred nickel-rhodium alloy based catalysts comprise about 1-50 weight percent nickel and about 0.01-10 weight percent rhodium on a porous refractory support structure. In certain embodiments, the catalyst also contains a lanthanide element, zirconium, cobalt, manganese or magnesium.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: April 12, 2005
    Assignee: ConocoPhillips Company
    Inventors: Anne M. Gaffney, David R. Corbin
  • Patent number: 6835690
    Abstract: A cobalt based Fischer-Tropsch catalyst which including a porous catalyst support and metallic cobalt crystallites within the support. The catalyst has a proportion of its cobalt in reducible form, with this proportion being expressible as &OHgr; mass %, based on the total pre-reduction catalyst mass. The catalyst also has, when freshly reduced, a mono-modal Gaussian metallic cobalt crystallite size distribution, a metallic cobalt surface area, in m2 per gram of catalyst, of from 0.14 &OHgr; to 1.03 &OHgr;, and a catalyst geometry that ensures a stabilized Fischer-Tropsch synthesis effectiveness factor of 0.9 or greater.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: December 28, 2004
    Assignee: Sasol Technology Limited
    Inventors: Peter Jacobus Van Berge, Jan Van De Loosdrecht, Jacobus Lucas Visagie
  • Patent number: 6818582
    Abstract: An adsorbent catalyst for reducing the amounts of nitrogen oxides, hydrocarbons and carbon monoxide contained in exhaust or combustion gases, which catalyst adsorbs nitrogen oxides, when the exhaust or combustion gases contain in excess of oxygen, and liberates and reduces the adsorbed nitrogen oxides, when the gases contain oxygen in stoichiometric amounts or less, which adsorbent catalyst include a porous support material the surface area of which is large and which contains at least the following: a first catalytic metal, which is preferably Pt, a first NOx adsorbent, which preferably contains at least one of the following metals: Ba and Sr, a second NOx adsorbent, which preferably contains at least one of the following metals: La and Y, and a redox NOx adsorbent, which preferably contains at least one of the following metals: Ce, Zr, Ti, Nb, Mn, Pr, Nd, Sm, Eu and G.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: November 16, 2004
    Assignee: Kemira Metalkat Oy
    Inventor: Teuvo Maunula
  • Patent number: 6806382
    Abstract: A process for preparing a supported metal catalyst composition which comprises impregnating microspheroidal support particles with a solution of at least one catalytically active metal, or precursor, drying the impregnated support particles and then treating the mobile metal, or precursor in a mobile state with a liquid comprising at least one reducing agent to deposit and immobilize the metal, or its precursor, in the support particles such that the metal, or its precursor, is distributed in the support particle in a layer below the surface of the support particle, the layer being between an inner and an outer region having a lower concentration of metal or precursor. Also, a composition comprising microspheroidal support particles having at least one catalytically active metal or precursor thereof distributed in a layer below the surface of the particles, the layer being between an inner and an outer region of the support particle each having a lower concentration of metal or precursor.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: October 19, 2004
    Inventors: Michael James Baker, John William Couves, Kenneth George Griffin, Peter Johnston, James Colin McNicol, George Frederick Salem
  • Patent number: 6794330
    Abstract: It is an object of the present invention to provide an exhaust gas purifying catalyst formed as a single catalyst that has a great deal of flexibility when being assembled into an exhaust system and that is capable of executing both an NOx absorbing function and a three-way function in a desired manner. To attain the this object, an absorbent catalyst layer to which an absorbent agent such as potassium and an acid material such as zeolite are added, an absorbent agent block layer formed of zeolite, and a three-way catalyst layer to which an acid material such as phosphorus is added are bonded together on a cordierite carrier. The acid material in the absorbent catalyst layer and the absorbent agent block layer inhibit the movement of the absorbent agent to the three-way catalyst layer, and transform the absorbent agent into harmless and stable potassium phosphate even if the absorbent agent reaches the three-way catalyst.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: September 21, 2004
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Tanada, Osamu Nakayama, Keisuke Tashiro, Kinichi Iwachido, Tetsuya Watanabe
  • Patent number: 6777370
    Abstract: The present invention relates to a layered catalyst composite useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved catalysts of the type generally referred to as “three-way conversion” catalysts. The layered catalysts trap sulfur oxide contaminants which tend to poison three-way conversion catalysts used to abate other pollutants in the stream. The layered catalyst composites of the present invention have a sulfur oxide absorbing layer before or above a nitrogen oxide absorbing layer. The layered catalyst composite comprises a first layer and a second layer. The first layer comprises a first support and at least one first platinum component. The second layer comprises a second support and a SOx sorbent component, wherein the SOx sorbent component is selected from the group consisting of MgAl2O4, MnO, MnO2, and Li2O.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: August 17, 2004
    Assignee: Engelhard Corporation
    Inventor: Shau-Lin F. Chen
  • Patent number: 6753292
    Abstract: A silica-based photocatalyst fiber having visible-light activity, which fiber comprises a composite oxide phase comprising an oxide phase (first phase) mainly made of a silica component and a titania phase (second phase), wherein the second phase contains a metal element other than titanium and the existent ratio of the second phase slopingly increases towards the surface of the fiber, and a process for the production thereof.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: June 22, 2004
    Assignee: Ube Industries, Ltd.
    Inventors: Hiroyuki Yamaoka, Yoshikatu Harada, Teruaki Fujii
  • Publication number: 20040063576
    Abstract: A catalyst adsorbent for the desulfurization of a feed stream, preferably in a fuel cell, wherein the catalyst includes from about 30 percent to about 80 percent nickel or a nickel compound, from about 5 percent to about 45 percent silica as a carrier, from about 1 percent to about 10 percent alumina as a promoter and from about 0.01 percent to about 15 percent magnesia as a promoter. The invention also includes processes of manufacture of the catalyst adsorbent.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Applicant: Sud-Chemie Inc.
    Inventors: Eric Jamie Weston, David C. Wolfe, Michael W. Balakos, Jon P. Wagner, Kevin G. Northway
  • Patent number: 6696388
    Abstract: A gel composition substantially contained within the pores of a solid material for use as a catalyst or as a catalyst support in dehydrogenation and dehydrocyclization processes.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: February 24, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Patent number: 6673951
    Abstract: The present invention provides a process for catalytically hydrogenating unsaturated phytosterol compounds. The catalyst used for such hydrogenation is an alumina-supported transition metal selected from the group consisting of nickel, palladium, platinum, ruthenium, rhodium and mixtures thereof. The process involves the following steps.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: January 6, 2004
    Assignee: Salsbury Chemicals, Inc.
    Inventors: Erik T. Michalson, James D. Devore
  • Patent number: 6660683
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: December 9, 2003
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 6524993
    Abstract: A hydrogenation catalyst for hydrocarbon oils containing aromatic hydrocarbons is provided. The catalyst has a silica-magnesia oxide carrier with a magnesia content within a range from 25 to 50 weight percent calculated in terms of the metal oxide, to which a noble metal selected from among the group VIII metals of the periodic table is added as the active component. In addition, the pore characteristics of the catalyst are such that the volume of pores with a pore size of at least 4 nm as measured by a mercury porosimetry method is within the range from 0.3 to 0.6 ml/g, the volume of pores with a pore size of at least 200 nm as measured by a mercury porosimetry method is no more than 0.05 ml/g, the volume of pores with a pore size from 0.7 to 2 nm as measured by nitrogen adsorption-t-plot method is within the range from 0.2 to 0.3 ml/g, and the volume of pores with a pore size from 2 to 4 nm as measured by nitrogen adsorption-DH method is within the range from 0.15 to 0.2 ml/g.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: February 25, 2003
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Toshio Yamaguchi, Yuki Kanai, Hideharu Yokozuka
  • Publication number: 20030004057
    Abstract: A hydrogenation catalyst for hydrocarbon oils containing aromatic hydrocarbons is provided. The catalyst has a silica-magnesia oxide carrier with a magnesia content within a range from 25 to 50 weight percent calculated in terms of the metal oxide, to which a noble metal selected from among the group VIII metals of the periodic table is added as the active component. In addition, the pore characteristics of the catalyst are such that the volume of pores with a pore size of at least 4 nm as measured by a mercury porosimetry method is within the range from 0.3 to 0.6 ml/g, the volume of pores with a pore size of at least 200 nm as measured by a mercury porosimetry method is no more than 0.05 ml/g, the volume of pores with a pore size from 0.7 to 2 nm as measured by nitrogen adsorption-t-plot method is within the range from 0.2 to 0.3 ml/g, and the volume of pores with a pore size from 2 to 4 nm as measured by nitrogen adsorption-DH method is within the range from 0.15 to 0.2 ml/g.
    Type: Application
    Filed: May 3, 2002
    Publication date: January 2, 2003
    Inventors: Toshio Yamaguchi, Yuki Kanai, Hideharu Yokozuka
  • Publication number: 20020169069
    Abstract: A base catalyst, obtained by formulating at least one alkali metal compound selected from the group consisting of alkoxides, hydroxides and oxides of alkali metals and an alkaline-earth metal oxide in a ratio of “the weight of alkaline metal compound/the weight of alkaline-earth metal oxide”=0.005 to 1, is used in a reaction of an aldehyde to produce a glycol monoester, thereby providing a base catalyst with an improved efficiency which can be applied to aldol reaction or the like and which has high activity to give target product in a high selectivity.
    Type: Application
    Filed: February 7, 2000
    Publication date: November 14, 2002
    Inventors: KAN-ICHIRO INUI, SHUNJI OSHIMA, TORU KURABAYASHI, SAKAE KAWAMURA, MASAHIRO YOKOTA
  • Patent number: 6423664
    Abstract: The invention concerns a catalyst comprising at least one group VIII metal, at least one additional metal, at least two halogens, including chlorine and fluorine, and at least one amorphous oxide matrix. The catalytic composition is such that the fluorine content is 1.5% by weight or more of the total catalyst mass. The invention also concerns the use of this catalyst in hydrogenating aromatic compounds contained in feeds comprising sulphurated compounds.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: July 23, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Nathalie Marchal-George, Slavik Kasztelan
  • Patent number: 6420307
    Abstract: The present invention relates to a new fluidized-bed catalyst used in a process of propylene ammoxidation to acrylonitrile. The catalyst comprises a silica as carrier and a composition represented by the following general formulas: AaBbCcGedNaeFefBigMohOx Wherein A represents at least one element selected from a group consisting Li,K,Rb,Cs,Sm, In or Tl; B represents at least one element selected from a group consisting of P, Sb, Cr, W. Pr, Ce, As, B, Te, Ga, Al, Nb, Th, La or V; C represents one element selected from a group consisting of Ni, Co, Sr, Mn, Mg, Ca, Zn, Cd or Cu and the mixture thereof; a is a number of from 0.01 to 1.5; b is a number of from 0.01 to 3.0; c is a number of from 0.1 to 12.0; preferably from 2 to 10; d is a number of from 0.01 to 2.0; preferably from 0.01 to 1.0; e is a number of from 0.01 to 0.7; preferably from 0.05 to 0.5; f is a number of from 0.1 to 8; preferably from 1.0 to 3.0; g is a number of from 0.01 to 6; preferably from 0.1 to 2.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: July 16, 2002
    Assignee: China Petro-Chemical Corporation
    Inventors: Lianghua Wu, Guojun Wang, Xin Chen
  • Patent number: 6383980
    Abstract: A photocatalytic titanium dioxide powder comprised of finely divided titanium dioxide particles each having supported on the surface thereof a first supported layer of a calcium compound and further having on the surface of the first supported layer-formed particles a porous second supported layer of a photocatalytically inactive and substantially water-insoluble substance. The photocatalytic titanium dioxide powder is produced by allowing a calcium compound to be supported on the surface of finely divided titanium dioxide particles to form the first supported layer; and then, allowing a precursor material capable of forming the photocatalytically inactive and substantially water-insoluble substance to be supported on the surface of the first supported layer-formed particles, followed by converting the precursor a material to said water-insoluble substance to thereby form the porous second supported layer.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: May 7, 2002
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Hiroyuki Hagihara, Katsura Ito
  • Publication number: 20020045541
    Abstract: It is an object of the present invention to provide a ceramic catalyst body with a better catalyst performance by using a ceramic carrier capable of directly supporting a catalyst component.
    Type: Application
    Filed: October 1, 2001
    Publication date: April 18, 2002
    Inventors: Kazuhiko Koike, Tomohiko Nakanishi, Masakazu Tanaka, Tosiharu Kondo